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Abstract

The concept of a coset-preserving skew-morphism is a generalization of
the widely studied t-balanced skew-morphisms of regular Cayley maps
which are in turn generalizations of group automorphisms. In case of
abelian groups, all skew-morphisms of regular Cayley maps are roots of
coset-preserving skew-morphisms, and therefore, classification of coset-
preserving skew-morphisms of finite abelian groups is the first step toward
classification of all skew-morphisms of these groups. We present a char-
acterization of coset-preserving skew-morphisms of finite cyclic groups,
and devise an algorithm for their classification.

1 Introduction

Skew-morphisms were introduced in [10] to facilitate the classification of regular
Cayley maps [19, 20, 18, 17, 8]. As regular Cayley maps constitute a very impor-
tant subclass of orientably regular maps (2-cell embeddings of graphs into orientable
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surfaces whose orientation preserving automorphism groups act regularly on their
sets of darts), from their introduction, skew-morphisms received a lot of attention
[4, 5, 7, 9, 13, 14, 15, 21, 22, 23]. They have also proved fundamental in several related
areas of algebraic and topological graph theory [11, 12], and in finite group theory
have been shown to be the key ingredient in the theory of products of groups with
at least one factor being cyclic [6]. Nevertheless, being of dual algebraic and combi-
natorial character, skew-morphisms resist attempts at classification even for the well
understood class of cyclic groups [6, 13], with the recent paper [14] achieving the
classification of skew-morphisms for cyclic p-groups.

Instead of restricting the groups considered, one can choose to look for subclasses
of skew-morphisms that may be more accessible to the use of algebraic techniques.
One such well understood subclass is the class of t-balanced skew-morphisms [4, 16,
7, 15], which are generalizations of group automorphisms, and are in fact equal to
group automorphisms on subgroups of index 2. The concept of a coset-preserving
skew-morphism is a generalization of that of a t-balanced skew-morphism which
preserves some of the most important algebraic characteristics of the t-balanced
skew-morphisms. It is a relatively new concept originally introduced by the first of
the authors of this paper in his bachelor (and later in his diploma) thesis [1].

The first research article[2] on this topic just appeared in the Proccedings of SIGMAP
2014 published by Springer. That paper contains (among other) a proof that all
skew-morphisms of finite abelian groups giving rise to regular Cayley maps possess
non-trivial powers (as permutations) that are coset-preserving. Thus, in addition to
being closely related to group-automorphisms, coset-preserving skew-morphisms are
the building stones for all skew-morphisms of regular Cayley maps of abelian groups;
an additional motivation for trying to classify this class of skew-morphisms.

The main theorem of the present article represents a classification of coset-preserving
skew-morphisms for finite cyclic groups. This is achieved via a careful consideration
of properties of these skew-morphisms with respect to a number of general properties
of skew-morphisms in Sections 2, 3 and 4 and subsequently by showing the sufficiency
of these properties for the existence of a coset-preserving skew-morphism in Section 5.
We conclude the paper with an algorithm based on our classification, followed by a
couple of examples of its use.

2 Properties of general skew-morphisms

Given a finite group G, a permutation ϕ : G → G of order |ϕ| = m (in the full
symmetric group Sym(G)), together with a function π : G → Zm is said to be a
skew-morphism of G, with an associated power function π, if ϕ(1G) = 1G and

ϕ(ab) = ϕ(a)ϕπ(a)(b) for all a, b ∈ G, (1)

where ϕπ(a)(b) is the image of b under ϕ applied π(a) times. Skew-morphisms possess
a number of algebraic properties:
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Lemma 2.1 ([10]) Let ϕ be a skew-morphism of a group G of order |ϕ| = m with
the power function π. Then the following hold:

(i) The set ker π = {g ∈ G | π(g) = 1} is a subgroup of G;

(ii) π(g) = π(h) if and only if g and h belong to the same right coset of the subgroup
ker π in G;

(iii) the set Fix ϕ = {g ∈ G | ϕ(g) = g} is a subgroup of G;

(iv) π(ghg−1) = 1 for all h ∈ ker π ∩ Fix ϕ and all g ∈ G;

(v) the group ker π ∩ Fix ϕ is a normal subgroup of Fix ϕ;

(vi) for any g ∈ G the equation ϕ(gh) = ϕ(g)ϕi(h) holds for each h ∈ G if and only
if i ≡ π(g) (mod m);

(vii) if π(g) = 0 for some g ∈ G, then ϕ is the identity permutation;

(viii) π(1G) = 1;

(ix) for any g, h ∈ G we have

π(gh) ≡
π(g)−1∑
i=0

π(ϕi(h)) (mod m). (2)

The equation (2) can be viewed as the definition of an extension σ of the power
function π to the set of pairs Z×G:

σ(i, h) ≡
i−1∑
i=0

π(ϕi(h)) (mod m). (3)

The extended power function will prove repeatedly useful throughout our paper, in
particular in evaluating powers of ϕ [6]:

ϕj(gh) = ϕj(g)ϕσ(j,g)(h), (4)

for all j ≥ 1, and g, h ∈ G.

Skew-morphisms of abelian groups have even more algebraic properties (which do
not have to be satisfied by skew-morphisms of non-abelian groups).

Lemma 2.2 ([4]) Let ϕ be a skew-morphism of an abelian group A of order |ϕ| = m
with the power function π. Then the following hold:

(i) The skew-morphism ϕ preserves ker π setwise, i.e., ϕ(ker π) = ker π;

(ii) the restriction of ϕ to ker π is a group automorphism of ker π;

(iii) for each a ∈ A, the number π(a) is congruent to 1 modulo the length of every
non-trivial orbit of ϕ on ker π;

(iv) if a ∈ A is stabilized by ϕ, i.e, ϕ(a) = a, then π(a) = 1.
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3 Properties of general coset-preserving skew-morphisms

Clearly, group automorphisms are skew-morphisms with π(a) = 1, for all a ∈ G and
ker π = G. A t-balanced skew-morphism [4] is a skew-morphism ϕ whose kernel is a
subgroup of G of index two preserved by ϕ with the property π(a) = t for all a in
the complement of ker π in G. The restriction of ϕ to ker π is necessarily a group
automorphism of ker π, and thus t-balanced skew-morphisms are as close to being
group automorphisms (without actually being group automorphisms) as possible.
Interestingly, every t-balanced skew-morphism raised to the (t+1)-st power becomes
a group automorphism [7]. All t-balanced skew-morphisms preserve the cosets of
their kernels, i.e., map elements from a coset of ker π to an element from the same
coset.

