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The present work aims at improving the performance of the eddy viscosity based Menter-
SST turbulence model for complex aircraft flows by adding physical extensions to the ω length
scale equation along with calibration aided by Uncertainty Quantification methods. Three
different extensions based on rotation and curvature correction, wake flow correction and
irrotational strain correction are added to the original model, resulting in a parametric model,
which is then calibrated using Bayesian Updates. A series of test cases is employed to assess
the model performance, whereby delta wings with deflected flaps and vortical flows are the
predominant target application.

I. Nomenclature

U = Velocity, m/s
τi j = Viscous stress component, N/m2

k = Turbulent kinetic energy, m2/s2

κ = Von Karman Constant
p = Pressure, Pa
δi j = Kronecker symbol
ω = Vorticity, s−1

Q = Second invariant, s−2

Pi j = Production tensor, m2/s3

ν = Kinematic Viscocity, m2/s
ε = Dissipation rate, m2/s2

µ = Dynamic viscosity. kg/(ms)
M = Mach number
ω = Specific dissipation rate, 1/s
Re = Reynolds number
α = Angle of attack, deg
Cl = Lift coefficient
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Cd = Drag coefficient
Cf = Skin friction coefficient
Cp = Coefficient of pressure
η = Wing-Spanwise position coefficient, Root-0 and Tip-1
u,v,w = X,Y,Z velocity components
u′2,v′2,w′2 = Fluctuating velocity components
−ρu′iu

′
j = Reynolds stress tensor

x, y, z = Cartesian co-ordinates
y+ = Wall distance
F1,F2 = Menter-SST blending functions
νT = Eddy viscocity
α = angle of attack
Ω = Absolute vorticity, 1/s

II. Introduction

One of the commonly used flow simulation approaches for the purpose of computing external flows is the Reynolds
Averaged Navier Stokes (RANS) equation method. The complex turbulence fluctuations in the flow field are

captured by the underlying turbulence models. Generally, these turbulent fluctuations are represented by the Reynolds-
stress tensor in the momentum equation. Different assumptions are used for modeling the Reynolds-stress tensor, which
categorizes the type of the turbulence model used in the solver. One of the widely used is the Boussinesq assumption,
which relates linearly the stress tensor to the velocity gradients by means of the turbulent viscocity. In the case of the
two-equation eddy viscocity turbulence model (Menter-SST) which is used in this work, two transport equations are
used to describe the transport of two scalars and the Boussinesq assumption is used for the Reynolds-stress tensor. Due
to the simplification for the Reynolds-stress tensor, the turbulence model is not well suited for flows where stress and
strain rates are not aligned or where a rapid redistribution among the stresses takes place. This is the case in vortical flow
and in many separated flows. Neverthless, Menter-SST is the most widely used turbulence model for the computation
of industrial flows due to its cost effectiveness in computational time and its robustness.
Several improvements of the Menter-SST model for better prediction capabilities have been suggested and implemented
in the DLR-TAU code. Vortical correction methods have been implemented which take into account the effects of frame
rotation to the production of Reynolds stresses, which was previously lacking in the original model [1]. The main
objective of this work is to exploit the potentials of different correction methods for a two-equation model (Menter-SST)
of turbulence. Therefore, three correction methods are investigated within this project: the vortex correction method,
the wake flow correction method and a correction method that takes the effects of irrotational strains on turbulence into
account. It has to be noted that the final model comprises all the three additional extensions together with the original
model as a single extended variant of the Menter-SST model. Section III gives an overview of the individual extensions,
section V provides the scope of the test cases involved in this work and section IV describes the calibration process of
the extended model.

III. Extensions to Eddy Viscosity Model

A. Motivation
Vortical flows are observed in internal flow fields, e.g. for increasing the combustion efficiency through swirl

injectors. Predominant occurrence of vortical flows takes place in external aerodynamics such as wing tip vortices and
delta wings. Vortices are also utilized in high lift devices such as nacelle strakes to increase the lift coefficient. The
characteristics of the vortices strongly influence the performance of the lifting device and flow domain. In the case of
low aspect ratio delta wings, the vortex sheet separating at the swept leading edge separation causes a local low pressure
region on the suction side which increases the overall lift [2]. The generated vortex sheet is highly influenced by the
pressure gradients in its vicinity. While vortices will diffuse in the flow field under normal conditions, vortex breakdown
is encountered in some special cases [3] . The location and mode of breakdown depends on various parameters such
as adverse pressure gradients, type of delta wing planforms, angle of attack, sweep angle. Blowing or suction over
the profile were also found to affect the breakdown location, as well as flaps and other control devices which alter the
effective camber of the profile are some of the factors. In many cases, the axial velocity of the vortex core is well above
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the surrounding velocity of the freestream conditions at the origin of vortex flow. At the point of vortex breakdown, this
jet like vortex flow breaks down into smaller structures experiencing abrupt decelerations, which eventually become
wake like flow [4] . This is a highly turbulent phenomenon. The pitching moment characteristics of the delta wings are
influenced by the breakdown over the wing planforms [5] . High pressure fluctuations are created over the suction side
of the delta wings due to breakdown, thereby affecting the operating envelope of low aspect ratio aircraft [6] . Therefore,
it is of high importance to understand the characteristics and occurrence of vortex breakdown. Accurate prediction of
vortex flows and breakdown is a challenging requirement in the field of turbulence modeling.

