
Online Ranking Combination
Erzsébet Frigó

frigo.erzsebet@sztaki.hu
Institute for Computer Science and Control (MTA SZTAKI)

Budapest, Hungary

ABSTRACT
As a task of high importance for recommender systems, we con-
sider the problem of learning the convex combination of ranking
algorithms by online machine learning. In the case of two base
rankers, we show that the exponentially weighted combination
achieves near optimal performance. However, the number of re-
quired points to be evaluated may be prohibitive with more base
models in a real application. We propose a gradient based stochastic
optimization algorithm that uses fnite diferences. Our new algo-
rithm achieves similar empirical performance for two base rankers,
while scaling well with an increased number of models. In our ex-
periments with fve real-world recommendation data sets, we show
that the combination ofers signifcant improvement over previ-
ously known stochastic optimization techniques. Our algorithm is
the frst efective stochastic optimization method for combining
ranked recommendation lists by online machine learning.

CCS CONCEPTS
• Information systems → Collaborative fltering; • Theory of
computation → Online learning algorithms.

KEYWORDS
ranking; combination; RFDSA

ACM Reference Format:
Erzsébet Frigó and Levente Kocsis. 2019. Online Ranking Combination. In
Thirteenth ACM Conference on Recommender Systems (RecSys ’19), September
16–20, 2019, Copenhagen, Denmark. ACM, New York, NY, USA, 8 pages.
https://doi.org/10.1145/3298689.3346993

1 INTRODUCTION
A milestone in the research of recommendation algorithms, the
Netfix Prize Competition [4] had high impact on research direc-
tions. The target of the contest was based on the one to fve star
ratings given by users, with one part of the data used for model
training and the other for evaluation. As an impact of the competi-

tion, tasks now termed batch rating prediction were dominating
research results. However, real systems difer not just in that the
user feedback is implicit, but also in that they process data streams
where users request one or a few items at a time and get exposed

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for proft or commercial advantage and that copies bear this notice and the full citation
on the frst page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specifc permission
and/or a fee. Request permissions from permissions@acm.org.
RecSys ’19, September 16–20, 2019, Copenhagen, Denmark
© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6243-6/19/09. . . $15.00
https://doi.org/10.1145/3298689.3346993

Levente Kocsis
kocsis@sztaki.hu

Institute for Computer Science and Control (MTA SZTAKI)
Budapest, Hungary

to new information that may change their needs and taste when
they return to the service next time. Furthermore, an online trained
model may change and return completely diferent lists for the
same user even for interactions very close in time.

The difculty of evaluating streaming recommenders was frst
mentioned in [18], although the authors evaluated models by of-
fine training and testing split. Ideas for online evaluation metrics
appeared frst in [21, 22, 29]. In online or prequential evaluation [9],
which has grown in popularity, the ranking measure is computed
from a sequence of examples. For each example in the sequence, the
recommender system provides a top-k list of items to the active user.
The list is evaluated against typically a single relevant item that
the user interacted with. Then, the user-item interaction is added
to the previously available data, and the recommender system is
able to update its model.

Recommender systems often rely on an ensemble of base ranking
algorithms. For instance, in the Netfix prize competition, consid-
erable efort went into choosing the algorithms to the blend and
combining them [28]. In an online scenario, the environment for a
combination algorithm is non-stationary: not only the user pref-
erences and item popularities, but also the base ranking models
change in time. Therefore, the combination of the base algorithms
also needs to be updated. While it is infeasible to update the pa-
rameters of the combination with the computationally intensive
blending approaches used in batch settings, convex combination
of the base models often lead to satisfying results. In summary,
we consider online convex combination algorithms for (implicit
feedback) recommenders under prequential evaluation.

From the machine learning point of view, the main difculty of
combining ranked recommendation lists is that the typical ranking
measures, such as NDCG [12], are not continuous, making their op-
timization a difcult task. In this paper, we compare and identify the
numerical issues of two strategies to optimize for non-continuous
rewards. The frst approach uses exponentially weighted forecast-
ers, which explore the weight space globally and do not rely on the
existence of a gradient of the reward function. The second class of
methods uses gradient descent to maximize the reward.

Exponentially weighted algorithms (EWA) [7] optimize ranking
combination weights by exploring the weight space globally. EWA
was shown to be close to optimal for Lipschitz-continuous envi-
ronments [19]. We will show that EWA is able to optimize ranking
combination as well, under certain assumption (see Proposition 4.1).
However, the number of combinations that needs to be evaluated
to fulfll the assumption grows exponentially with the number of
base rankers. Therefore, it is not practical in a real application if
more base rankers are employed.

To be able to handle a larger number of base rankers, we turn our
attention to the second approach, local optimization by gradient

12

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by SZTAKI Publication Repository

https://core.ac.uk/display/288165727?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1145/3298689.3346993
https://doi.org/10.1145/3298689.3346993
mailto:kocsis@sztaki.hu
mailto:permissions@acm.org
mailto:frigo.erzsebet@sztaki.hu

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Erzsébet Frigó and Levente Kocsis

based methods. In particular, we start with the Resilient Simultane-

ous Perturbation Stochastic Approximation (RSPSA) algorithm [15],
which was used for optimizing model parameters in games. While
RSPSA was shown to cope with non-continuous rewards, it is non-
trivial whether it can cope with ranking functions as well. Indeed,
we observe empirically that RSPSA does not scale well for ranking
prediction. The reason for this is that ranking functions have many
fat regions with respect to individual combination weights.

