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ABSTRACT 
As a task of high importance for recommender systems, we con-
sider the problem of learning the convex combination of ranking 
algorithms by online machine learning. In the case of two base 
rankers, we show that the exponentially weighted combination 
achieves near optimal performance. However, the number of re-
quired points to be evaluated may be prohibitive with more base 
models in a real application. We propose a gradient based stochastic 
optimization algorithm that uses fnite diferences. Our new algo-
rithm achieves similar empirical performance for two base rankers, 
while scaling well with an increased number of models. In our ex-
periments with fve real-world recommendation data sets, we show 
that the combination ofers signifcant improvement over previ-
ously known stochastic optimization techniques. Our algorithm is 
the frst efective stochastic optimization method for combining 
ranked recommendation lists by online machine learning. 

CCS CONCEPTS 
• Information systems → Collaborative fltering; • Theory of
computation → Online learning algorithms.
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1 INTRODUCTION 
A milestone in the research of recommendation algorithms, the 
Netfix Prize Competition [4] had high impact on research direc-
tions. The target of the contest was based on the one to fve star 
ratings given by users, with one part of the data used for model 
training and the other for evaluation. As an impact of the competi-

tion, tasks now termed batch rating prediction were dominating 
research results. However, real systems difer not just in that the 
user feedback is implicit, but also in that they process data streams 
where users request one or a few items at a time and get exposed 
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to new information that may change their needs and taste when 
they return to the service next time. Furthermore, an online trained 
model may change and return completely diferent lists for the 
same user even for interactions very close in time. 

The difculty of evaluating streaming recommenders was frst 
mentioned in [18], although the authors evaluated models by of-
fine training and testing split. Ideas for online evaluation metrics 
appeared frst in [21, 22, 29]. In online or prequential evaluation [9], 
which has grown in popularity, the ranking measure is computed 
from a sequence of examples. For each example in the sequence, the 
recommender system provides a top-k list of items to the active user. 
The list is evaluated against typically a single relevant item that 
the user interacted with. Then, the user-item interaction is added 
to the previously available data, and the recommender system is 
able to update its model. 

Recommender systems often rely on an ensemble of base ranking 
algorithms. For instance, in the Netfix prize competition, consid-
erable efort went into choosing the algorithms to the blend and 
combining them [28]. In an online scenario, the environment for a 
combination algorithm is non-stationary: not only the user pref-
erences and item popularities, but also the base ranking models 
change in time. Therefore, the combination of the base algorithms 
also needs to be updated. While it is infeasible to update the pa-
rameters of the combination with the computationally intensive 
blending approaches used in batch settings, convex combination 
of the base models often lead to satisfying results. In summary, 
we consider online convex combination algorithms for (implicit 
feedback) recommenders under prequential evaluation. 

From the machine learning point of view, the main difculty of 
combining ranked recommendation lists is that the typical ranking 
measures, such as NDCG [12], are not continuous, making their op-
timization a difcult task. In this paper, we compare and identify the 
numerical issues of two strategies to optimize for non-continuous 
rewards. The frst approach uses exponentially weighted forecast-
ers, which explore the weight space globally and do not rely on the 
existence of a gradient of the reward function. The second class of 
methods uses gradient descent to maximize the reward. 

Exponentially weighted algorithms (EWA) [7] optimize ranking 
combination weights by exploring the weight space globally. EWA 
was shown to be close to optimal for Lipschitz-continuous envi-
ronments [19]. We will show that EWA is able to optimize ranking 
combination as well, under certain assumption (see Proposition 4.1). 
However, the number of combinations that needs to be evaluated 
to fulfll the assumption grows exponentially with the number of 
base rankers. Therefore, it is not practical in a real application if 
more base rankers are employed. 

To be able to handle a larger number of base rankers, we turn our 
attention to the second approach, local optimization by gradient 
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based methods. In particular, we start with the Resilient Simultane-

ous Perturbation Stochastic Approximation (RSPSA) algorithm [15], 
which was used for optimizing model parameters in games. While 
RSPSA was shown to cope with non-continuous rewards, it is non-
trivial whether it can cope with ranking functions as well. Indeed, 
we observe empirically that RSPSA does not scale well for ranking 
prediction. The reason for this is that ranking functions have many 
fat regions with respect to individual combination weights. 