Delta wings are suitable test cases for vortical flows due to the generation of stable vortices in a relatively uncompli-
cated manner. They facilitate simpler experimental setup and are also easier to model numerically, thereby the main
emphasize can be given to the capturing of vortical flow field in experiments and modeling in numerical studies. In
the case of delta wings with sharp leading edge profile, the flow separation takes place along the entire leading-edge
at some angle of attack. As the bluntness of the leading edge increases, the onset of separation recedes progressively
downstream along the leading edge. Discrete vortices are formed along the leading edge due to the separation and they
roll together to form a single larger vortex sheet [7] . Based on the pressure gradients over the suction side, occurrences
of secondary as well as tertiary vortices have been observed.

RANS based computational approaches are important for these kind of complex aeronautical flows, since direct
numerical and large eddy simulations require much larger computational resources and time. Various types of turbulence
models are available in RANS approach, however no single turbulence model, which can be satisfactorily used for
all kind of applications exists. One equation eddy viscosity models are relatively simple and robust. Reynolds Stress
Models are often less robust, although their prediction capabilities are superior in general. Two equation eddy viscosity
models offer a good compromise between solution accuracy and complexity. In specific, the Menter-SST [8] turbulence
model is widely used in external aerodynamic flow fields. However, a primary deficiency with the eddy viscosity
models appears in their inability to account for turbulent anisotropies in rotating and separated flows. From existing
literature, different model extensions are available to the Menter-SST turbulence model, which are proposed to offer
better accuracy in the case of rotational flow problems.

B. Development and Implementation

1. Menter-SST Model
The Menter-Shear Stress Transport model is constituted of two different two equation models. In the near wall

region, the model is based on the original k-ω model and in the outer boundary layer it is based upon the k-ε model.
Since this is a well established model, only the two transport equations [8] are provided here as an overview.
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2. SARC
One of the predominant drawbacks of the Menter-SST model is the low accuracy involving system rotation and

streamline curvatures. An initial approach to address this weakness is the introduction of a term called "gyroscopic
stability effect" by Knight and Saffman [9]. This term includes the angular velocity of the principal axes of the mean
rate of strain tensor, which was added to the transport equations. Spalart-Shur correction was proposed using a similar
principle to that of the Knight and Saffman approach. One of the main advantages of the Spalart-Shur approach is
the availability of an explicit formula, simplifying the numerical implementation process for three-dimensional flows
[10]. The correction approach is Galilean invariant [11]. Initially, it was applied to the Spalart-Allmaras one equation
turbulence model. Menter adapted this curvature correction approach to the standard Menter-SST model. The original
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empirical function defined through the Spalart-Shur correction is given by [10]:

frotat ion = (1 + cr1) 2r ∗
1+r ∗

[
1 − cr3tan−1 (cr2r̃)

]
− cr1 (4)

The above function was originally multiplied with the production terms in the transport equations of the Spalart-Allmaras
eddy viscosity turbulence model. In the case of the Menter-SST model, the production terms are based on the strain rate
tensor S whereas that of the Spalart-Allmaras model is based on the vorticity tensor Ω [12]. Since the production based
on the strain rate tensor is typically higher than that of the vorticity tensor, Menter introduced a limiter to the function
and adapted it for the Menter-SST model. The redefined function is given by,

fr1 = max {min ( frotat ion ,1.25) ,0.0} (5)

The limit value of 1.25 was based on the test conducted by Menter et al. [1] and the lower limit of 0 is added for
the numerical stability purpose. The modified transport equations of k and ω for the Menter-SST with the curvature
correction approach is as follows [12]:
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The values of the correction function constants cr1, cr2 and cr3 are 1, 2 and 1 respectively.

3. SAS
It has been observed that relatively lower values of Reynolds stresses are predicted by Menter-SST model in

flows involving separation and highly curved velocity profiles. To counteract this deficiency, either the levels of
turbulence produced should be increased or the dissipation levels in these regions should be reduced. Menter proposed
a Scale-Adaptive-Simulation (SAS) based model, which considers the local inhomogeneities in the flowfield [13]. It is
based on a second velocity derivative term from the Rotta’s k − kL model. In the SST-SAS model, an additional term
is added to the ω length scale equation. The advantages of using the SST-SAS model over the unsteady RANS had
already been shown by Menter [13].
In this work, the model concept is implemented as in the previous works of Maduta et al. [14] and Cecora et al. [15] in
Reynolds Stress Models. For the sake of simplicity, the additional term is referred to as SAS although no scale resolving
simulations are modeled nor performed. The additional SAS term is used as a sink term in the dissipation equation and
not as a source term as considered by Menter. In addition to increasing the production of turbulence in the specific
regions, this term is attributed to stabilize the simulations, therby aiding in the convergence. The SAS term is given as
follows:

QSAS = max
[
ρζ2κS2
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L

Lvk

)2
− C · 2ρk

σΦ
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ω2 , |5k |
2

k2

)
,0

]
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The QSAS term is added as a sink term in equation 2. The constant ζ2 has a value of 3.51 and the length scale ratios are
given by:

L =
√
k(

c1/4
µ ·ω

) (9)

Lvk = κS
|52U |

(10)

4. Irrotational Strains
Another shortcoming of the Menter-SST model is the low accuracy in flows involving adverse pressure gradients.

Hanjalić and Launder proposed a term to sensitize the dissipation equation to irrotational strains in the k-ε turbulence
model [16]. Based on this previous work, Probst [17] developed and implemented a source term for the Reynolds Stress
Model, accounting for adverse pressure gradients in the flowfield. The term is based on a streamline oriented coordinate
system and in addition to the principal streamline direction, two independent normal directions are considered. The
term developed by Probst is suitable for an ε-based turbulence model, and it has been adapted to the ω length scale
equation of the SST model. However this model extension is non Galilean invariant due to its dependency on streamline
oriented coordinate system. Neverthless, this extension was used as a preliminary variant of sensitizing the model to
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the effects of irrotational strains and hence pressure gradients. The term which differentiates between the effects of
irrotational and rotational straining is given as follows:

Sω = −C∗ω
ω
k
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u′2s
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∂xs
+ u′2

n1
∂Un1
∂xn1

+ u′2
n2

∂Un2
∂xn2

)
(11)

The term Sω is multiplied by density and added to the equation 2. The constant C∗ω has a value of 0.58. This is referred
to as PG.

In order to enhance the model’s performance in flows with large pressure gradients, the source term based on
equation 11 in the length scale equation was considered as described in section III.B.4. During the implementation phase,
this term led to significant improvements in several different test cases. However, due to its use of frame-dependent
quantities, this formulation is not Galilean-invariant. The fulfillment of this criteria is essential for models devised to be
employed e.g. in the turbomachinery and aero engine sectors, where the frame of reference is not fixed due to rotating
components. This requirement supported the development of a new term, referred to as "Vorticity squared to Production
of k difference", and hence V2Pkd.

The new formulation of the additional term is also based on the work of Hanjalić and Launder, although devised
in a cartesian frame of reference. It takes into account the subtraction of a strain rate-dependent component from
a vorticity-dependent component. The difference is then multiplied by a scalar coefficient that regulates the term’s
intensity. The term is formulated as follows:

V2Pkd = Cω4ρ(Wi jWi j − Si jSi j )
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where Wi j and Si j are, respectively, the mean vorticity tensor and the mean strain rate tensor. Cω4 is the term’s
coefficient. In equilibrium boundary layers (Pk ∼ ε), the term is nullified because Wi j and Si j have approximately the
same magnitude thus its subtraction amounts to zero. On the other hand, in non-equilibrium flows, the predominance of
its vorticity- and strain rate-components alternate and the sign of the term varies throughout the flow. When the V2Pkd
term assumes a positive sign, it is interpreted as a source in the ω-equation 2 leading to an increase in dissipation and
subsequent decrease in turbulent stresses. In contrast, when the term is negative, it acts as a sink leading to the opposite
effect, i.e. decrease in dissipation and increase in turbulent stresses.

5. Initial Validation
The Zero Pressure Gradient Flat Plate (ZPGFP) is a thin plate , which provides a very low thickness to chord

ratio. The top half portion of the plate was simulated, using the symmetry condition along the axis. Farfield boundary
condition was specified at a semi-circle with a radius of 10m from the midpoint of the plate. The initial wall spacing
used was 6.3 ∗ 10−4 mm. Hyperbolic as well as normal extrusions were used with a growth rate of 1.1. Based on the
error estimation equations for the mesh convergence, the uncertainty in the skin friction coefficient computed using the
fine mesh is about 0.3%. The predicted wall skin friction data was extracted from the surface and provided in Fig. 1
with respect to Reynolds number along the chord length. The experimental data obtained by Wieghardt and corrected
by Coles [18] is provided for comparison. No significant difference is seen in between the data predicted by all the
turbulence model extensions.