Our method, Resilient Finite Diference Stochastic Approxima-

tion (RFDSA+), is the frst efective stochastic optimization method
for combining ranked lists. To improve the scalability properties of
RSPSA, we switch from simultaneous perturbation to fnite difer-
ences to identify fat regions with respect to a given weight. In this
way, we eliminate the noise of the perturbation of other weights
and concentrate always only on optimizing a single weight at a
time. We show empirically that RFDSA+ achieves near optimal
performance when two base rankers are combined, and scales well
with the number of base rankers.

The article is organized as follows: after discussing the related
research in Section 2, we formalize our framework in Section 3. Ex-
ponentially weighted algorithms are discussed in Section 4, where
in Proposition 4.1 we show the theoretical guarantee of EWA. Gra-
dient based algorithms are discussed in Section 5. Our proposed
algorithm RFDSA+ is described in Section 6. Empirical evaluation
highlighting the strength of RFDSA+ is provided in Section 7. Some
conclusions and discussion of future research close the paper in
Section 8.

2 RELATED RESEARCH
Research on incremental recommender algorithms with prequential
evaluation scenario has gained popularity in recent years. There are
several papers that use prequential evaluation [3, 5, 13, 21, 22, 31],
however, only [22] considers the issue of combining multiple base
rankers. The latter will be discussed in more detail in Section 5.1,
and evaluated empirically in Section 7.

Ranking combination has received considerable attention dur-
ing the Netfix prize competition, when the approach of [28] was
essential for the winning entry. In the batch setting, one of the later
approaches that can be adapted naturally to an online scenario is
[6]. The authors use exponentially weighted forecaster, and use
the cumulative loss of each base algorithm to compute its score in
the convex combination. One can notice that any arbitrary linear
shift of the scores of a base algorithm would leave its cumulative
loss unchanged, but it would afect the base algorithm contribution
to the mix. Therefore, the algorithm seems somewhat less sound,
nevertheless, may still perform reasonably well on some practical
instances. We will describe the algorithm more formally in Sec-
tion 4.3, and evaluate (for implicit feedback problems) empirically
in Section 7.

In the online setting, ranking combination was proposed by
[25, 30] using dueling bandits. Their approach assumes that the
loss functions are convex and stationary. Neither assumption seems
reasonable for most ranking measures in a real application. There
are several algorithms in the literature of online learning that can

be considered for combining ranking models. [2] considered a two-
point approximation of the gradient for convex functions. The rank-
ing measures are not convex, nevertheless, the algorithm is similar
to SPSA [27] that have been applied to optimizing non-convex
functions as well. We will discuss the algorithm in Section 5.2.
The exponentially weighted algorithm was applied to optimize

√
(non-convex) Lipschitz-continuous functions [19] and it has O (T)
guarantees in full-information setting, where T is the length of the
episode. Full information setting would imply, however, evaluating
a prohibitively large number of points when the number of base
rankers is slightly larger. There are bandit variants as well [14] that
evaluate only one point per iteration, however, they scale badly
on error. The regret bound for the continuum-armed bandits is
O (T (N +1)/(N +2)) [14], where N is the dimensionality of the prob-
lem. The exponentially weighted algorithms will be considered in
Section 4.

Finally, there are a large number of stochastic approximation
algorithms that can, in principle, be applied to online ranking com-

bination. Unfortunately, neither of them is straightforward to use
for ranking functions such as NDCG that are not continuous, and
even a smoothed cumulative ranking reward function can be non-
convex as well. In most games, the reward is also non-continuous,
for example, 1/0 for win/loss, or a discrete number of points (or
money) that can be won in a card game. The algorithm RSPSA [15]
was proposed for (ofine) optimization of some parameter of a
poker playing program. Our proposed algorithm, RFDSA+, builds
on the idea of RSPSA but considers one weight at a time, to remedy
the problems of past algorithms in handling fat areas in ranking
functions.

3 PROBLEM SETUP
We consider the online combination of the ranked list of multiple
base recommender algorithms. As soon as the base algorithms give
a prediction, we have to apply and potentially re-learn the combina-

tion weight on the fy. In contrast to the typical batch learning tasks
where we can for example perform grid search by using a large
amount of past training data, closer to a real recommender system
operation, in our task, we process the recommendation requests
and the feedback as a sequence in time. Compared to batch learning,
the advantage of the online methods is that they can adapt faster
to concept drifts [8] that can rearrange the relative strength of the
diferent base models.

Both batch and prequential evaluation rely on a set of recorded
user-item interactions. For batch evaluation, one splits the data in
a training and a test set, and trains the algorithms on the former
and tests on the latter. Conversely, for prequential evaluation, we
test algorithms sequentially on each data point, and potentially use
all preceding data points for training. Since often, the user selects
a single item only, we will consider implicit feedback evaluation
metrics with only one relevant item, but the evaluation can easily
be generalized for the case when the user takes multiple choices or
when the feedback is explicit. Prequential evaluation is closer to a
real application, since in practice, user interaction occurs sequen-
tially. Algorithms can also exploit the most recent data. It is true
for both evaluation methods that recommendation is made before

13

Online Ranking Combination RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

revealing the choice of the user, that is a given user-item interaction
is processed independently of what the system recommends.