Our method, Resilient Finite Diference Stochastic Approxima-

tion (RFDSA+), is the frst efective stochastic optimization method 
for combining ranked lists. To improve the scalability properties of 
RSPSA, we switch from simultaneous perturbation to fnite difer-
ences to identify fat regions with respect to a given weight. In this 
way, we eliminate the noise of the perturbation of other weights 
and concentrate always only on optimizing a single weight at a 
time. We show empirically that RFDSA+ achieves near optimal 
performance when two base rankers are combined, and scales well 
with the number of base rankers. 

The article is organized as follows: after discussing the related 
research in Section 2, we formalize our framework in Section 3. Ex-
ponentially weighted algorithms are discussed in Section 4, where 
in Proposition 4.1 we show the theoretical guarantee of EWA. Gra-
dient based algorithms are discussed in Section 5. Our proposed 
algorithm RFDSA+ is described in Section 6. Empirical evaluation 
highlighting the strength of RFDSA+ is provided in Section 7. Some 
conclusions and discussion of future research close the paper in 
Section 8. 

2 RELATED RESEARCH 
Research on incremental recommender algorithms with prequential 
evaluation scenario has gained popularity in recent years. There are 
several papers that use prequential evaluation [3, 5, 13, 21, 22, 31], 
however, only [22] considers the issue of combining multiple base 
rankers. The latter will be discussed in more detail in Section 5.1, 
and evaluated empirically in Section 7. 

Ranking combination has received considerable attention dur-
ing the Netfix prize competition, when the approach of [28] was 
essential for the winning entry. In the batch setting, one of the later 
approaches that can be adapted naturally to an online scenario is 
[6]. The authors use exponentially weighted forecaster, and use 
the cumulative loss of each base algorithm to compute its score in 
the convex combination. One can notice that any arbitrary linear 
shift of the scores of a base algorithm would leave its cumulative 
loss unchanged, but it would afect the base algorithm contribution 
to the mix. Therefore, the algorithm seems somewhat less sound, 
nevertheless, may still perform reasonably well on some practical 
instances. We will describe the algorithm more formally in Sec-
tion 4.3, and evaluate (for implicit feedback problems) empirically 
in Section 7. 

In the online setting, ranking combination was proposed by 
[25, 30] using dueling bandits. Their approach assumes that the 
loss functions are convex and stationary. Neither assumption seems 
reasonable for most ranking measures in a real application. There 
are several algorithms in the literature of online learning that can 

be considered for combining ranking models. [2] considered a two-
point approximation of the gradient for convex functions. The rank-
ing measures are not convex, nevertheless, the algorithm is similar 
to SPSA [27] that have been applied to optimizing non-convex 
functions as well. We will discuss the algorithm in Section 5.2. 
The exponentially weighted algorithm was applied to optimize

√
(non-convex) Lipschitz-continuous functions [19] and it has O ( T )
guarantees in full-information setting, where T is the length of the 
episode. Full information setting would imply, however, evaluating 
a prohibitively large number of points when the number of base 
rankers is slightly larger. There are bandit variants as well [14] that 
evaluate only one point per iteration, however, they scale badly 
on error. The regret bound for the continuum-armed bandits is 
O (T (N +1)/(N +2) ) [14], where N is the dimensionality of the prob-
lem. The exponentially weighted algorithms will be considered in 
Section 4. 

Finally, there are a large number of stochastic approximation 
algorithms that can, in principle, be applied to online ranking com-

bination. Unfortunately, neither of them is straightforward to use 
for ranking functions such as NDCG that are not continuous, and 
even a smoothed cumulative ranking reward function can be non-
convex as well. In most games, the reward is also non-continuous, 
for example, 1/0 for win/loss, or a discrete number of points (or 
money) that can be won in a card game. The algorithm RSPSA [15] 
was proposed for (ofine) optimization of some parameter of a 
poker playing program. Our proposed algorithm, RFDSA+, builds 
on the idea of RSPSA but considers one weight at a time, to remedy 
the problems of past algorithms in handling fat areas in ranking 
functions. 