IV. Calibration process
The model extensions described in Chapter III involve five model constants (see Table 1, assuming that either the

extension denoted by PG or V2Pkd are adopted). The traditional practice is to involve an expert-centered manual
process for determining the model coefficients. However, the present research involves a range of test cases with partly
complex flow behavior, and three model extensions. It was felt that this calibration task cannot be mastered by manual
calibration but a more general calibration is sought. We assume that the calibration of uncertain model constants should
take into account the known or estimated uncertainties of experimental data. This leads to the approach of Bayesian
updates of the uncertain model constants. Due to inherent extremely large number of degree of freedom associated
with the probabilistic calibration approach and the significant computational costs of performing unsteady RANS
computations, the numerical process employs a number of technical details that are described in the following.
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Fig. 1 Skin friction coefficient of ZPGFP

A. Parameter estimation procedure
Abstractly, the task of parameter estimation is usually formulated as follows. Under consideration is a system with

states x ∈ Rd that are dependent on the uncertain parameters q ∈ RN , written

x : Rd −→ RN (13)
q 7→ x(q). (14)

In particular, state is calculable from q via a model. The measurable y(x) ∈ RM is a quantity that depends on the
system’s states. A measurement ym ∈ RM is an instance of the measurable that was actually measured, and is usually
modeled as the sum of the true measurable and an instance of an additive mean-free noise with distribution πε .

The posterior distribution πq |ym of the parameter q conditioned on our measured response ym can be expressed
with the help of the Bayes’ formula. The probability distribution of this updated parameter q then reads

πq = πq |ym (q) =
πym |q (q)πq (q)∫
πym |q (q)πq (q)

. (15)

Here πq is the prior distribution of the parameter, our initial guess based on professional expertise amd πym |q is the
likelihood, the probability of measuring ym given a certain value of the parameters q. The likelihood is expressed from
the distribution of the measurement noise,

πym |q (q) = πε (ym − y(q)). (16)

A one point estimate of the parameter can be given by the most probable value given the measurement

qMAP = arg max
q

πq |ym (q), (17)

the so-called maximum a-posteriori (MAP) estimate.
Here, the states are the flow solver’s (DLR-TAU) solutions, depending on the N = 5 parameters of the extended

turbulence model as listed in table 1, and the measurables are the flow field responses such as velocities, Reynolds
stresses and surface pressure measured on a spatial grid. Wind tunnel measurements provide the ym . Of course the
choice of the measurables and their position are geometry-dependent.

B. Bayesian Update
A random parameter remains a random variable, no matter how well it is estimated using measurements. Giving a

point estimate about it hides this fact. Instead it is desireable to estimate as many properties of the posterior random
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variable as possible. Ideally our aim is to get the whole posterior distribution. This way we can see how uncertain
our estimate is, and whether there are other values of the parameter giving similar fitting properties of the measurable.
Unfortunately, in a general case the Bayesian posterior can not be given in a closed form.

One way to go is to use functional descriptions for all the random variables, the parameter q, the measurable y and
the additive noise ε and then to try to write the updated random variable q with the help of the formers. To describe
arbitrary random variables in a discretizeable way, one usually maps a basic random variable that is distributed w. r. t. a
very basic distribution, e.g. N (0,1), U (0,1). The probability of any event in the image is then the probability of all its
preimages. The basic random variable is often called the germ. All random variables then are given as a function of the
germs. The mappings are approximated by polynomials, reasonably in a basis orthogonal w.r.t. the expectation. This
way of approximation of multi-valued random variables is called the generalized polynomial chaos [19].

We still have the task to express somehow the posterior. One could write the updated parameter with the help of
a minimum mean squared estimator, e.g. the linear estimator of the Kalman filter which would give us a functional
approximation of the updated parameter too. Unfortunately, the Kalman filter is a linear estimator and works well only
if the map from the measurable to the updated parameter is linear or mildly nonlinear, which is the case only if (13) is
(nearly) linear.
When calculating the gPC coefficients of q(ω) 7→ y as presented in Section IV.C, it turns out that this mapping is
considerably nonlinear. Thus, the spectral Kalman Filter turned out to be unsuitable for this problem.

The Metropolis-Hastings algorithm, a Markov Chain Monte Carlo Method (MCMC), delivers samples distributed
according to the exact Bayesian posterior [20]. The statistics of those samples then provides estimators for the posterior
distributions moments, including mean and variance. This algorithm can be regarded to be the working horse for
nonlinear parameter estimation problems.

C. Building a surrogate model
Doing the random walk of the MCMC procedure requires evaluation of the likelihood at each step. A new step

means a new value of the parameter q at which y(q) has to be computed for the likelihood with the computationally
expensive simulation model. Instead, it is highly advantageous to find a surrogate model for the forward problem (13)
in order to circumvent costly evaluations of the DLR-TAU CFD code during sampling.