This simple observation leads us to the definition of the key topic of this article: A
skew-morphism ϕ of G of order m is said to be coset-preserving if π(ϕ(a)) ≡ π(a)
(mod m), for all a ∈ G. Thus, automorphisms and t-balanced skew-morphisms
are always coset-preserving, but there exist many coset-preserving skew-morphisms
whose kernels are of much larger index than 2 inG. For a variety of examples of coset-
preserving skew-morphisms, the reader is advised to consult [2] or the examples at
the end of our paper. For reader’s convenience, we include Table 1 that summarizes
information contained in Conder’s lists of skew-morphisms [3] with regard to the
distribution of the above classes in the full sets of skew-morphisms for cyclic groups
of order up to 30. The four sets Auto Zn, t−bal Zn,CP Skew Zn and Skew Zn denote
the set of automorphisms, the set of t-balanced skew-morphisms, the set of coset-
preserving skew-morphisms, and the set of all skew-morphisms for Zn, respectively.
Orders of groups for which Skew Zn = Auto Zn (i.e., groups, whose only skew-
morphisms are automorphisms), are left out of the list. For example, groups of
prime order as well as some groups of order a product of two distinct primes or a
square of a prime have been shown to have this property in [6].

If ϕ is not a coset-preserving skew-morphism of G, then G contains elements b for
which π(ϕ(b)) �≡ π(b) (mod m). To study such elements, the paper [2] introduces
the concept of periodicity. For an arbitrary element a ∈ G we define the periodicity
pa of a as the smallest positive integer such that π(a) = π(ϕpa(a)). Note that pa is
well defined as pa ≤ |Oa| <∞, where Oa denotes the orbit of a under ϕ. In the case
when G is abelian, pa = pb for any two elements in the same orbit of ϕ [2]. Thus, for
abelian groups, we can define the periodicity pO of an orbit O of ϕ as the periodicity
of any element in O. For a skew-morphism ϕ of an arbitrary group G we define
the periodicity pϕ of ϕ as the smallest common multiple of the periodicities of all
elements in G. In the case of abelian groups, pϕ equals the least common multiple
of periodicities of all orbits of ϕ. The most important properties of the periodicity
of the skew-morphisms of abelian groups are summarized in the following lemma.

Lemma 3.1 ([2]) Let ϕ be a skew-morphism of an abelian group A with the power
function π. Then the following hold:

(i) If a, b belong to the same orbit of ϕ, then pa = pb;
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n |Skew Zn| |CP Skew Zn| |t-bal Zn| |Auto Zn|
6 4 4 2 2
8 6 6 2 4
9 10 6 0 6
10 8 8 4 4
12 8 8 4 4
14 12 12 6 6
16 20 20 12 8
18 30 14 8 6
20 24 24 8 8
21 24 24 0 12
22 20 20 10 10
24 24 24 16 8
25 68 20 0 20
26 24 24 12 12
27 85 30 0 18
28 24 24 12 12
30 32 32 24 8

Table 1: The distribution of skew-morphisms for some small cyclic groups

(ii) if π(a) = π(b) for some a, b ∈ A, then π(ϕ(a)) = π(ϕ(b)) and pa = pb;

(iii) if a belongs to ker π, then pa = 1;

(iv) the number pa divides both |Oa| and |ϕ|;
(v) the values π(a) and π(ϕj(a)) are the same for some positive integer j if and

only if pa | j;
(vi) the periodicity pa of a ∈ A divides σ(pa, b) for each b ∈ Oa;

(vii) if a and b belong to the same orbit of ϕ, then σ(pa, a) = σ(pa, b) and σ(jpa, b) =
j · σ(pa, b) for any positive integer j;

(viii) the periodicity pab of the product of elements a, b ∈ A divides the least common
multiple of the periodicities of a and b, i.e., pab | lcm(pa, pb),
in particular, pa1a2...a� | lcm(pa1 , pa2 , . . . , pa�) for a1, . . . , a� ∈ A;

(ix) ϕpϕ is a coset-preserving skew-morphism, and if a and b belong to the same
orbit of ϕ and π is the power function of ϕpϕ, then π(a) = π(b);

(x) pϕ is the order of the skew morphism induced by ϕ on the factor group G/ker π.

If G is a finite abelian group, and ϕ is a skew-morphisms of G with at least one
orbit that generates G, then ϕpϕ is a non-trivial coset-preserving skew-morphism [2].
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Obviously, every skew-morphism of a finite cyclic group G possesses a generating
orbit; simply the orbit of any generator of G. This means that each non-trivial skew-
morphism of a finite cyclic group possesses a non-trivial power which is a coset-
preserving skew-morphism (e.g., Example 5.7), and thus, coset-preserving skew-
morphisms play a fundamental role in the classification of skew-morphisms of finite
cyclic groups.

Theorem 3.2 ([2]) Let ϕ be a non-trivial skew-morphism of a cyclic group Zn.
Then pϕ = pg for any generator g of Zn and ϕpϕ is a non-trivial coset-preserving
skew-morphism of Zn.

The above theorem implies that the classification of coset-preserving skew-morphisms
together with the classification of the roots of coset-preserving skew-morphisms of
finite cyclic groups which are also skew-morphisms would yield a classification of all
skew-morphisms of finite cyclic groups. In what follows, we complete the first part
of such classification, namely, we classify coset-preserving skew-morphisms of finite
cyclic groups.

It is easy to see that a skew-morphism ϕ is coset-preserving if and only if its peri-
odicity pϕ = 1. The next lemma will help us considerably simplify the calculations
involving the power functions of coset-preserving skew-morphisms.

Lemma 3.3 ([2]) Let A be a finite abelian group, and let ϕ : A→ A be a non-trivial
coset-preserving skew-morphism of order m with the power function π. Then π is a
homomorphism from A into the multiplicative group Z

∗
m, and ϕ

i is a coset-preserving
skew-morphism for every integer i.

Thus, for a coset-preserving skew-morphism ϕ of an abelian group A we can compute
the power function of the product of two elements as π(ab) ≡ π(a)π(b) (mod m).
Consequently, if A = Zn, π(a) = π(1)a for any non-zero element a ∈ Zn.