3 PROBLEM SETUP 
We consider the online combination of the ranked list of multiple 
base recommender algorithms. As soon as the base algorithms give 
a prediction, we have to apply and potentially re-learn the combina-

tion weight on the fy. In contrast to the typical batch learning tasks 
where we can for example perform grid search by using a large 
amount of past training data, closer to a real recommender system 
operation, in our task, we process the recommendation requests 
and the feedback as a sequence in time. Compared to batch learning, 
the advantage of the online methods is that they can adapt faster 
to concept drifts [8] that can rearrange the relative strength of the 
diferent base models. 

Both batch and prequential evaluation rely on a set of recorded 
user-item interactions. For batch evaluation, one splits the data in 
a training and a test set, and trains the algorithms on the former 
and tests on the latter. Conversely, for prequential evaluation, we 
test algorithms sequentially on each data point, and potentially use 
all preceding data points for training. Since often, the user selects 
a single item only, we will consider implicit feedback evaluation 
metrics with only one relevant item, but the evaluation can easily 
be generalized for the case when the user takes multiple choices or 
when the feedback is explicit. Prequential evaluation is closer to a 
real application, since in practice, user interaction occurs sequen-
tially. Algorithms can also exploit the most recent data. It is true 
for both evaluation methods that recommendation is made before 
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revealing the choice of the user, that is a given user-item interaction 
is processed independently of what the system recommends. 

Given a chronologically ordered data set with T records, pre-
quential evaluation is an episode with T rounds. In each round t , 
we take the following steps. 

(1) We observe the next user-item pair from the data set, and 
set the active user accordingly. 

(2) We query the recommender system for a top-K recommen-

dation for the active user. 
(3) We evaluate the output recommendation list against the 

single relevant item jt that the user interacted with. 
(4) Finally, we reveal the relevant item jt to the recommender 

system, and allow to update the model using the additional 
user-item pair. 

In the context of convex combination algorithms, we consider N 
base ranking algorithms, and the ith base algorithm is denoted by 
Ai . In each round t = 1, . . . ,T , frst, each base algorithm Ai assigns 
a score xt i j to each item j. After that, the convex combination 
algorithm assigns the weight θt i to each algorithm Ai . The weights 
form an N -dimensional vector θt = (θt 1, . . . , θtN ). The parameter 
space is θt ∈ Θ = RN . The combined score of item j in round t isPN 

0+ 
xt j = =1 θt i xt i j . The top lists are generated by sorting the items i
by the combined scores in descending order. 

After the active user’s preferred item is revealed, the combination 
algorithm collects the reward rt , which depends on the top list 
generated and on the user’s choice. With an abuse of notation, 
we will denote the reward of a base ranker Ai by rt i , the reward 
corresponding to a weight assignment θ by rt (θ ), and the reward 
obtained by a combination algorithm C by rt (C). The cumulative Pt
reward collected up to round t is Rt = =1 rτ . We let Rt i , Rt (θ ),τ
and Rt (C) denote the cumulative reward corresponding to a base 
ranker, a weight vector, and a combination algorithm. 

There are several choices of ranking measures. A popular choice, 
which we use in our experiments, is NDCG@K [12]. In prequential 
evaluation, we assume the worst scenario that there is only one 
item with non-zero label in each round t , namely jt . The NDCG@K 
of a permutation πt of the items reduces to (

1/ log
2 (rankπt (jt ) + 1) if rankπt (jt ) ≤ K ,

rt = NDCG@K(πt )= 
0 otherwise, 

as there is always exactly one relevant item and hence the ideal 
DCG is equal to one. 

4 EXPONENTIALLY WEIGHTED BASELINE 
ALGORITHMS 

The frst set of baseline rank combination algorithms in this section 
rely on the exponentially weighted forecaster [7]. They explore 
the weight space globally, without relying on the existence of a 
gradient of the reward function. In Proposition 4.1, we will also 
show that in the case of two base recommenders, the exponentially 
weighted combination achieves near optimal performance. 

4.1 ExpA 
The simplest choice to deal with multiple base rankers is to use the 
exponentially weighted forecaster on the rankers. Accordingly, the 

combination algorithm, denoted by ExpA, selects base ranker Ai 
in round t with probability Pt −1−ηt =1 rτ i 

pt i = Pt −1 . (1)

e τ PN −ηt =1 rτ j 
=1 e τj 

Selecting base ranker Ai in round t means setting θt i = 1 and 
θt j = 0 for j , i. The algorithm is guaranteed to achieve a cumu-

lative reward that is not worse than the cumulative reward of the√
best base rankers by an additive O ( T ) term in expectation [7]. 