To choose a suitable surrogate model we tested different meta models [21] for the specific case of the Backward
Facing Step (BFS, see Section V.A). The responses y(q) here highlighted were the velocity field vx and the Reynolds
stresses Re13 along the wall normal direction at four different cross sections of the BFS channel, and the pressure (cp)
and skin friction (cf ) coefficients along the BFS channel. Different sampling techniques were used to generate values of
the turbulence model coefficients such as Quasi Monte Carlo based on the Halton sequence, Latin hypercube sampling
with random centers and Smolyak grid with different stages. These samples were generated from a ’non-informative’
prior distribution of the turbulence model coefficients, a uniform distribution in between the bounds (chosen from
literatures and experience gathered during model development) given in Table 1.
∗ The responses have been computed by the CFD simulation for all generated coefficient values. Keeping some

Phase 1 PG SARC_C1 SARC_C2 SARC_C3 SAS

left boundary 0 0 0 0 0
right boundary 0.8 1.5 10 1.5 7

Table 1 Initial intervals of model coefficients

samples for testing we cross-validated different surrogate models using L1, L2, and L∞ errors. The meta model used
were

1) GPC (generalized polynomial chaos) multivariate orthogonal polynomials of maximum total degree three. We
used the Legendre polynomials which are orthogonal w.r.t. the given uniform prior distribution.

2) NRBF Normalized radial basis functions with Gaussian kernel with varying parameter r , i.e. g(d) = exp(−(d/r)2)
and d = ‖x − xi ‖. Centers have been chosen to correspond to the nodes of the training data.

∗After phase 1, PG model was replaced by V2Pkd model
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To generate the surrogate model representations from the training data, the coefficients of the functional approxima-
tion were computed by interpolation, regression and projection. Chross-check results of the different approximation
methods using different parameters and using different data sets for training and validation data have been compared and
evaluated. From this validation we concluded to use the gPC in the further analysis. Though in this initial testing the
first degree gPC surrogate had the mimimum error, in later analysis we computed more sample points and repeated the
validation process only for the different degree gPC models by regression. This was necessary because the regression
with the small number of sample points were underdetermined. With more sample points higher degree gPC models
improved, and so the expansion of total-degree 3 was chosen.

D. Maximum a posteriori estimates
From the distributed samples one chooses the the center of the histogram’s interval with the highest density as

estimator q̂. This approximates the point with the highest a pasteriori density. These are taken as the coefficients of the
calibrated turbulence model.

In this paper, we apply the procedure separately to all the generic test cases described in Section V separately and
to measurements joint together from two groups of two resp. 3 of the generic test cases. The first set is a combined
update involving the Backward Facing Step, axisymmetric transonic Bump and Model 53 at α = 20 deg. Second
set, which involves the flow with vortex breakdown, encompasses the two higher angles of attack with Model 53
(α = 25 deg and28 deg). A sample a priori and a posteriori probability distribution of the parameters and its cross
dependencies are shown in Fig. 2. The calibrated coefficients are given in the following table 2, using which the

Fig. 2 Combined Bayesian update of Model 53 delta wing at angle of attack 25 deg and 28 deg

simulations are performed and illustrated in the results section V.

V2Pkd SARC_C1 SARC_C2 SARC_C3 SAS

Set 1 1.82 1.46 3.29 0.01 2.18

Set 2 -0.42 0.08 0.15 0.05 0.32
Table 2 Calibrated parameters of the turbulence model extensions
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V. Generic Test Cases
The calibrations are performed on different flow problems involving two-dimensional (2D) and three-dimensional

(3D) test cases. The predominant test and application cases comprise low aspect ratios wings. Therefore, two different
types of delta wings are being studied associated with complex vortical flows. A particular difficulty is related to the
leading edge shape of delta wings as the separation is not fixed in the case of a delta wing with round leading edge.
Moreover vortex interactions take place, which increases the complexity furthermore. A well known problem is the
challenging task to effectively predict the exact onset of separation using a turbulence model and the chracteristics of
the vortices involved. A first phase of the calibration was done employing the Backward Facing Step, axisymmetric
transonic Bump and Model 53 delta wing at an angle of attack of 20 deg. Calibrations were conducted successively,
including one test case after the other. However the objective is to perform combined calibration and therefore only the
final result involving the combined update results are shown in this paper. The flow computations performed with set 1
of model constants also involved higher angles of attack where vortex breakdown occurred. Here, it became apparent
that set 1 resulted in a too early vortex breakdown. Therefore, a second calibration devoted to predict vortex breakdown
was performed that employs the angles α = 25 deg and α = 28 deg.

A. Backward Facing Step
Backward Facing Step (BFS) is a standard test case involving flow separation at a fixed point. It is relatively easy

to measure and model and the prediction of point of flow reattachment along with flow properties downstream is of
primary importance. The simulation uses flow information extracted from an initial channel computation as inflow
condition, thereby reducing the computational effort. The computational grid available in the Nasa turbulence homepage
was used [22]. The Mach number is 0.2, step height is 0.0127 m and the Reynolds number based on the step height is
38000. Unsteady RANS simulations were performed with a low Mach number preconditioning. Second order central
scheme was used for spatial and backward Euler was used for temporal discretization. Experimental data for reference is
obtained from Driver and Seegmiller [22]. For the calibration purpose, 300 samples of parameters were used to provide
a CFD data of the model, which were then used in UQ suite to build the surrogate model and perform the Bayesian
Update. While the combined update involves bump and Model 53(α = 20 deg) test case as provided in the following
sections, a stand alone update performed only with BFS is also included here to serve as an initial example of calibration.