Given a chronologically ordered data set with T records, pre-
quential evaluation is an episode with T rounds. In each round t ,
we take the following steps.

(1) We observe the next user-item pair from the data set, and
set the active user accordingly.

(2) We query the recommender system for a top-K recommen-

dation for the active user.
(3) We evaluate the output recommendation list against the

single relevant item jt that the user interacted with.
(4) Finally, we reveal the relevant item jt to the recommender

system, and allow to update the model using the additional
user-item pair.

In the context of convex combination algorithms, we consider N
base ranking algorithms, and the ith base algorithm is denoted by
Ai . In each round t = 1, . . . ,T , frst, each base algorithm Ai assigns
a score xt i j to each item j. After that, the convex combination
algorithm assigns the weight θt i to each algorithm Ai . The weights
form an N -dimensional vector θt = (θt 1, . . . , θtN). The parameter
space is θt ∈ Θ = RN . The combined score of item j in round t isPN

0+
xt j = =1 θt i xt i j . The top lists are generated by sorting the items i
by the combined scores in descending order.

After the active user’s preferred item is revealed, the combination
algorithm collects the reward rt , which depends on the top list
generated and on the user’s choice. With an abuse of notation,
we will denote the reward of a base ranker Ai by rt i , the reward
corresponding to a weight assignment θ by rt (θ), and the reward
obtained by a combination algorithm C by rt (C). The cumulative Pt
reward collected up to round t is Rt = =1 rτ . We let Rt i , Rt (θ),τ
and Rt (C) denote the cumulative reward corresponding to a base
ranker, a weight vector, and a combination algorithm.

There are several choices of ranking measures. A popular choice,
which we use in our experiments, is NDCG@K [12]. In prequential
evaluation, we assume the worst scenario that there is only one
item with non-zero label in each round t , namely jt . The NDCG@K
of a permutation πt of the items reduces to (

1/ log
2 (rankπt (jt) + 1) if rankπt (jt) ≤ K ,

rt = NDCG@K(πt)=
0 otherwise,

as there is always exactly one relevant item and hence the ideal
DCG is equal to one.

4 EXPONENTIALLY WEIGHTED BASELINE
ALGORITHMS

The frst set of baseline rank combination algorithms in this section
rely on the exponentially weighted forecaster [7]. They explore
the weight space globally, without relying on the existence of a
gradient of the reward function. In Proposition 4.1, we will also
show that in the case of two base recommenders, the exponentially
weighted combination achieves near optimal performance.

4.1 ExpA
The simplest choice to deal with multiple base rankers is to use the
exponentially weighted forecaster on the rankers. Accordingly, the

combination algorithm, denoted by ExpA, selects base ranker Ai
in round t with probability Pt −1−ηt =1 rτ i

pt i = Pt −1 . (1)

e τ PN −ηt =1 rτ j
=1 e τj

Selecting base ranker Ai in round t means setting θt i = 1 and
θt j = 0 for j , i. The algorithm is guaranteed to achieve a cumu-

lative reward that is not worse than the cumulative reward of the√
best base rankers by an additive O (T) term in expectation [7].

4.2 ExpW
While ExpA can locate the best base ranker, we can hope that a
convex combination of the rankers can achieve a better performance
than any single ranker. We choose a fnite set of points P ⊂ Θ
and apply the exponentially weighted forecaster to P to choose
the weight combinations θt ∈ P to play. If an appropriately large
number of points are chosen, and the cumulative reward function
RT (θ) (as a function of θ) is sufciently smooth, then the algorithm,
denoted by ExpW, will achieve a cumulative reward that is close to
that of the optimal convex combination. The following proposition
formalizes this statement.

Proposition 4.1. Let P ⊂ Θ be a fnite set such that
" #

√
E max RT (θ) − max RT (p) ≤ T . (2)

θ ∈Θ p ∈P

Then the regret of the exponentially weighted forecaster applied on P
is bounded by

" # �√ �
E max RT (θ) − RT (ExpW) ≤ Õ T . (3)

θ ∈Θ

The proof follows by putting together the regret bound of the
exponentially weighted forecaster and inequality (2).

For a sufciently large T , function RT (θ) is fairly smooth in
practice, as observed in Section 7.3. For two base rankers, the pa-
rameter space can be represented by a one dimensional simplex,

√
i.e. a section. Then, a uniform grid with O (T) gridpoints can be
sufcient, if the cumulative function acts like a Lipschitz function
on the grid points. This latter condition will often be true (see also
Figure 1). However, with more base rankers, the number of points
required for a Lipschitz-like cumulative function is Ω(T (N −1)/2).
Since ExpW needs to evaluate the reward in each point, the num-

ber of evaluations scales exponentially with the number of base
rankers.

4.3 ExpAW
In [6], the authors proposed an algorithm that can be regarded as a
mix of ExpA and ExpW. The algorithm, denoted here by ExpAW,
relies on the cumulative performance of the base rankers (as ExpA),
but it is used as the weight of the base ranker, instead of using it as
selection probability. The weight of base ranker Ai in round t is Pt −1−ηte τ =1 rτ i

θt i = Pt −1 . (4)PN −ηt τ =1 rτ jj=1 e

It is easy to see that reward of a base ranker does not change
if the scores of rankers are scaled by some factor. However, the

14

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Erzsébet Frigó and Levente Kocsis

scaling will afect the reward of the combination algorithm in an
arbitrary way. Nevertheless, with a reasonable normalization, the
algorithm may still lead to a decent performance, and it is less likely
to be afected by an increase in the number of base rankers.