4.2 ExpW 
While ExpA can locate the best base ranker, we can hope that a 
convex combination of the rankers can achieve a better performance 
than any single ranker. We choose a fnite set of points P ⊂ Θ 
and apply the exponentially weighted forecaster to P to choose 
the weight combinations θt ∈ P to play. If an appropriately large 
number of points are chosen, and the cumulative reward function 
RT (θ ) (as a function of θ ) is sufciently smooth, then the algorithm, 
denoted by ExpW, will achieve a cumulative reward that is close to 
that of the optimal convex combination. The following proposition 
formalizes this statement. 

Proposition 4.1. Let P ⊂ Θ be a fnite set such that 
" # 

√ 
E max RT (θ ) − max RT (p) ≤ T . (2) 

θ ∈Θ p ∈P 

Then the regret of the exponentially weighted forecaster applied on P 
is bounded by 

" # �√ � 
E max RT (θ ) − RT (ExpW) ≤ Õ T . (3) 

θ ∈Θ 

The proof follows by putting together the regret bound of the 
exponentially weighted forecaster and inequality (2). 

For a sufciently large T , function RT (θ ) is fairly smooth in 
practice, as observed in Section 7.3. For two base rankers, the pa-
rameter space can be represented by a one dimensional simplex,

√
i.e. a section. Then, a uniform grid with O ( T ) gridpoints can be 
sufcient, if the cumulative function acts like a Lipschitz function 
on the grid points. This latter condition will often be true (see also 
Figure 1). However, with more base rankers, the number of points 
required for a Lipschitz-like cumulative function is Ω(T (N −1)/2). 
Since ExpW needs to evaluate the reward in each point, the num-

ber of evaluations scales exponentially with the number of base 
rankers. 

4.3 ExpAW 
In [6], the authors proposed an algorithm that can be regarded as a 
mix of ExpA and ExpW. The algorithm, denoted here by ExpAW, 
relies on the cumulative performance of the base rankers (as ExpA), 
but it is used as the weight of the base ranker, instead of using it as 
selection probability. The weight of base ranker Ai in round t is Pt −1−ηte τ =1 rτ i 

θt i = Pt −1 . (4)PN −ηt τ =1 rτ jj=1 e 

It is easy to see that reward of a base ranker does not change 
if the scores of rankers are scaled by some factor. However, the 
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scaling will afect the reward of the combination algorithm in an 
arbitrary way. Nevertheless, with a reasonable normalization, the 
algorithm may still lead to a decent performance, and it is less likely 
to be afected by an increase in the number of base rankers. 

5 GRADIENT BASELINE ALGORITHMS 
In this section, we present the second set of baseline rank combi-

nation methods, which are guided by the gradient of the reward 
function. In the frst subsection, we describe algorithm (SGD) that 
computes the gradient of a surrogate to the reward. The next two 
algorithms (SPSA and RSPSA) are stochastic approximation algo-
rithms that approximate the gradient by fnite diferences. We men-

tion that our new algorithm RFDSA+ builds on RSPSA, extending it 
to deal with the difculties of fat regions in the ranking functions. 

5.1 SGD 
We call our frst combination algorithm SGD, since it uses stochastic 
gradient descent for the mean squared error (MSE) as a surrogate 
to the reward. The target for the current item is set to 1, and the 
targets for a set of randomly sampled negative items is set to 0. 
After seeing a user-item pair, a stochastic gradient step is taken to 
minimize the MSE between the ranking score (xt j ) and the target 
value. The algorithm was used by [23] for matrix factorization and 
by [22] for online combination. 

We do not expect the algorithm to have difculty with a large 
number of base rankers. However, minimizing the surrogate loss 
may not result in a sufciently good optimization of the original 
reward function. 