4 Properties of coset-preserving skew-morphisms of cyclic
groups

Recall that the order of the kernel of a t-balanced skew-morphism ϕ of G must
be at least half of the order of G. While this is not true for coset-preserving skew-
morphisms in general, the next lemma asserts that in cyclic groups the kernels cannot
be significantly smaller than |G|. While the lower bound stated in our lemma is the
best we were able to prove in general, as demonstrated in Example 5.7, additional
arithmetic considerations of the order of the cyclic group may allow for further im-
provements.

Lemma 4.1 Let ϕ be a coset preserving skew-morphism of Zn of order m with power
function π. Then |ker π| > √

n.
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Proof: The most important ingredient to this proof is the observation that all gener-
ating orbits of a skew-morphism ϕ are of the same size equal to the order of ϕ (e.g.,
[2, 9]). By means of contradiction, assume that |ker π| ≤ √

n for a coset-preserving
skew-morphism ϕ of Zn. It follows that ϕ is not an automorphism, and therefore
1 �∈ ker π. Since ϕ is coset-preserving, the entire orbit O1 is contained in the coset
1 + ker π, and therefore |O1| ≤ |ker π| ≤ √

n. On the other hand, π : Zn → Z
∗
m by

Lemma 3.3, and thus |Z∗
m| < m = |ϕ|. Since |ϕ| = |O1|, we obtain

|Z∗
m| < m = |ϕ| = |O1| ≤ |ker π| ≤ √

n.

However, different cosets of ker π receive different π values from Z
∗
m, and therefore

by the pigeonhole principle, the index of ker π in Zn, |Zn : ker π|, cannot exceed |Z∗
m|.

Hence n = |Zn| = |ker π| · |Zn : ker π| < √
n · (√n− 1); a contradiction. �

The key to the classification of coset-preserving skew-morphisms of finite cyclic
groups lies in finding necessary and sufficient parameters that uniquely determine
such skew-morphisms. In the forthcoming paragraphs, we determine a set of param-
eters together with some arithmetic conditions that must be satisfied by all coset-
preserving skew-morphisms of cyclic groups. In Section 5 we use these parameters
and conditions to build a permutation that we finally prove to be a coset-preserving
skew-morphism with the corresponding set of parameters. Thus, the parameters and
conditions derived in this section are necessary and sufficient for the existence of the
skew-morphisms we are interested in here.

Let ϕ be a non-trivial coset-preserving skew-morphism of a finite cyclic group G.
From now on, we will use the following notation. The equation a = b, with a, b ∈ Z,
will mean that a and b are equal as integers. We will understand the congruence
a ≡ b without a specified modulus as a congruence modulo |G|, usually denoted by
n. In all other cases, the modulus will be specified. We will denote the size of ker π
by d, d = |ker π|.
There are five important numerical parameters associated with ϕ.

• The first parameter of ϕ is the order n of G, i.e., ϕ is a skew-morphism of
G ∼= Zn.

• The second parameter k ∈ Zn of ϕ is the smallest non-zero element of ker π;
necessarily a generator of ker π. It was shown in [6] that the kernel of a skew-
morphism of any finite group is non-trivial, hence, k ≥ 1, and k |n.

• The third parameter h of ϕ is the difference between the elements ϕ(1) and 1
modulo n = |G|, i.e., h ≡ ϕ(1)− 1, or equivalently, ϕ(1) ≡ 1 + h. As ϕ is not
trivial and the orbit of 1 is generating, we have |O1| = |ϕ| > 1, and therefore
h �= 0. Moreover, h ∈ ker π as ϕ is coset-preserving, and thus, h is one of the
non-zero elements of ker π: k, 2k, . . . , (d− 1)k.

• The fourth parameter s of ϕ is the smallest positive integer satisfying ϕ(k) ≡
s · k. Note that this congruence always has a solution, since ϕ(k) ∈ ker π =
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{0, k, 2k, . . . , (d − 1)k}. Since the restriction of ϕ to ker π is a group auto-
morphism, (d, s) = 1, and the restriction of ϕ to ker π is the multiplication by
s, ϕ(b) ≡ s · b, for all b ∈ ker π.

• The fifth parameter e of ϕ is the value π(1). Note that by Lemma 3.3, π(a) ≡
π(1)a ≡ ea (mod |ϕ|), for each a ∈ Zn. As k is the smallest element of ker π,
the elements 1, 2, 3, . . . , k belong to different cosets of ker π, and therefore the
values e1, e2, . . . , ek are pairwise distinct modulo |ϕ| with ek ≡ 1 (mod |ϕ|)
(since k belongs to the kernel). Thus, the order of e in the multiplicative group
Z
∗
|ϕ| equals k.

We claim that ϕ is completely determined by its five parameters (n; k, h, s, e). First,
for any a ∈ Zn, applying (4) in the fourth step and (3) in the fifth yields:

ϕ(a) ≡ ϕ(1 + (a− 1)) ≡ ϕ(1) + ϕe(a− 1) ≡ ϕ(1) + ϕe(1 + (a− 2)) ≡
≡ ϕ(1) + ϕe(1) + ϕσ(e,1)(a− 2) ≡ ϕ(1) + ϕe(1) + ϕe2(a− 2).

By an easy induction argument,

ϕ(a) ≡ ϕ(1) + ϕe(1) + ϕe2(1) + · · ·+ ϕea−1

(1), for each a ∈ Zn. (5)

Thus ϕ(a) is uniquely determined for any a ∈ Zn by the action of ϕ on the orbit O1

of 1 and the parameter e. We proceed to show that O1 is uniquely determined by
the parameters h and s. We begin by showing that the following equation holds

ϕi(1) ≡ 1 + s0h+ s1h + · · ·+ si−1h, for each positive integer i. (6)

It clearly holds for i = 1 by the definition of h. To prove the general claim, we
proceed by induction. Suppose (6) holds for all i < N . Since h ∈ ker π, so is any of
its multiples, and hence, (s0h + s1h + · · ·+ sN−2h) belongs to ker π. Thus, π(s0h +
s1h+ · · ·+ sN−2h) = 1 and ϕ(s0h+ s1h+ · · ·+ sN−2h) ≡ s · (s0h+ s1h+ · · ·+ sN−2h).
Finally,

ϕN(1) ≡ ϕ(ϕN−1(1)) ≡ ϕ(1 + s0h+ s1h + · · ·+ sN−2h) ≡
≡ ϕ((s0h+ s1h+ · · ·+ sN−2h) + 1) ≡ ϕ(s0h+ s1h+ · · ·+ sN−2h) + ϕ(1) ≡
≡ s1h + s2h+ · · ·+ sN−1h+ 1 + h,

as claimed. Equation (6) clearly yields that the choice of s and h determines the
action of ϕ on O1.