5 GRADIENT BASELINE ALGORITHMS
In this section, we present the second set of baseline rank combi-

nation methods, which are guided by the gradient of the reward
function. In the frst subsection, we describe algorithm (SGD) that
computes the gradient of a surrogate to the reward. The next two
algorithms (SPSA and RSPSA) are stochastic approximation algo-
rithms that approximate the gradient by fnite diferences. We men-

tion that our new algorithm RFDSA+ builds on RSPSA, extending it
to deal with the difculties of fat regions in the ranking functions.

5.1 SGD
We call our frst combination algorithm SGD, since it uses stochastic
gradient descent for the mean squared error (MSE) as a surrogate
to the reward. The target for the current item is set to 1, and the
targets for a set of randomly sampled negative items is set to 0.
After seeing a user-item pair, a stochastic gradient step is taken to
minimize the MSE between the ranking score (xt j) and the target
value. The algorithm was used by [23] for matrix factorization and
by [22] for online combination.

We do not expect the algorithm to have difculty with a large
number of base rankers. However, minimizing the surrogate loss
may not result in a sufciently good optimization of the original
reward function.

5.2 SPSA
The gradient of most ranking functions with respect to the com-

bination weights is typically zero in most points where it exists.
However, if we average over more time steps, it starts to ‘smooth
out’. It still cannot be computed in a closed form, but it can be
approximated by fnite diferences. For online optimization of con-
vex functions, [2] suggested the gradient to be approximated by
simultaneous perturbation, with an online gradient step taken in
the approximated direction. For non-convex optimization, a similar
algorithm is known as Simultaneous Perturbation Stochastic Ap-
proximation (SPSA) [27]. The approximated gradient дt i is given
by

дt i = (rt (θt + ct ∆t) − rt (θt − ct ∆t))/(ct ∆t i),

where ct is an appropriately decreasing sequence,

∆t = (∆t 1, . . . , ∆tN),

and ∆t i are ±1 valued unbiased Bernoulli random variables.

5.3 RSPSA
In SPSA, especially with non-smooth functions, the difculty lies in
choosing the appropriate perturbation. The sum of ranking reward
functions is a step function. If the perturbation size is too small, we
might stuck on a plateau and can not fnd the right direction. If the
perturbation is too large, we miss local optima. The appropriate
perturbation step size might difer depending on the coordinate
and time.

The RSPSA algorithm was proposed in [15] for games, which
also have a discrete reward (e.g., 1 for win, 0 for loss). The algorithm
combines the simultaneous perturbation approximation with the
Resilient Backpropagation (RPROP) [11] update rule. In RPROP, we
assign a distinct step size to each weight. Informally, if the direction
of the gradient changes, then the step size is decreased. Otherwise,
the step size is increased. The weight update depends only on the
sign of the gradient, and the step size determines how much the
weight changes. In RSPSA, the perturbation size for each weight is
connected to the step size, solving the above mentioned difculty.
The RPROP update rule is designed for batch update, and therefore,
in our setting, we use mini batches to collect the gradients before
an update.

6 OUR METHOD: RFDSA+
We designed our new method by observing the behavior of RSPSA
for ranking combination. One of the strengths of the RPROP up-
date rule is that it is increasing the update steps on a large plateau,
and taking larger steps in the directions of the gradient. Ranking
functions as function of a combination weight consist of constant
intervals. However if the perturbation is sufciently large, the av-
eraged gradient estimate will be non-zero. If the step size for a
weight is small in a fat area, then it should be increased in order
to escape the fat area, but also in order to be able to estimate the
right direction. In other words, the weight needs a sufciently large
perturbation to be able to infuence the ranking function.

However, we observed that in RSPSA, the estimated direction
changes often in the fat area, and the step size in fact decreases.
To illustrate the problem, consider a ranking function that is com-

pletely fat in the direction of some but not all coordinates in the
neighborhood of the current θt . In this case, the direction of the
estimated gradient of the ‘fat’ coordinates becomes an unbiased
Bernoulli variable, since even if the ranking function is completely
fat with respect to coordinate i , the numerator of дt i will still be
non-zero because of the non-fat coordinates. However, the numer-

ator will be independent of the randomly chosen direction of ∆t i ,
and hence дt i will simply mirror the random variable ∆t i .

To remedy the problem of fat regions, we switch from simul-

taneous perturbation to fnite diferences in order to identify that
the ranking function is fat with respect to the weight in question.
Note that by perturbing just one weight, we eliminate the noise
coming from the perturbation of the other weights. If we detect a
fat region, then we increase the step size.

The pseudocode of the RFDSA+ is provided in Algorithm 1. The
key diferences to RSPSA are switching from simultaneous pertur-
bation to fnite diferences (line 7–8), and handling the fat regions
(line 22–23). The RPROP update is given by line 11–28.