5.2 SPSA 
The gradient of most ranking functions with respect to the com-

bination weights is typically zero in most points where it exists. 
However, if we average over more time steps, it starts to ‘smooth 
out’. It still cannot be computed in a closed form, but it can be 
approximated by fnite diferences. For online optimization of con-
vex functions, [2] suggested the gradient to be approximated by 
simultaneous perturbation, with an online gradient step taken in 
the approximated direction. For non-convex optimization, a similar 
algorithm is known as Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) [27]. The approximated gradient дt i is given 
by 

дt i = (rt (θt + ct ∆t ) − rt (θt − ct ∆t ))/(ct ∆t i ), 

where ct is an appropriately decreasing sequence, 

∆t = (∆t 1, . . . , ∆tN ), 

and ∆t i are ±1 valued unbiased Bernoulli random variables. 

5.3 RSPSA 
In SPSA, especially with non-smooth functions, the difculty lies in 
choosing the appropriate perturbation. The sum of ranking reward 
functions is a step function. If the perturbation size is too small, we 
might stuck on a plateau and can not fnd the right direction. If the 
perturbation is too large, we miss local optima. The appropriate 
perturbation step size might difer depending on the coordinate 
and time. 

The RSPSA algorithm was proposed in [15] for games, which 
also have a discrete reward (e.g., 1 for win, 0 for loss). The algorithm 
combines the simultaneous perturbation approximation with the 
Resilient Backpropagation (RPROP) [11] update rule. In RPROP, we 
assign a distinct step size to each weight. Informally, if the direction 
of the gradient changes, then the step size is decreased. Otherwise, 
the step size is increased. The weight update depends only on the 
sign of the gradient, and the step size determines how much the 
weight changes. In RSPSA, the perturbation size for each weight is 
connected to the step size, solving the above mentioned difculty. 
The RPROP update rule is designed for batch update, and therefore, 
in our setting, we use mini batches to collect the gradients before 
an update. 

6 OUR METHOD: RFDSA+ 
We designed our new method by observing the behavior of RSPSA 
for ranking combination. One of the strengths of the RPROP up-
date rule is that it is increasing the update steps on a large plateau, 
and taking larger steps in the directions of the gradient. Ranking 
functions as function of a combination weight consist of constant 
intervals. However if the perturbation is sufciently large, the av-
eraged gradient estimate will be non-zero. If the step size for a 
weight is small in a fat area, then it should be increased in order 
to escape the fat area, but also in order to be able to estimate the 
right direction. In other words, the weight needs a sufciently large 
perturbation to be able to infuence the ranking function. 

However, we observed that in RSPSA, the estimated direction 
changes often in the fat area, and the step size in fact decreases. 
To illustrate the problem, consider a ranking function that is com-

pletely fat in the direction of some but not all coordinates in the 
neighborhood of the current θt . In this case, the direction of the 
estimated gradient of the ‘fat’ coordinates becomes an unbiased 
Bernoulli variable, since even if the ranking function is completely 
fat with respect to coordinate i , the numerator of дt i will still be 
non-zero because of the non-fat coordinates. However, the numer-

ator will be independent of the randomly chosen direction of ∆t i , 
and hence дt i will simply mirror the random variable ∆t i . 

To remedy the problem of fat regions, we switch from simul-

taneous perturbation to fnite diferences in order to identify that 
the ranking function is fat with respect to the weight in question. 
Note that by perturbing just one weight, we eliminate the noise 
coming from the perturbation of the other weights. If we detect a 
fat region, then we increase the step size. 

The pseudocode of the RFDSA+ is provided in Algorithm 1. The 
key diferences to RSPSA are switching from simultaneous pertur-
bation to fnite diferences (line 7–8), and handling the fat regions 
(line 22–23). The RPROP update is given by line 11–28. 

The algorithm has four parameters: the mini-batch size B, the 
initial step size δ0, and the step size adjustment variables η+ 

and 
η−. For noise functions, typical values are η+ = 1.1 and η− = 0.85 
[15]. The initial value of the step size has minimal infuence, since 
it is quickly adjusted; it is set to δ0 = 0.1. The size of the mini batch 
will be chosen 1,000 in the experiments, the same as for SPSA and 
RSPSA. The length of an episode T , and the number of the base 
rankers N is determined by the problem. 
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The key variables of the RFDSA+ algorithm are the step sizes δi , 
corresponding to each weight θi . The auxiliary variables si store 
the previous weight update and are used for identifying a change 
in the direction of the partial derivatives. During a mini batch, the 
negative partial derivatives are collected in the variables дi . 