Figure 3 shows the surface pressure coefficient predicted by the updates. Based on the sensitivity analysis performed
with the individual extensions, the pressure gradient extension augments to a slightly larger suction peak. The prediction
of wall shear stress coefficient is as expected (Fig. 3b), in which the SAS extension, by adding the sink term to the
ω-equation, reduces dissipation and increases turbulence thereby causing earlier reattchment than other models. The
irrotational strain model influences the update to predict a later reattachment point, as this part sensitises the model to
pressure gradients. The SARC model has the least influence on the original model out of the three extensions. The
velocity and Reynolds stress profiles in the boundary layer are shown in the Fig. 3 at two downstream locations. It can
be seen that the Reynolds stress is significantly increased by the updates at one step height downstream of the flow
direction but the magnitude of the reverse flow is slightly larger than that of the SST model and that of the experiment.
As the flow progresses further downstream, the velocity profiles of the updates are improved over the original model
although the Reynolds stress components are larger than the original model and experiment in the corresponding section.
This tendency has been observed by other classical turbulence models as well.

B. Axisymmetric Transonic Bump
The choice of the transonic axisymmetric bump as a test case is justified by the need of ensuring the model

performance for predicting shock/boundary layer interaction with flow separation and reattachment. Flow conditions
are Ma = 0.875 at a unit Reynolds number of Re/m = 13.6 × 106. A strong compression shock occurs and, combined
with subsonic flow diffusion towards the bump trailing edge, leads the flow to separation. The flow starts recovering
downstream of the bump trailing edge, where it reattaches. The computational grid available in the Nasa turbulence
homepage was used [22]. The Mach number is 0.875, the Reynolds number based on chord length is 2.763 million.
Steady RANS simulations were performed along with a second order upwind scheme for spatial and backward Euler
method was used for temporal discretization. Experimental data for reference is obtained from Bachalo and Johnson
[22]. For the calibration purpose, 300 samples of parameters were used to provide the CFD data of the model, which
were then used in UQ suite to build the surrogate model and perform the Bayesian Update. The combined update
involves BFS and Model 53(α = 20 deg) test case as provided in the previous and following sections and for reference
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purpose, stand alone update performed only with bump is also included.
The surface pressure coefficient along the bump is shown in Fig. 4a. It has to be noted that the original SST model was
calibrated using the transonic bump case, thereby delivering quite a good agreement with the experiment. Calibrated
results of the extended model predict the shock location slightly downstream than that of the SST model and experiment.
The pressure increase is relatively steep behind the shock. From sensititvity calculations not shown here, it was observed
that the SAS extension is effective at shock and it contributes to the disagreement of the pressure coefficient. Another
contribtuting factor can be seen from the boundary layer profiles. The surrogate model provides equal weight to all the
available experimental data and since a large set of data points are available for velocity and Reynolds stress profiles,
a strong weight is given to improving the boundary layer profiles. At x/c = 0.688 where the shock takes place, the
extended model improves the velocity profile significantly as can be seen in the Fig. 4b. At x/c = 1.125, the original
SST model still predicts a reverse flow, whereas the extended model has improved the result tending towards an attached
flow (4c). Corresponding improvement is also seen by the increased Reynolds stress magnitude and agreement of the
profile shape with the experiment at the same location (4d). Further downstream at x/c = 1.375, the improvement in the
flow recovery region can be seen in the velocity profile (4e). Reynolds stress profiles in the region are similar with each
other between the original and extended model.

C. Model 53
Model 53 (Fig. 5 & 6) is a relatively sharp leading edge delta wing (leading edge radius at the root chord is 1.22

mm) with a sweep angle of 53 deg and along with a leading edge slat deployed at 20 deg. The root chord is 0.75 m
and the wing is twisted at an angle of −4 deg at the tip. Measurements of pressure distributions were provided by
Technical University of Munich in its low speed wind tunnel A [23]. The flow conditions are a Mach number of 0.2 and
Reynolds number based on the mean aerodynamic chord (0.51m) is 1.7 million. Due to the small radius of the leading
edge, the onset of the primary vortex takes place in the proximity of the apex. Apart from the primary leading edge
vortex, a second leading edge vortex develops at the beginning of the slat. Based on the flow conditions and angle of
attack, onset of a third vortex is also observed downstream, near the trailing edge section. Vortex interactions take place
between the vortices originating from the delta wing apex section as well as from the slat, which adds up to the inherent
complexity of the vortical flows. Breakdown of the vortices occur due to the presence of adverse pressure gradient
towards the trailing edge. Moreover, as the angle of attack increases the vortex breakdown location move upstream.
This physical phenomenon is highly unsteady which could have adverse effects on the flight control parameters due to
the abrupt change of the pressure distribution on the suction side of the wing. Therefore it is important to accurately
predict the location and mode of vortex breakdown. Three different angles of attack, namely 20 deg, 25 deg and 28
deg were computed. The size of the numerical grid was around 8.85 million and unsteady RANS simulations were
performed with a low Mach number preconditioning. Second order Central scheme was used for spatial discretization
and backward Euler was used for temporal discretization.