The algorithm has four parameters: the mini-batch size B, the
initial step size δ0, and the step size adjustment variables η+

and
η−. For noise functions, typical values are η+ = 1.1 and η− = 0.85
[15]. The initial value of the step size has minimal infuence, since
it is quickly adjusted; it is set to δ0 = 0.1. The size of the mini batch
will be chosen 1,000 in the experiments, the same as for SPSA and
RSPSA. The length of an episode T , and the number of the base
rankers N is determined by the problem.

15

Online Ranking Combination

The key variables of the RFDSA+ algorithm are the step sizes δi ,
corresponding to each weight θi . The auxiliary variables si store
the previous weight update and are used for identifying a change
in the direction of the partial derivatives. During a mini batch, the
negative partial derivatives are collected in the variables дi .

The RFDSA+ algorithm starts with an initialization phase in
line 1–4. After every user interaction, at time t , the partial deriva-
tives are computed as follows. For each base ranker i , we perturb its
weight by twice the corresponding step size (line 7). The coupling
factor 2 is standard for RSPSA [15], but slightly diferent values
can be used as well. We use one-sided positive perturbation in the
description of the algorithm. Using one-sided perturbation halves
the number of evaluations needed. With one-sided perturbation,
it is more natural to choose the direction randomly (±2δi) valued
Bernoulli random variable. The current description was chosen for
brevity. The partial derivatives дi are updated in line 8, using the
fnite diference estimator.

At the end of each mini batch, the weights θi and the step sizes
δi are updated according to the RPROP rule [11] in lines 11–28,
independently for each component i . The auxiliary variable h de-
tects a change of direction in the partial derivative. If there is no
change (lines 13–15), the step size is increased, and the weight θi
will be updated in the direction of the derivatives with the amount
determined by the step size. If there is change in the direction, then
the step size is decreased, and the weight is left unchanged. The
weight will be updated after the next mini batch (line 20). The key
modifcation that deals with fat regions in the partial derivatives
is shown in lines 22–23. Accordingly, the step size is increased
if the partial derivative is 0 during the mini batch. Detecting the
fat region is made possible by using fnite diference estimation,
instead of simultaneous perturbation. The actual weight update is
shown in line 25.

7 EXPERIMENTS
In this section, frst we empirically investigate how well the combi-

nation algorithms perform for two base rankers, compared to the
optimal (static) combination. Then we analyze how the combina-

tion algorithms scale when a larger number of base rankers are
available.

7.1 Data sets
All data sets consists of time-ordered sequence of user-item pairs.
Only the frst occurrence of a user-item pair is included. The task at
a certain point of time is to rank the available items for the current
user. After a top list is provided by a particular algorithm, a reward
is obtained using N DCG@100 as ranking measure (see Section 3).
In our case, there is only one item with non-zero label (the one
from the current user-item pair). Following the evaluation step, the
item is revealed to the base rankers and the combination algorithm,
allowing them to update their model.

In these experiments, we use three data sets from the Amazon
collection (CDs and Vinyl; Movies and TV; Electronics [20]), the
10M MovieLens data set1, and a twitter data set where the items
are defned by the hashtags used in tweets.

1
http://grouplens.org/datasets/movielens/

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

1 for i = 1 to N do
2 θi ← 1/N ; дi ← 0
3 si ← 0; δi ← δ0
4 end
5 for t = 1 to T do
6 for i = 1 to N do

θ+ ← θ ; θ+7 i ← θi + 2δi
8 дi ← дi + (rt (θ+) − rt (θ))/(2δi)
9 end

10 if t mod B = 0 then
11 for i = 1 to N do
12 h ← дi si
13 if h > 0 then

δi ← η+δi14

15 si ← siдn(дi)δi
16 else if h < 0 then

δi ← η−δi17

18 si ← 0
19 else
20 si ← siдn(дi)δi
21 end
22 if дi = 0 then

δi ← η+δi23

24 else
25 θi ← θi + si
26 end
27 дi ← 0
28 end
29 end
30 end

Algorithm 1: RFDSA+

7.2 Base rankers
We rely on two basic classes of collaborative fltering models: item
based nearest neighbor (item2item) [26] and matrix factorization
[1]. These two classes of methods represent the most successful
and most popular collaborative fltering algorithms

2
[17, 24]. In

addition to the two techniques, we also include temporal popularity
(denoted Pop), which records how many times an item was visited
in the preceding time window.

For item2item, we use a time-decayed item-to-item similarity
function, the model being updated every day. When computing the
score for an item, we consider the similarity to all items previously
visited by the user. Thus, this algorithm also incorporates the recent
history.

We include four matrix factorization variants: online matrix
factorization (OMF) [23], online asymmetric matrix factorization
(OAMF) [16], batch matrix factorization (MF), and (batch) implicit
alternating least squares (iALS) [10]. All variants use latent fac-
tors with ten dimensions. The online variants update once after
2
For particular data sets, there may be superior algorithms, especially in batch settings.
The two main base rankers considered are representatives of two main approaches to
collaborative fltering, and have natural incremental versions. None of the combination
algorithms exploit the particular base rankers, thus replacing the base rankers is
straightforward.