The RFDSA+ algorithm starts with an initialization phase in 
line 1–4. After every user interaction, at time t , the partial deriva-
tives are computed as follows. For each base ranker i , we perturb its 
weight by twice the corresponding step size (line 7). The coupling 
factor 2 is standard for RSPSA [15], but slightly diferent values 
can be used as well. We use one-sided positive perturbation in the 
description of the algorithm. Using one-sided perturbation halves 
the number of evaluations needed. With one-sided perturbation, 
it is more natural to choose the direction randomly (±2δi ) valued 
Bernoulli random variable. The current description was chosen for 
brevity. The partial derivatives дi are updated in line 8, using the 
fnite diference estimator. 

At the end of each mini batch, the weights θi and the step sizes 
δi are updated according to the RPROP rule [11] in lines 11–28, 
independently for each component i . The auxiliary variable h de-
tects a change of direction in the partial derivative. If there is no 
change (lines 13–15), the step size is increased, and the weight θi 
will be updated in the direction of the derivatives with the amount 
determined by the step size. If there is change in the direction, then 
the step size is decreased, and the weight is left unchanged. The 
weight will be updated after the next mini batch (line 20). The key 
modifcation that deals with fat regions in the partial derivatives 
is shown in lines 22–23. Accordingly, the step size is increased 
if the partial derivative is 0 during the mini batch. Detecting the 
fat region is made possible by using fnite diference estimation, 
instead of simultaneous perturbation. The actual weight update is 
shown in line 25. 

7 EXPERIMENTS 
In this section, frst we empirically investigate how well the combi-

nation algorithms perform for two base rankers, compared to the 
optimal (static) combination. Then we analyze how the combina-

tion algorithms scale when a larger number of base rankers are 
available. 

7.1 Data sets 
All data sets consists of time-ordered sequence of user-item pairs. 
Only the frst occurrence of a user-item pair is included. The task at 
a certain point of time is to rank the available items for the current 
user. After a top list is provided by a particular algorithm, a reward 
is obtained using N DCG@100 as ranking measure (see Section 3). 
In our case, there is only one item with non-zero label (the one 
from the current user-item pair). Following the evaluation step, the 
item is revealed to the base rankers and the combination algorithm, 
allowing them to update their model. 

In these experiments, we use three data sets from the Amazon 
collection (CDs and Vinyl; Movies and TV; Electronics [20]), the 
10M MovieLens data set1, and a twitter data set where the items 
are defned by the hashtags used in tweets. 

1
http://grouplens.org/datasets/movielens/ 
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1 for i = 1 to N do 
2 θi ← 1/N ; дi ← 0 
3 si ← 0; δi ← δ0 
4 end 
5 for t = 1 to T do 
6 for i = 1 to N do 

θ+ ← θ ; θ+7 i ← θi + 2δi 
8 дi ← дi + (rt (θ+) − rt (θ ))/(2δi ) 
9 end 

10 if t mod B = 0 then 
11 for i = 1 to N do 
12 h ← дi si 
13 if h > 0 then 

δi ← η+δi14 

15 si ← siдn(дi )δi 
16 else if h < 0 then 

δi ← η−δi17 

18 si ← 0 
19 else 
20 si ← siдn(дi )δi 
21 end 
22 if дi = 0 then 

δi ← η+δi23 

24 else 
25 θi ← θi + si 
26 end 
27 дi ← 0 
28 end 
29 end 
30 end 

Algorithm 1: RFDSA+ 

7.2 Base rankers 
We rely on two basic classes of collaborative fltering models: item 
based nearest neighbor (item2item) [26] and matrix factorization 
[1]. These two classes of methods represent the most successful 
and most popular collaborative fltering algorithms

2 
[17, 24]. In 

addition to the two techniques, we also include temporal popularity 
(denoted Pop), which records how many times an item was visited 
in the preceding time window. 

For item2item, we use a time-decayed item-to-item similarity 
function, the model being updated every day. When computing the 
score for an item, we consider the similarity to all items previously 
visited by the user. Thus, this algorithm also incorporates the recent 
history. 