We will call a five-tuple of parameters (n; k, h, s, e) of a coset-preserving skew-
morphism ϕ the parameter set of ϕ and denote it by Parϕ. It follows directly
from the definition of the parameter set that two non-trivial coset-preserving skew-
morphisms of cyclic groups with different parameter sets are not equal, as two coset-
preserving skew-morphisms ϕ and ϕ′ of cyclic groups with different parameter sets
are either associated with different groups, or have different kernels ker π �= ker π′, or
have different values ϕ(1) and ϕ′(1), or have different values at elements of ker π and
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ker π′, or have different values of their power functions at 1, respectively (depending
on in which of the five parameters (n; k, h, s, e) they differ). On the other hand,
two non-trivial coset-preserving skew-morphisms ψ and ψ′ of cyclic groups with the
same parameter sets are equal, as they are uniquely determined by their parameters
and the equations (5) and (6). All these observations are summed up in the following
theorem.

Theorem 4.2 Let ϕ and ψ be non-trivial coset-preserving skew-morphisms of cyclic
groups with the parameter sets Parϕ and Parψ. Then ϕ = ψ if and only if Parϕ =
Parψ.

The parameters (n; k, h, s, e) satisfy a number of necessary conditions (a slightly
different list appears already in [2]).

Theorem 4.3 Let ϕ be a non-trivial coset-preserving skew-morphism of a cyclic
group with the parameter set Parϕ = (n; k, h, s, e). Then the following hold:

(i) All five parameters are positive integers;

(ii) the parameter k divides n and k < n;

(iii) if d = n
k
, then s < d and (s, d) = 1;

(iv) the parameter h belongs to the set {k, 2k, . . . , (d− 1)k};
(v) if r denotes the smallest positive integer such that 1 ≡ 1+s0h+s1h+· · ·+sr−1h,

then r is the order of ϕ; in particular, e < r and the order of e in Z
∗
r equals k;

(vi) s · k ≡
k−1∑
i=0

(1 + s0h+ · · ·+ se
i−1);

(vii) se−1 ≡ 1 (mod d).

Proof: Properties (i), (ii), (iii), (iv) and (v) follow directly from the definitions of the
corresponding parameters and the preceding discussion. The congruence (vi) holds,
since ϕ(k) ≡ sk by the definition of s and k, while, ϕ(k) ≡ ϕ(1) + ϕe(1) + ϕe2(1) +
· · ·+ ϕek−1

(1), by (5), and

ϕ(1) + ϕe(1) + ϕe2(1) + · · ·+ ϕek−1

(1) ≡
k−1∑
i=0

(1 + s0h + · · ·+ se
i−1)

by repeated applications of (6).

To prove (vii), consider the following calculation:

ϕ(k) + ϕ(1) ≡ ϕ(k + 1) ≡ ϕ(1 + k) ≡ ϕ(1) + ϕe(k).

Thus, ϕ(k) ≡ ϕe(k), and hence sk ≡ sek. Since n = kd, it follows that s ≡ se

(mod d), or equivalently, 1 ≡ se−1 (mod d) as (s, d) = 1 by (iii).

Finally, the order of ϕ is equal to the length of the orbit of 1 under ϕ which can be
easily seen to be equal to the integer r defined in (v). �
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5 Building a skew-morphism from a parameter set

We say that parameters (n; k, h, s, e) are admissible, if they satisfy all the conditions
of Theorem 4.3, which we will refer to as Conditions (i) through (vii).

Our goal in this section is to show that given an admissible five-tuple of parameters
(n; k, h, s, e), one can construct a coset-preserving skew-morphism ϕ of Zn such
that Parϕ = (n; k, h, s, e).

We first employ equations (5) and (6) to define a permutation of Zn. Let d =
n
k
, and

suppose that there exists at least one positive i such that 1 ≡ 1+s0h+s1h+· · ·+si−1h.
Let r be the smallest of such i’s. (Note that, so far, we have no assurance that such
an r exists.) Recall our convention that instead of a ≡ b (mod n) we will simply
write a ≡ b, and let us define a permutation τ : Zn → Zn in two steps as follows.

First let τ(0) ≡ 0 and let

τ i(1) ≡ 1 + s0h+ s1h+ · · ·+ si−1h, for each positive integer i. (7)

To argue the existence of the above mentioned r, as well as that formula (7) actually
defines an orbit of a permutation on Zn, we will need the following lemma.

Lemma 5.1 Let (n; k, h, s, e) be an admissible parameter set. Then the following
hold:

(i) The sum 1 + s0h+ s1h + · · ·+ sj−1h is non-zero modulo n for each j ≥ 1;

(ii) there exists a positive integer i such that 1 ≡ 1 + s0h+ s1h+ · · ·+ si−1h;

(iii) Values 1+ s0h+ s1h+ · · ·+ si−1h and 1+ s0h+ s1h+ · · ·+ sj−1h are congruent
modulo n if and only if i ≡ j (mod r).

Proof: Condition (iv) asserts that k | h, and therefore, 1+ s0h+ s1h+ · · ·+ sj−1h ≡ 1
(mod k), for all j ≥ 1. The first assertion of our lemma now follows from the fact
that k also divides n.

Next, recall that n = dk and that (d, s) = 1, and suppose that 1 �≡ 1 + s0h + s1h +
· · · + si−1h for all i ≥ 1. Clearly, there must exist two positive integers i < j such
that

1 + s0h + s1h+ · · ·+ si−1h ≡ 1 + s0h + s1h+ · · ·+ sj−1h.

By subtracting the left side of this congruence from both sides we obtain

0 ≡ sih+ · · · sj−1h ≡ si(s0h+ s1h+ · · ·+ sj−i−1h).