1. Calibration Set 1: α = 20 deg
During the first phase of calibration, 100 samples of parameters were used to obtain the CFD data for the Model 53

test case at α = 20 deg, which were then used in the UQ suite to build the surrogate model and perform the Bayesian
Update. The combined update involves BFS and bump test case as provided in the previous sections. Distributions of
spanwise surface pressure coefficient at the suction side along 16 sections of the wing comprise the flow state which
was used during the calibration process. A number of sections at the pressure side were used to make sure that the
extended model would not adversely affect the pressure side. The calibrated results are shown in Fig. 7. Note the
suction peak of the apex vortex onset around apex region is somewhat larger for the experiment that that of the original
SST model and the extended model. At around 21% of the root chord length, the footprint of the apex vortex from the
experiment matches well with both models and also the suction pressure coefficient is improved by the extended model.
The emergence of a slat vortex at the outboard part of the wing can be seen at this section and it is reaffirmed around
26% of the chord length. The dissipation of the first vortex is captured well by the extended model around 30% to 40%
of the root chord length, and the improvements versus the original model become apparent. The tendency continues as
the flow progresses towards the trailing edge of the wing. However, the occurence of the third vortex is not captured by
both models.
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2. Calibration Set 2: α = 25 deg and α = 28 deg
The second phase of calibration employed the angles of attack of 25 deg and 28 deg and it was noted that the

extended model is sensitive to the parameters involved. Moreover, it became apparent that the V2Pkd model was
also effective in the negative parameter region. Therefore, along with the existing parameter interval used in phase 1,
ten additional parameter samples were added to the existing 100 samples. Therefore, in total 110 simulations were
performed for the two higher angles of attacks. For the angle of attack of 25 deg, the spanwise surface pressure
coefficients are shown in Fig. 8. It can be seen that the original SST model displays a quite good agreement with the
experimental data. The onset and footprint of the apex vortex is well captured by both models as it can be seen around
20% of the root chord length. However, a lower suction peak of the slat vortex is seen outboard near the wing tip,
by both indicated models. Around 30% to 40% of the root chord length, the characterstics of the second vortex are
improved by the calibrated model near to the wing tip. The vortex breakdown occurs around the middle part of the wing.
The dissipation of the vortices towards the trailing edge predicted by the numerical models is in good agreement with
the experiment, towards the trailing edge. The pressure coefficient is slightly over predicted by the extended model.

Figure 9 shows the calibration results of the Model 53 test case at 28 deg angle of attack. The occurence of vortex
breakdown takes place much more upstream for this high angle of attack. As for the previous case, the standard SST
model exhibits a good agreement with the experiment. Near to the apex, at around 4% of the root chord length, the
pressure distribution is slightly improved by the extended model. However, around 10% the standard model has a
slightly better agreement, as a slight increase in pressure is predicted by the extended model. Both of the numerical
models predict a somewhat larger pressure coefficient further downstream, whereas a very good agreement is found
near the trailing edge of the wing around 80% of the root chord length. It can be seen that the flow characteristics at an
anlge of attack associated with vortex breakdown is predicted well by both models.

D. Validation using Model 56
Model 56 is a variant of the Model 53 delta wing, the difference being the sweep angle, which is 56 deg for

the Model 56 test case. The test conditions remains the same as for the Model 53. The dependency of the vortex
characteristics are influenced by the sweep angle, such as the change in the magnitude and the footprint of the vortex
on the suction side. The objective of using the Model 56 as a validation case is to determine the usefulness of the
calibration for subsequent design applications. Since the calibration process does not include an a priori information
about the flow characteristics of this test case, it is a suitable case for validation. Throughout the course of this project,
an alternative model calibration approach based on deterministic optimization of model coefficients was studied by
Airbus Defence and Space and Technical University of Munich. The results from the standard Spalart Alamaras (SA)
turbulence model and an optimized SA-model are added as a reference. [24]

1. Validation of Set 1: α = 20 deg
The validation results are shown in Fig. 10. Around 13% of the root chord, near to the apex region of the delta

wing, the strength of the vortex core is suppressed by both the SST and extended model, with SST in better agreement.
At 40% the disspiation of the apex vortex is well predicted by both the models along with good agreements towards
the footprint and magnitude of the slat vortex. Further downstream, the magnitude of the slat vortex is reduced by the
numerical models. As it was observed with the calibration cases, the occurence of the third vortex around 60% of the
chord is not predicted. This leads to the difference in the pressure coefficient towards the wing tip for the trailing edge
region.