16

https://1http://grouplens.org/datasets/movielens

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark Erzsébet Frigó and Levente Kocsis

 0.038

 0.04

 0.042

 0.044

 0.046

 0.048

 0.05

 0.052

 0.054

 0.0001 0.001 0.01 0.1 1

N
D

C
G

θ

RT(θ)

Figure 1: Reward with various combination coefcients (θ)
for the combination of OMF and item2item on the Amazon-
CD set. In the fgure, θ denotes the normalized weight of the
OMF base ranker. The normalized weight for item2item is
1 − θ . RT (0) = 0.03434.

every user-item pair. The batch variants retrain their models after
every 100,000 time steps, using a required number of iterations.
We use stochastic gradient descent for OMF, OAMF and MF with
the current item from the data set designated as positive item, and
additional negative items sampled randomly [23].

The parameters of the base rankers are optimized for each data
set. In the combination, the scores of the base rankers are normal-

ized by the standard deviation.

7.3 Combination of two models
We show our results for combining the two base models OMF and
item2item. We let θ denote the weight of OMF in the convex com-

bination. The average cumulative reward, depending on θ , is shown
for the Amazon-CD data set in Figure 1. Interestingly, the optimum
is reached for a combination that puts heavy weigh to item2item,
even though OMF alone performs better than item2item.

The average cumulative reward of the combination algorithms
is shown in Figure 2. The peculiar shape in the frst three years is
due to the low amount of data collected and the more signifcant
changes in the data distribution. We observe the relative order
of the base algorithms changes over time: at frst OMF is better,
then item2item, and then OMF again. This shows that selecting an
algorithm on partial data, and using only that algorithm later is a
poor choice. ExpA follows the better base algorithm, being slightly
worse than that due to exploration. ExpW3

achieves a performance
that equals to the best static convex combination (cf. Figure 1).
ExpAW is on par with ExpW in the beginning, but its performance
deteriorates later. This is natural, since it is choosing a larger weight
for OMF due to the superior performance of OMF, despite that the
actual optimum is to assign a large weight to item2item, as seen
in Figure 1. SGD has similar performance to ExpW, giving also
a larger weight to OMF. This is possibly because SGD and OMF
optimize the same surrogate loss function.

3
For ExpW, the set of points P consisted of a uniform grid with 100 points.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0.07

 0 1000 2000 3000 4000 5000 6000 7000

N
D

C
G

days

item2item
OMF
ExpA

ExpAW
ExpW
SGD

SPSA
RSPSA

RFDSA+

Figure 2: Average cumulative NDCG of the ranking algo-
rithms on the Amazon-CD set.

0.0000010

0.0000100

0.0001000

0.0010000

0.0100000

0.1000000

1.0000000

 0 1000 2000 3000 4000 5000 6000 7000

θ

days

OptG100+
ExpAW

SGD
SPSA

RSPSA
RFDSA+

Figure 3: The weight assignment of the ranking algorithms
on the Amazon-CD set. OptG100+ corresponds to the opti-
mal weight assignment over 100 uniform grid points, with
a few additional points chosen near the presumed optimum.
In the fgure, θ denotes the normalized weight of the OMF
base ranker. The normalized weight for item2item is 1 − θ .

The weight assignment of the combination algorithms is shown
in Figure 3. The fgure includes additionally an optimal static weight
assignment, i.e. θt = argmaxθ ∈P Rt (θ). By analyzing the weight
assignment of the three combination algorithms that optimize
NDCG directly (SPSA, RSPSA and RFDSA+), we observe that all
give item2item a large weight, although the weights for SPSA are
further away from the optimum. Consequently, we notice in Fig-
ure 2 that the three algorithms perform well, RSPSA and RFDSA+
matching the optimal performance of ExpW.

7.4 Scaling
We analyze the scaling of the combination algorithms in two ways:
(1) by including an increasing number of OMF base rankers (difer-
ing only in the random initialization) next to item2item, and (2)
by including all six base rankers in the mix.

17

Online Ranking Combination RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

Table 1: Combination of six base rankers on fve data sets. The average NDCG of the base rankers is shown at the top of table,
while the average NDCG of the combination algorithms at the bottom.

Algorithm Amazon-CD Amazon-Movies Amazon-Electro MovieLens Twitter

item2item 0.0343 0.0350 0.0156 0.1445 0.0221
OMF 0.0389 0.0440 0.0222 0.1357 0.3528
Pop 0.0628 0.0663 0.0347 0.0857 0.3486

OAMF 0.0318 0.0320 0.0160 0.1717 0.3118
MF 0.0052 0.0086 0.0056 0.0051 0.0055
iALS

ExpA

0.0046

0.0628

0.0075

0.0663

0.0060

0.0347

0.0053

0.1717

0.0054

0.3486
ExpAW 0.0628 0.0664 0.0347 0.1717 0.3486
SGD 0.0640 0.0674 0.0353 0.1568 0.3563
SPSA 0.0696 0.0692 0.0349 0.1678 0.3683
RSPSA 0.0640 0.0670 0.0396 0.1435 0.4468
RFDSA+ 0.0880 0.0882 0.0452 0.1879 0.4601

 0.03

 0.035

 0.04

 0.045

 0.05

 0.055

 0.06

 1 2 3 4 5 6 7 8 9 10

N
D

C
G

number OMF’s

xOMF
item2item + xOMF

ExpA
ExpAW

SGD
SPSA

RSPSA
RFDSA+

Figure 4: Average NDCG of the ranking algorithms on the
Amazon-CD set with varying number of OMFs. The com-
bination includes one item2item and one to ten OMF base
rankers. In the case of xOMF there is only one OMF, but the
dimension of the latent factors is increased from 10 to the
range of 10–100.