As k | h, we have k | s0h+s1h+· · ·+sj−i−1h. It follows that s0h+s1h+· · ·+sj−i−1h =
�1k, for some positive integer �1, and our congruence can be replaced by the equation
�2n = si�1k, with �1, �2 positive integers. Therefore, �2d = si�1. Since (d, s) =
(d, si) = 1, we have d | �1, and thus, n = dk divides l1k = s0h + s1h + · · ·+ sj−i−1h.
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This means that congruence from the property (ii) has at least one positive solution,
namely j − i.

To conclude the proof, observe that all values 1+s0h, 1+s0h+s1h, . . . , 1+s0h+s1h+
· · ·+sr−1h ≡ 1 are distinct modulo n, as the congruence 1+s0h+s1h+ · · ·+si−1h ≡
1+s0h+s1h+· · ·+sj−1h for some 0 < i < j < r would be contrary to the minimality of
r. The rest of the proof follows the lines typical for arguments involving the smallest
number with some divisibility property. �

Employing Lemma 5.1 yields the congruence 1 ≡ τ r(1), and hence we can view the
cycle (1, τ(1), . . . , τ r−1(1)) as a cycle of τ . Let Y = {0, 1, τ(1), . . . , τ r−1(1)}. We
define τ for all the remaining elements of Zn \ Y using equation (5):

τ(a) ≡ τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
a−1

(1), for each a ∈ Zn \ Y. (8)

This establishes τ as a well-defined mapping τ : Zn → Zn. The following lemma lists
other important properties of τ .

Lemma 5.2 Let (n; k, h, s, e) be a set of admissible parameters, and let τ , r and d
be defined as above. Then the following hold:

(i) τ r(1) ≡ 1;

(ii) τ i(1) ≡ τ j(1) if and only if i ≡ j (mod r);

(iii) τ(a) ≡ a (mod k) for each a ∈ Zn;

(iv) τ e
lk
(1) ≡ τ(1) for each positive integer l;

(v) τ(lk) ≡ slk for any positive integer l;

(vi) τ(lk) ≡ τ e
i
(lk) for any positive integers l and i;

(vii) τ(1) + τ e(1) + τ e
2
(1) + · · ·+ τ e

a−1
(1) ≡ τ(1) + τ e(1) + τ e

2
(1) + · · ·+ τ e

b−1
(1),

for each pair a, b of positive integers congruent modulo n;

(viii) τ(τ i(1)) ≡ τ(1) + τ e(1) + τ e
2
(1) + · · ·+ τ e

τi(1)−1
(1) for each positive integer i;

(ix) τ(a+ lk) ≡ τ(a)+slk for any non-negative integer a and any positive integer l.

Proof: Properties (i) and (ii) follow immediately from Lemma 5.1. To prove the
property (iii), first note that it holds for all elements of Y as τ i(1) ≡ 1 (mod k) for
each positive integer i by (7). Thus, considering an a /∈ Y , we have

τ(a) ≡ τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
a−1

(1) ≡ 1 + · · ·+ 1 ≡ a (mod k)

by (8). Property (iv) is a straightforward consequence of Condition (v) and property
(ii) of this lemma, as elk ≡ (ek)l ≡ 1 (mod r). To prove property (v), first observe
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that for any positive integer l, the product lk does not belong to Y \ {0} and that
the claim clearly holds for lk ≡ 0, thus we may apply (8)

τ(lk) = τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
lk−1

(1).

Repeated application of property (iv) of this lemma yields

τ(lk) = l · (τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
k−1

(1)).

Since Condition (vi) establishes τ(1)+ τ e(1)+ τ e
2
(1)+ · · ·+ τ e

k−1
(1) = s · k, we have

τ(lk) = slk. Given any positive integer i, τ i(lk) ≡ 0 (mod k), by property (iii) of
this lemma. Thus, by property (v), we have τ i(lk) ≡ silk for any positive integer
i. Also recall that se−1 ≡ 1 (mod d) by Condition (vii). It follows that se

i−1 ≡ 1
(mod d) for any positive integer i as e − 1 | ei − 1. Thus se

i ≡ se
i−1s ≡ s (mod d),

or equivalently, for any positive integer we have se
i
= s + jd for some integer j.

Summing up, we obtain

τ e
i

(lk) ≡ se
i

lk ≡ (s+ jd) · lk ≡ slk + jdlk ≡ slk,

where jdlk ≡ 0 due to n = dk; which proves (vi).

To prove (vii), suppose without loss of generality that a ≤ b, i.e., b = a+ ln for some
non-negative integer l, and consider the following calculation:

τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
a+ln−1

(1) ≡
≡

(
τ(1) + τ e(1) + · · ·+ τ e

ln−1

(1)
)
+
(
τ e

ln

(1) + τ e
ln+1

(1) + · · ·+ τ e
a+ln−1

(1)
)
≡

≡ τ(ln) +
(
τ e

0

(1) + τ e
1

(1) · · ·+ τ e
a−1

(1)
)
≡ τ(0) + τ(a) ≡ τ(a),

where the key equality τ e
ln
(1) + τ e

ln+1
(1) + · · · + τ e

a+ln−1
(1) ≡ τ e

0
(1) + τ e

1
(1) · · ·+

τ e
a−1

(1) follows from (iv).

As an additional consequence of (vii), note that formula (8) will yield the same result
whenever we replace an element a ∈ Zn by any other non-negative integer congruent
to a modulo n. Thus, in the remaining part of this proof, we do not need to check
the condition a ∈ Zn when calculating τ(a).

We proceed to prove (viii) by induction on i. It clearly holds for i = 0 as τ(τ 0(1)) ≡
τ(1). Now suppose that

τ(τ i(1)) ≡ τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
τi(1)−1

(1)

for all i < j. We divide the sum

τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
τj(1)−1

(1)

into two parts:

τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
τj−1(1)−1

(1)
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and
τ e

τj−1(1)

(1) + τ e
τj−1(1)+1

(1) + τ e
τj−1(1)+2

(1) + · · ·+ τ e
τj(1)−1

(1).

The first sum equals τ(τ j−1(1)) = τ j(1) by our induction’s assumption. Employing
property (iv) and formula (7) yields that the second sum equals

τ e
1

(1) + τ e
2

(1) + . . . τ e
sj−1h−1

+ τ(1)

as k | h. Since sj−1h /∈ Y \ {0}, the above sum equals τ(sj−1h) by (8). Applying (7)
and the property (v), we obtain

τ j(1) + τ(sj−1h) = 1 + s0h+ s1h+ · · ·+ sj−1h+ sjh = τ j+1(1) = τ(τ j(1))

which completes induction, and thus the proof of (viii).