We include four matrix factorization variants: online matrix 
factorization (OMF) [23], online asymmetric matrix factorization 
(OAMF) [16], batch matrix factorization (MF), and (batch) implicit 
alternating least squares (iALS) [10]. All variants use latent fac-
tors with ten dimensions. The online variants update once after 
2
For particular data sets, there may be superior algorithms, especially in batch settings. 
The two main base rankers considered are representatives of two main approaches to 
collaborative fltering, and have natural incremental versions. None of the combination 
algorithms exploit the particular base rankers, thus replacing the base rankers is 
straightforward. 
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Figure 1: Reward with various combination coefcients (θ ) 
for the combination of OMF and item2item on the Amazon-
CD set. In the fgure, θ denotes the normalized weight of the 
OMF base ranker. The normalized weight for item2item is 
1 − θ . RT (0) = 0.03434. 

every user-item pair. The batch variants retrain their models after 
every 100,000 time steps, using a required number of iterations. 
We use stochastic gradient descent for OMF, OAMF and MF with 
the current item from the data set designated as positive item, and 
additional negative items sampled randomly [23]. 

The parameters of the base rankers are optimized for each data 
set. In the combination, the scores of the base rankers are normal-

ized by the standard deviation. 

7.3 Combination of two models 
We show our results for combining the two base models OMF and 
item2item. We let θ denote the weight of OMF in the convex com-

bination. The average cumulative reward, depending on θ , is shown 
for the Amazon-CD data set in Figure 1. Interestingly, the optimum 
is reached for a combination that puts heavy weigh to item2item, 
even though OMF alone performs better than item2item. 

The average cumulative reward of the combination algorithms 
is shown in Figure 2. The peculiar shape in the frst three years is 
due to the low amount of data collected and the more signifcant 
changes in the data distribution. We observe the relative order 
of the base algorithms changes over time: at frst OMF is better, 
then item2item, and then OMF again. This shows that selecting an 
algorithm on partial data, and using only that algorithm later is a 
poor choice. ExpA follows the better base algorithm, being slightly 
worse than that due to exploration. ExpW3 

achieves a performance 
that equals to the best static convex combination (cf. Figure 1). 
ExpAW is on par with ExpW in the beginning, but its performance 
deteriorates later. This is natural, since it is choosing a larger weight 
for OMF due to the superior performance of OMF, despite that the 
actual optimum is to assign a large weight to item2item, as seen 
in Figure 1. SGD has similar performance to ExpW, giving also 
a larger weight to OMF. This is possibly because SGD and OMF 
optimize the same surrogate loss function. 

3
For ExpW, the set of points P consisted of a uniform grid with 100 points. 
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Figure 2: Average cumulative NDCG of the ranking algo-
rithms on the Amazon-CD set. 
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Figure 3: The weight assignment of the ranking algorithms 
on the Amazon-CD set. OptG100+ corresponds to the opti-
mal weight assignment over 100 uniform grid points, with 
a few additional points chosen near the presumed optimum. 
In the fgure, θ denotes the normalized weight of the OMF 
base ranker. The normalized weight for item2item is 1 − θ . 

The weight assignment of the combination algorithms is shown 
in Figure 3. The fgure includes additionally an optimal static weight 
assignment, i.e. θt = argmaxθ ∈P Rt (θ ). By analyzing the weight 
assignment of the three combination algorithms that optimize 
NDCG directly (SPSA, RSPSA and RFDSA+), we observe that all 
give item2item a large weight, although the weights for SPSA are 
further away from the optimum. Consequently, we notice in Fig-
ure 2 that the three algorithms perform well, RSPSA and RFDSA+ 
matching the optimal performance of ExpW. 

7.4 Scaling 
We analyze the scaling of the combination algorithms in two ways: 
(1) by including an increasing number of OMF base rankers (difer-
ing only in the random initialization) next to item2item, and (2) 
by including all six base rankers in the mix. 
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Table 1: Combination of six base rankers on fve data sets. The average NDCG of the base rankers is shown at the top of table, 
while the average NDCG of the combination algorithms at the bottom. 