In the frst case, assuming that the various OMF models achieve
similar performance, one expects that the optimal weight for item2item
stays relatively the same, with the weight of one OMF from the
previous section divided among the multiple instances. The dif-

culty here is that the proper weight assignment (for item2item)
needs to be found in a space with larger dimensionality. For larger
dimensions, placing grid points that cover the parameter space
sufciently would require exponential number of evaluations, thus
we do not include ExpW in this experiment. The performance of
the other combination algorithms is shown in Figure 4.

We observe that the ranking performance of RFDSA+ is not
dropping as the number of OMFs increases. It is even able to use
the slight variation in the OMFs to increase the performance slightly.
The performance of SPSA and RSPSA deteriorates signifcantly as
more OMFs are included in the mix. ExpA, ExpAW and SGD all

cope well with the increased dimension, but their performance is
much weaker overall than that of RFDSA+. The relative invariance
of ExpA underlines that the individual OMF rankers achieve similar
performance (we checked that the variance of their NDCG score is
indeed very small). We added two further baselines to the fgure:
xOMF is a variant of OMF with increased latent vector dimension,
and item2item+xOMF, a combination using RFDSA+. We observe
that the individual performance of an online factor model increases
with the dimension of the latent vectors. However, in combination
with item2item, it is better to use many smaller models than one
big one, assuming that they are combined with an algorithm such as
RFDSA+ that scales well. Results on the other data sets are similar
and omitted due to space limitations.

Next, we show the performance of the combination algorithms
when all the six base rankers are used in Table 1. First, we notice that
the individual performance of the batch base rankers (MF and iALS)
is poor for all data sets. The performance of the other base rankers
vary, depending on the data set. Regarding the performance of the
combination algorithms, we can draw somewhat similar conclusion
as for Figure 4: RFDSA+ has signifcantly better performance for all
data sets compared to other combination algorithms. We also note
that the improvement in performance over the best individual base
ranker is considerable for all data sets. ExpA achieves approximately
the performance of the best individual ranker. ExpAW and SGD
cope reasonably well with more base rankers, but their performance
is not exceeding by much the performance of the base ranker. SPSA
and RSPSA (which were performing well for two base rankers) are
not performing particularly well when a larger number of models
are included in the mix.

8 CONCLUSIONS
In this paper, we have considered the task of learning the online
convex combination of base recommender algorithms by stochastic
optimization. For the case of two base rankers, we have shown
that the class of exponential weighted algorithms attains close to
optimal performance. However, the algorithm cannot be applied
in real application with a larger number of base rankers, because
of the exponential number of evaluations needed. To remedy the

18

RecSys ’19, September 16–20, 2019, Copenhagen, Denmark

scaling problem, we have proposed a new algorithm RFDSA+. The
algorithm uses fnite diferences to estimate the gradient of the
ranking reward, and the RPROP update rule to adjust the combina-

tion weights. The update rule was modifed in order to deal with
fat regions that often appear in ranking functions. The new algo-
rithm is shown empirically to perform close to optimum for two
base rankers, and scale well if the number of models is increased
by homogeneous base rankers or varied ones. We observed that
by applying the RFDSA+ combination algorithm a considerable
improvement in ranking performance can be obtained over the
base rankers.

REFERENCES
[1] Jacob Abernethy, Kevin Canini, John Langford, and Alex Simma. 2007. Online

collaborative fltering. University of California at Berkeley, Tech. Rep (2007).
[2] Alekh Agarwal, Ofer Dekel, and Lin Xiao. 2010. Optimal Algorithms for Online

Convex Optimization with Multi-Point Bandit Feedback.. In COLT. Citeseer,
28–40.

[3] Marie Al-Ghossein, Pierre-Alexandre Murena, Talel Abdessalem, Anthony Barré,
and Antoine Cornuéjols. 2018. Adaptive collaborative topic modeling for online
recommendation. In Proceedings of the 12th ACM Conference on Recommender
Systems. ACM, 338–346.

[4] James Bennett, Stan Lanning, et al. 2007. The netfix prize. In Proceedings of KDD
cup and workshop, Vol. 2007. New York, NY, USA., 35.

[5] Robin Burke. 2010. Evaluating the dynamic properties of recommendation al-
gorithms. In Proceedings of the fourth ACM conference on Recommender systems.
ACM, 225–228.

[6] Róbert Busa-Fekete, Balázs Kégl, Tamás Éltető, and György Szarvas. 2011. Rank-
ing by calibrated AdaBoost. In Proceedings of the Learning to Rank Challenge.
37–48.

[7] Nicolo Cesa-Bianchi and Gábor Lugosi. 2006. Prediction, learning, and games.
Cambridge university press.

[8] Joao Gama, Pedro Medas, Gladys Castillo, and Pedro Rodrigues. 2004. Learning
with drift detection. In Brazilian symposium on artifcial intelligence. Springer,
286–295.

[9] João Gama, Raquel Sebastião, and Pedro Pereira Rodrigues. 2009. Issues in
evaluation of stream learning algorithms. In Proceedings of the 15th ACM SIGKDD
international conference on Knowledge discovery and data mining. ACM, 329–338.