In addition, note that thanks to property (viii), formula (8) can be applied to all
non-zero elements of Zn (not just the elements in Zn \ Y ).

Finally, property (ix) follows directly from properties (iv) and (v) as

τ(a + lk) ≡ τ(lk) + τ e
lk

(1) + τ e
lk+1

(1) + · · ·+ τ e
lk+a−1

(1) ≡ slk + τ(a).

�

We can now proceed to show that τ is indeed a bijection. As Zn is finite, it is sufficient
to show that τ is an injection. Note that each element a of Zn can be written uniquely
as a = a+ lak where a ∈ {0, 1, . . . , k − 1} and la ∈ {0, 1, . . . , d− 1}. Suppose that
τ(a) ≡ τ(b) for some a, b ∈ Zn. Then, applying Lemma 5.2 (ix), we obtain the
following series of congruencies modulo n:

τ(a) ≡ τ(b) =⇒ τ(a + lak) ≡ τ(b+ lbk) =⇒ τ(a) + slak ≡ τ(b) + slbk.

Hence, τ(a) ≡ τ(b) (mod k), and therefore, a ≡ b (mod k), by Lemma 5.2 (iii).
Since a, b ∈ {0, 1, . . . , k − 1}, we have proved a = b. Consequently, slak ≡ slbk , or
equivalently, sk(la − lb) ≡ 0. As n = kd, (d, s) = 1 and la, lb ∈ {0, 1, . . . , d − 1}, it
follows that la−lb ≡ 0 (mod d), and thus, la = lb. As we have shown that τ(a) ≡ τ(b)
implies a = a+ la ≡ b+ lb = b, τ must be a permutation of Zn.

Next, we show that the permutation τ is a coset-preserving skew-morphism of Zn

with the parameter set Par τ = (n; k, h, s, e).

First, to prove that τ is a skew-morphism, for any given a ∈ Zn, we must prove the
existence of a positive integer ia for which τ(a + b) ≡ τ(a) + τ ia(b), for all b ∈ Zn.
We prove this by showing that the above equations hold for ia = ea. To prove the
correctness of our choice of ia, we rely on the following lemma. It states that it is
sufficient to verify our claim for the elements a, b ∈ {0, 1, . . . , k − 1}.

Lemma 5.3 Let a, b ∈ {0, 1, . . . , k− 1} and suppose that τ(a+ b) ≡ τ(a) + τ e
a
(b).

Then, τ(a + b) ≡ τ(a) + τ e
a
(b), for all a, b ∈ Zn that satisfy a ≡ a (mod k) and

b ≡ b (mod k).
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Proof: As a ≡ a (mod k) and b ≡ b (mod k), there exist l1, l2 ∈ {0, 1, . . . , d − 1}
such that a = a+ l1k and b = a+ l1k. Thus, to prove the claim, we must show that

τ(a + l1k + b+ l2k) ≡ τ(a + l1k) + τ e
a

(b+ l2k). (9)

Applying Lemma 5.2 (ix), (v) and (vi) to the left side of (9), we obtain

τ(a + l1k + b+ l2k) ≡ τ(a+ b + l1k + l2k) ≡ τ(a + b) + sl1k + sl2k ≡
≡ τ(a) + τ e

a

(b) + τ(l1k) + τ(l2k) ≡ τ(a) + τ(l1k) + τ e
a

(b) + τ e
a

(l2k).

On the other hand, repeated applications of Lemma 5.2 (ix) to the right side of (9)
yield

τ(a + l1k) + τ e
a

(b+ l2k) ≡ τ(a) + τ(l1k) + τ e
a

(b) + se
a · l2k ≡

≡ τ(a) + τ(l1k) + τ e
a

(b) + τ e
a

(l2k),

which completes the proof of our claim. �

Using induction on b, we proceed to verify for each b ∈ {1, . . . , k−1} that τ(1+b) ≡
τ(1) + τ e(b), and also that

τ i(b) ≡ τ i(1) + τ ie(1) + · · ·+ τ ie
b−1

(1), (10)

for any positive integer i.

Both claims clearly hold for b = 1 as τ(1 + 1) = τ(1) + τ e(1) by formula (8), while
the left side of (10) is identical to the right side for all i ≥ 1. Now suppose that both
claims hold for all b < a. Then by Lemma 5.3, τ(c+ b) ≡ τ(c) + τ e(b) for all c ∈ Zn,
c ≡ 1 (mod k), and b ∈ Zn, for which there exists a b ∈ {1, . . . , a − 1} such that
b ≡ b mod k. In particular,

τ(τ j1(1) + τ j2(b)) ≡ τ(τ j1(1)) + τ e(τ j2(b)) ≡ τ 1+j1(1) + τ e+j2(b),

for any pair of positive integers j1 and j2 due to Lemma 5.2 (iii). Applying this
observation allows us to compute τ i(a) for an arbitrary integer i as follows:

τ i(a) ≡ τ i−1 (τ(1 + (a− 1))) ≡ τ i−1 (τ(1) + τ e(a− 1)) ≡
≡ τ i−2 (τ(τ(1) + τ e(a− 1))) ≡ τ i−2

(
τ 2(1) + τ 2e(a− 1)

) ≡
...

≡ τ
(
τ i−1(1) + τ (i−1)e(a− 1)

) ≡ τ i(1) + τ ie(a− 1) ≡
≡ τ i(1) + τ ie(1) + · · ·+ τ ie

a−1

(1).

The last congruence holds as a− 1 < a, and thus,

τ ie(a− 1) ≡ τ ie(1) + · · ·+ τ ie
a−1

(1)
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by the induction assumption. Thus, (10) holds for a as well. To prove that τ(1+a) ≡
τ(1) + τ e(a), we calculate the right side using (10) with a substituted for b and e
substituted for i:

τ(1) + τ e(a) ≡ τ(1) + τ e(1) + τ e
2

(1) + · · ·+ τ e
a

(1) ≡ τ(1 + a).