2. Validation of Set 2: α = 25 deg and α = 28 deg
Figure 11 shows the Model 56 results at α = 25 deg. Improvements in the pressure distribution for the apex region

can be seen by applying the extended model. Around 30% to 40% of the chord length, the apex vortex is well predicted,
whereas the slat vortex is predicted slightly inboard by the numerical models. Also, the magnitude of the suction peaks
are improved by the extended model. The pressure coefficient distribution is improved also in the middle region of the
wing and both models are in good agreement towards the trailing edge of the wing. The validation results of the Model
56 test case at α = 28 deg are shown in Fig. 12. Around 30% of the wing chord length, the apex vortex is predicted
well by both models whereas the magnitude of the slat vortex near to the trailing edge is improved by the extended
model. However, the footprint of the second vortex obtained by the numerical models is slightly located outboard in
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comparison to the experiment. The pressure coefficient is improved by the extension around the middle part of the wing,
especially at the wing tip region. Further downstream, the data of the numerical models are well in agreement with
the experimental data for the trailing edge region. As it was the case with the Model 53, it can be seen that the flow
chracteristics at an agle of attack provoking vortex breakdown are predicted well.

VI. Summary
Extensions to the standard Menter-SST eddy viscosity turbulence model were studied, developed and implemented

in the DLR-TAU CFD flow solver. The numerical simulations are coupled with a internally developed Uncertainty
Quantification suite. Calibrations are performed with standard test cases involving backward facing step, axisymmetric
transonic bump and Model 53 delta wing. Successive Bayesian Updates were performed and the extended model was
calibrated in two phases. Improvements can be seen by the extended turbulence model over the standard model. A delta
wing test case uninvolved in the calibration process was then used for the extended model validation. Improvements
were seen in all the involved test cases. Therefore, the work highlights the potentials of physical based turbulence
model extensions and calibration through Bayesian Updates. Further studies will be undertaken using a refined region
of interest to establish a single set of parameters for the extensions involving delta wing test cases, which could then be
applied to vortical flows and vortex breakdown cases.
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(a) cp coefficient (b) cf coefficient

(c) normalized streamwise velocity at x/H = 1 (d) normalized streamwise velocity at x/H = 6

(e) normalized shear stress (R13) at x/H = 1 (f) normalized shear stress (R13) at x/H = 6

Fig. 3 DLR-TAU response for BFS calibration
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(a) cp coefficient (b) normalized streamwise velocity at x/c = 0.688

(c) normalized streamwise velocity at x/c = 1.125 (d) normalized streamwise velocity at x/c = 1.375

(e) normalized shear stress (R13) at x/c = 1.125 (f) normalized shear stress (R13) at x/c = 1.375

Fig. 4 DLR-TAU Response for axisymmetric transonic bump calibration
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Fig. 5 Model 53 delta wing

Fig. 6 Illustration of Model 53 with fuselage and peniche; Iso surfaces using non dimensional Q-criterion
(0.001) at α = 25 deg, SST model
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(a) x/cr = 21.33% (b) x/cr = 26.66%

(c) x/cr = 32% (d) x/cr = 37.33%

(e) x/cr = 56.66% (f) x/cr = 72.66%

Fig. 7 Calibration of spanwise surface pressure coefficient of Model 53 delta wing at α = 20 deg
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(a) x/cr = 21.33% (b) x/cr = 26.66%

(c) x/cr = 37.33% (d) x/cr = 56.66%

(e) x/cr = 67.33% (f) x/cr = 82.66%

Fig. 8 Calibration of spanwise surface pressure coefficient of Model 53 delta wing at α = 25 deg

18



(a) x/cr = 4% (b) x/cr = 9.33%

(c) x/cr = 26.66% (d) x/cr = 42%

(e) x/cr = 61.33% (f) x/cr = 82.66%

Fig. 9 Calibration of spanwise surface pressure coefficient of Model 53 delta wing at α = 28 deg
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(a) x/cr = 13.33% (b) x/cr = 40%

(c) x/cr = 44.66% (d) x/cr = 57.33%

(e) x/cr = 62.66% (f) x/cr = 78.66%

Fig. 10 Validation of spanwise surface pressure coefficient of Model 56 delta wing at α = 20 deg
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(a) x/cr = 13.33% (b) x/cr = 32%

(c) x/cr = 40% (d) x/cr = 53.33%

(e) x/cr = 73.33% (f) x/cr = 84%

Fig. 11 Validation of spanwise surface pressure coefficient of Model 56 delta wing at α = 25 deg
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(a) x/cr = 28% (b) x/cr = 32%

(c) x/cr = 44.66% (d) x/cr = 62.66%

(e) x/cr = 73.33% (f) x/cr = 84%

Fig. 12 Validation of spanwise surface pressure coefficient of Model 56 delta wing at α = 28 deg
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