[10] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for
Implicit Feedback Datasets.. In ICDM, Vol. 8. Citeseer, 263–272.

[11] Christian Igel and Michael Hüsken. 2000. Improving the Rprop Learning Al-
gorithm. In Proceedings of the Second International ICSC Symposium on Neural
Computation (NC 2000), H. Bothe and R. Rojas (Eds.). ICSC Academic Press,
115–121. citeseer.ist.psu.edu/igel00improving.html

[12] Kalervo Järvelin and Jaana Kekäläinen. 2000. IR evaluation methods for retrieving
highly relevant documents. In Proceedings of the 23rd annual international ACM
SIGIR conference on Research and development in information retrieval. ACM,
41–48.

[13] Michael Jugovac, Dietmar Jannach, and Mozhgan Karimi. 2018. Streamingrec: a
framework for benchmarking stream-based news recommenders. In Proceedings
of the 12th ACM Conference on Recommender Systems. ACM, 269–273.

[14] Robert D Kleinberg. 2005. Nearly tight bounds for the continuum-armed bandit
problem. In Advances in Neural Information Processing Systems. 697–704.

[15] Levente Kocsis and Csaba Szepesvári. 2006. Universal parameter optimisation in
games based on SPSA. Machine learning 63, 3 (2006), 249–286.

[16] Yehuda Koren. 2008. Factorization meets the neighborhood: a multifaceted
collaborative fltering model. In Proceedings of the 14th ACM SIGKDD international
conference on Knowledge discovery and data mining. ACM, 426–434.

[17] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-
niques for recommender systems. Computer 42, 8 (2009).

[18] Neal Lathia, Stephen Hailes, and Licia Capra. 2009. Temporal collaborative
fltering with adaptive neighbourhoods. In Proceedings of the 32nd international
ACM SIGIR conference on Research and development in information retrieval. ACM,
796–797.

[19] Odalric-Ambrym Maillard and Rémi Munos. 2010. Online learning in adversarial
lipschitz environments. Machine Learning and Knowledge Discovery in Databases
(2010), 305–320.

[20] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.
2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th International ACM SIGIR Conference on Research and Development in
Information Retrieval. ACM, 43–52.

[21] Róbert Pálovics and András A Benczúr. 2015. Temporal infuence over the Last.
fm social network. Social Network Analysis and Mining 5, 1 (2015), 4.

Erzsébet Frigó and Levente Kocsis

[22] Róbert Pálovics, András A Benczúr, Levente Kocsis, Tamás Kiss, and Erzsébet
Frigó. 2014. Exploiting temporal infuence in online recommendation. In Proceed-
ings of the 8th ACM Conference on Recommender systems. ACM, 273–280.

[23] Rong Pan, Yunhong Zhou, Bin Cao, Nathan N Liu, Rajan Lukose, Martin Scholz,
and Qiang Yang. 2008. One-class collaborative fltering. In Data Mining, 2008.
ICDM’08. Eighth IEEE International Conference on. IEEE, 502–511.

[24] I Pilászy, A Serény, G Dózsa, B Hidasi, A Sári, and J Gub. 2015. Neighbor meth-

ods vs. matrix factorizationcase studies of real-life recommendations. In LSRS
Workshop at ACM RecSys.

[25] Filip Radlinski, Robert Kleinberg, and Thorsten Joachims. 2008. Learning di-
verse rankings with multi-armed bandits. In Proceedings of the 25th international
conference on Machine learning. ACM, 784–791.

[26] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl. 2001. Item-based
collaborative fltering recommendation algorithms. In Proceedings of the 10th
international conference on World Wide Web. ACM, 285–295.

[27] J. C. Spall. 1992. Multivariate stochastic approximation using a simultaneous
perturbation gradient approximation. IEEE Trans. Automat. Control 37 (1992),
332–341.

[28] Andreas Töscher, Michael Jahrer, and Robert M Bell. 2009. The bigchaos solution
to the netfix grand prize. Netfix prize documentation (2009), 1–52.

[29] João Vinagre, Alípio Mário Jorge, and João Gama. 2014. Evaluation of rec-
ommender systems in streaming environments. In Workshop on ’Recommender
Systems Evaluation: Dimensions and Design’ (REDD 2014), held in conjunction with
RecSys 2014.

[30] Yisong Yue and Thorsten Joachims. 2009. Interactively optimizing information
retrieval systems as a dueling bandits problem. In Proceedings of the 26th Annual
International Conference on Machine Learning. ACM, 1201–1208.

[31] Daniel Zoller, Stephan Doerfel, Christian Pölitz, and Andreas Hotho. 2017. Lever-
aging User-Interactions for Time-Aware Tag Recommendations.. In RecTemp@
RecSys. 9–15.

19

citeseer.ist.psu.edu/igel00improving.html

	Abstract
	1 Introduction
	2 Related research
	3 Problem setup
	4 Exponentially weighted baseline algorithms
	4.1 ExpA
	4.2 ExpW
	4.3 ExpAW

	5 Gradient baseline algorithms
	5.1 SGD
	5.2 SPSA
	5.3 RSPSA

	6 Our method: RFDSA+
	7 Experiments
	7.1 Data sets
	7.2 Base rankers
	7.3 Combination of two models
	7.4 Scaling

	8 Conclusions
	References