This concludes our proof by induction of the identities τ(1 + b) = τ(1) + τ e(b) and
(10), for all b and i ≥ 1. We proceed to show that the equation

τ(a + b) ≡ τ(a) + τ e
a

(b)

holds for each a, b ∈ {0, 1, . . . , k − 1}. It clearly holds when a = 0 or b = 0. Thus,
suppose that neither a nor b are equal to zero. Then, substituting i = ea into formula
(10), we obtain

τ(a) + τ e
a

(b) ≡
(
τ(1) + · · ·+ τ e

a−1

(1)
)
+
(
τ e

a

(1) + · · ·+ τ e
a+b−1

(1)
)
≡ τ(a + b),

which proves our claim.

Combining this result with Lemma 5.3, we have proved that τ is a skew-morphism
of Zn with ia = ea for each a ∈ Zn. As τ is a skew-morphism of an abelian group
and the orbit of element 1 is generating, we have |τ | = |O1| = r. Let π denote
the power function of the skew-morphism τ . Then π(a) equals ea (mod r) for each
a ∈ Zn (note that ea (mod k) ≡ ea (mod r) by Condition (iv)). Summing up all these,
we obtain the first claim of the following lemma.

Lemma 5.4 Let (n; k, h, s, e) be a set of admissible parameters, let r be the integer
defined in the previous subsection, and let τ be the permutation of Zn defined by
τ(0) = 0 and formulas (7) and (8). Then the following hold:

(i) The permutation τ is a skew-morphism of Zn with the power function π(a) = ea

(mod r), a ∈ Zn;

(ii) τ is a coset-preserving skew-morphism;

(iii) Par τ = (n; k, h, s, e).

Proof: The skew-morphism τ satisfies τ(a) ≡ a (mod k) for each a ∈ Zn by Lemma
5.2 (iii). Thus, the values ea and eτ(a) are equal modulo r because ek ≡ 1 (mod r)
by Condition (v). It follows that τ is a coset-preserving skew-morphism of Zn. It
remains to show that Par τ = (n; k, h, s, e).

As τ is defined on Zn, its first parameter obviously equals n. It is also straightforward
to see that τ(1)− 1 = 1 + h− 1 = h, and hence the third parameter of τ equals h.

To verify that the fourth parameter equals s, we must prove that s is the smallest
positive integer such that τ(k) ≡ sk. Number s satisfies the equation due to Lemma
5.2 (v). Suppose that τ(k) ≡ sk for some positive integer s ≤ s. We obtain

sk ≡ sk =⇒ s ≡ s (mod d),
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and hence s = s as s < d by Condition (iii).

The fifth parameter π(1) equals e (mod r). As e < r by Condition (v), we obtain
π(1) = e.

Finally, recall that the order of π(1) = e modulo |τ | = r equals k by Condition (v).
Hence π(a) = (ea (mod r)) �= 1 for all non-zero elements a ∈ Zn smaller than k and
π(k) = (ek (mod r)) = 1. Thus k is the smallest non-zero element of ker π, i.e., the
second parameter of τ . �

The following classification theorem is the main result of our paper.

Theorem 5.5 (1) Let (n; k, h, s, e) be a set of admissible parameters. Then there
exists a unique non-trivial coset-preserving skew-morphism τ of the cyclic group
Zn such that Par τ = (n; k, h, s, e).

(2) Let ϕ be a non-trivial coset-preserving skew-morphism of a cyclic group Zn.
Then Parϕ is a set of admissible parameters.

Let us point out that by restricting the above theorem to five-tuples consisting of
an even n and k = 2, we have also obtained a classification of t-balanced skew-
morphisms of cyclic groups. A different version of a classification of the t-balanced
skew-morphisms of cyclic groups that give rise to a regular Cayley map (i.e., admit
a generating orbit closed under inverses) was obtained in [15].

In view of Theorem 5.5, for any positive integer n, there is a one-to-one correspon-
dence between the set of admissible parameter five-tuples (n; k, h, s, e) and the set
of coset-preserving skew-morphisms of Zn. It follows obviously from their defini-
tion that the three parameters k, h, s are smaller than n. In addition, as shown, in
Lemma 4.1, |ker π| > √

n, and thus k <
√
n, since k is a generator for ker π. In [6],

it was shown that the order of any skew-morphism ϕ of a finite group G is smaller
than the order of G. Hence, any skew-morphism of Zn satisfies |ϕ| < n, and since e
belongs to Z|ϕ|, e < n as well. It follows that any admissible five-tuple (n; k, h, s, e)
satisfies the inequalities k <

√
n and h, s, e < n, and finding all admissible five-tuples

for a given parameter n requires checking the easy arithmetic Conditions (i) - (vii)
for at most n3.5 four-tuples (k, h, s, e). Having all admissible parameter sets for a
given n, it is also not hard (specifically, polynomial in n) to use formulas (7) and (8)
to construct all skew-morphism for Zn.

Based on these ideas, the first author and M. Hagara created a C++ program to
search the admissible parameter sets up to n = 2000, and to create complete lists of
coset-preserving skew-morphisms of cyclic groups of order up to 500 (with the lists
becoming too big for n > 500). The complete list up to the order 500 contains 177753
coset-preserving skew-morphisms out of which 76115 are automorphisms. The cyclic
group with the largest number of coset-preserving skew-morphisms up to the order
500 is the group Z480 which admits 2144 coset-preserving skew-morphisms.

We conclude our paper with two examples of the use of the above techniques for
constructing coset-preserving skew-morphisms. In the first example, we demonstrate
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the construction of a coset-preserving skew-morphism for the given admissible pa-
rameter set. In the second example, we present a classification of coset-preserving
skew-morphisms for the cyclic group Z18.

Example 5.6 Consider the parameter set (n; k, h, s, e) = (20; 4, 8, 1, 3). It is
easy to verify that this parameter set satisfies all the conditions of Theorem 4.3, and
thus, (20; 4, 8, 1, 3) is an admissible parameter set. As the first parameter equals
20, we will be building a coset-preserving skew-morphisms ϕ of Z20 (and thus all the
congruences without a specified modulus will be meant (mod 20)).

1. Let ϕ(0) ≡ 0.

2. Using (7), define

ϕi(1) ≡ 1 + 10 · 8 + 11 · 8 + · · ·+ 1i−1 · 8 ≡ (1 + 8i),

for each positive integer i. Since the smallest positive integer r such that
1 + 8r ≡ 1 equals 5, we obtain the orbit of 1 under ϕ of length 5:

ϕ(1) ≡ 9, ϕ2(1) ≡ 17, ϕ3(1) ≡ 5, ϕ4(1) ≡ 13, ϕ5(1) ≡ 1.