Algorithm Amazon-CD Amazon-Movies Amazon-Electro MovieLens Twitter 

item2item 0.0343 0.0350 0.0156 0.1445 0.0221 
OMF 0.0389 0.0440 0.0222 0.1357 0.3528 
Pop 0.0628 0.0663 0.0347 0.0857 0.3486 

OAMF 0.0318 0.0320 0.0160 0.1717 0.3118 
MF 0.0052 0.0086 0.0056 0.0051 0.0055 
iALS 

ExpA 

0.0046 

0.0628 

0.0075 

0.0663 

0.0060 

0.0347 

0.0053 

0.1717 

0.0054 

0.3486 
ExpAW 0.0628 0.0664 0.0347 0.1717 0.3486 
SGD 0.0640 0.0674 0.0353 0.1568 0.3563 
SPSA 0.0696 0.0692 0.0349 0.1678 0.3683 
RSPSA 0.0640 0.0670 0.0396 0.1435 0.4468 
RFDSA+ 0.0880 0.0882 0.0452 0.1879 0.4601 
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Figure 4: Average NDCG of the ranking algorithms on the 
Amazon-CD set with varying number of OMFs. The com-
bination includes one item2item and one to ten OMF base 
rankers. In the case of xOMF there is only one OMF, but the 
dimension of the latent factors is increased from 10 to the 
range of 10–100. 

In the frst case, assuming that the various OMF models achieve 
similar performance, one expects that the optimal weight for item2item 
stays relatively the same, with the weight of one OMF from the 
previous section divided among the multiple instances. The dif-

culty here is that the proper weight assignment (for item2item) 
needs to be found in a space with larger dimensionality. For larger 
dimensions, placing grid points that cover the parameter space 
sufciently would require exponential number of evaluations, thus 
we do not include ExpW in this experiment. The performance of 
the other combination algorithms is shown in Figure 4. 

We observe that the ranking performance of RFDSA+ is not 
dropping as the number of OMFs increases. It is even able to use 
the slight variation in the OMFs to increase the performance slightly. 
The performance of SPSA and RSPSA deteriorates signifcantly as 
more OMFs are included in the mix. ExpA, ExpAW and SGD all 

cope well with the increased dimension, but their performance is 
much weaker overall than that of RFDSA+. The relative invariance 
of ExpA underlines that the individual OMF rankers achieve similar 
performance (we checked that the variance of their NDCG score is 
indeed very small). We added two further baselines to the fgure: 
xOMF is a variant of OMF with increased latent vector dimension, 
and item2item+xOMF, a combination using RFDSA+. We observe 
that the individual performance of an online factor model increases 
with the dimension of the latent vectors. However, in combination 
with item2item, it is better to use many smaller models than one 
big one, assuming that they are combined with an algorithm such as 
RFDSA+ that scales well. Results on the other data sets are similar 
and omitted due to space limitations. 

Next, we show the performance of the combination algorithms 
when all the six base rankers are used in Table 1. First, we notice that 
the individual performance of the batch base rankers (MF and iALS) 
is poor for all data sets. The performance of the other base rankers 
vary, depending on the data set. Regarding the performance of the 
combination algorithms, we can draw somewhat similar conclusion 
as for Figure 4: RFDSA+ has signifcantly better performance for all 
data sets compared to other combination algorithms. We also note 
that the improvement in performance over the best individual base 
ranker is considerable for all data sets. ExpA achieves approximately 
the performance of the best individual ranker. ExpAW and SGD 
cope reasonably well with more base rankers, but their performance 
is not exceeding by much the performance of the base ranker. SPSA 
and RSPSA (which were performing well for two base rankers) are 
not performing particularly well when a larger number of models 
are included in the mix. 

8 CONCLUSIONS 
In this paper, we have considered the task of learning the online 
convex combination of base recommender algorithms by stochastic 
optimization. For the case of two base rankers, we have shown 
that the class of exponential weighted algorithms attains close to 
optimal performance. However, the algorithm cannot be applied 
in real application with a larger number of base rankers, because 
of the exponential number of evaluations needed. To remedy the 
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scaling problem, we have proposed a new algorithm RFDSA+. The 
algorithm uses fnite diferences to estimate the gradient of the 
ranking reward, and the RPROP update rule to adjust the combina-

tion weights. The update rule was modifed in order to deal with 
fat regions that often appear in ranking functions. The new algo-
rithm is shown empirically to perform close to optimum for two 
base rankers, and scale well if the number of models is increased 
by homogeneous base rankers or varied ones. We observed that 
by applying the RFDSA+ combination algorithm a considerable 
improvement in ranking performance can be obtained over the 
base rankers. 
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