3. The remaining values ϕ(a), for a ∈ Z20, a �= 0, 1, 9, 17, 5, 13, can be computed
using formula (8), i.e.,

ϕ(a) ≡ ϕ(1) + ϕ3(1) + ϕ32(1) + · · ·+ ϕ3a−1

(1).

An even simpler method follows from Lemma 5.2 (ix), which asserts that ϕ(a+
lk) ≡ ϕ(a) + slk for all non-negative integers a and positive integers l. Since,
in our case, k = 4 and s = 1, Lemma 5.2 (ix) yields ϕ(a + 4l) ≡ ϕ(a) + 4l.
Thus, to determine the rest of ϕ, it suffices to find the values ϕ(0), ϕ(1), ϕ(2)
and ϕ(3). We already know that ϕ(0) ≡ 0 and ϕ(1) ≡ 1. Using the above
formula based on (8), we obtain the values ϕ(2) and ϕ(3):

ϕ(2) ≡ ϕ(1) + ϕ3(1) ≡ 9 + 5 ≡ 14,

ϕ(3) ≡ ϕ(1) + ϕ3(1) + ϕ9(1) ≡ ϕ(1) + ϕ3(1) + ϕ4(1) ≡ 9 + 5 + 13 ≡ 7,

(where the powers in the exponents of ϕ are calculated modulo 5, which is
the length of the orbit O1, while the ‘base’ calculations are performed modulo
n = 20, the order of the group).

Using ϕ(a + 4l) ≡ ϕ(a) + 4l for a = 1, 2, 3 and l = 1, 2, 3, 4, we obtain
(1, 9, 17, 5, 13)(2, 14, 6, 18, 10)(3, 7, 11, 15, 19). Finally, by the definition of the
parameters k and s, ϕ(lk) ≡ slk, and we obtain

ϕ = (0)(4)(8)(12)(16)(1, 9, 17, 5, 13)(2, 14, 6, 18, 10)(3, 7, 11, 15, 19).
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The resulting coset-preserving skew-morphism ϕ of Z20 has the desired parameters
Parϕ = (20; 4, 8, 1, 3). Note that ϕ is neither an automorphism nor a t-balanced
skew-morphism of Z20 as ker π = 〈4〉 is of index 4 in Z20, and thus, the power function
π assumes 4 distinct values. The group Z20 is the smallest cyclic group which admits
a coset-preserving skew-morphism which is neither an automorphism nor t-balanced
(see Table 1).

Example 5.7 In our last example, we present the complete list of all coset-preser-
ving skew-morphisms of Z18. All of these have been obtained using the method
illustrated in Example 5.6. To simplify the list, we only present power functions for
those skew-morphisms which are not automorphisms, and, for those, we only list the
value of π for one element of each orbit.

For n = 18, there exist 13 admissible parameter sets, which give rise to 13 non-
trivial coset-preserving skew-morphisms of Z18. By extending the list by the identity
permutation of Z18, we obtain the complete list of coset-preserving skew-morphisms
of Z18:

ϕ1 = Id(Z18), automorphism of Z18;

ϕ2 = (1, 5, 7, 17, 13, 11) (2, 10, 14, 16, 8, 4) (3, 15) (6, 12),

automorphism of Z18, Parϕ2 = (18; 1, 4, 5, 1);

ϕ3 = (1, 7, 13) (2, 14, 8) (4, 10, 16) (5, 17, 11),

automorphism of Z18, Parϕ3 = (18; 1, 6, 7, 1);

ϕ4 = (1, 17) (2, 16) (3, 15) (4, 14) (5, 13) (6, 12) (7, 11) (8, 10),

automorphism of Z18, Parϕ6 = (18; 1, 16, 17, 1);

ϕ5 = (1, 13, 7) (2, 8, 14) (4, 16, 10) (5, 11, 17),

automorphism of Z18, Parϕ5 = (18; 1, 12, 13, 1);

ϕ6 = (1, 11, 13, 17, 7, 5) (2, 4, 8, 16, 14, 10) (3, 15) (6, 12),

automorphism of Z18, Parϕ4 = (18; 1, 10, 11, 1);

ϕ7 = (1, 3, 5, 7, 9, 11, 13, 15, 17),

8-balanced skew-morphism of Z18, π(1) = 8, Parϕ7 = (18; 2, 2, 1, 8);

ϕ8 = (1, 5, 9, 13, 17, 3, 7, 11, 15),

8-balanced skew-morphism of Z18, π(1) = 8, Parϕ8 = (18; 2, 4, 1, 8);
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ϕ9 = (1, 7, 13) (3, 9, 15) (5, 11, 17),

2-balanced skew-morphism of Z18, π(1) = π(3) = π(5) = 2,

Parϕ9 = (18; 2, 6, 1, 2);

ϕ10 = (1, 9, 17, 7, 15, 5, 13, 3, 11),

8-balanced skew-morphism of Z18, π(1) = 8, Parϕ10 = (18; 2, 8, 1, 8);

ϕ11 = (1, 11, 3, 13, 5, 15, 7, 17, 9),

8-balanced skew-morphism of Z18, π(1) = 8, Parϕ11 = (18; 2, 10, 1, 8);

ϕ12 = (1, 13, 7) (3, 15, 9) (5, 17, 11),

2-balanced skew-morphism of Z18, π(1) = π(3) = π(5) = 2,

Parϕ12 = (18; 2, 12, 1, 2);

ϕ13 = (1, 15, 11, 7, 3, 17, 13, 9, 5),

8-balanced skew-morphism of Z18, π(1) = 8, Parϕ13 = (18; 2, 14, 1, 8);

ϕ14 = (1, 17, 15, 13, 11, 9, 7, 5, 3),

8-balanced skew-morphism of Z18, π(1) = 8, Parϕ14 = (18; 2, 16, 1, 8).

Note that the skew-morphisms ϕ3, . . . , ϕ6 are successive powers of ϕ2, and ϕ8, . . . , ϕ14

are powers of ϕ7. Also observe that the only types of coset-preserving skew-morph-
isms for Z18 are either automorphisms of Z18 (the powers of ϕ2) or t-balanced skew-
morphisms with kernel of order 9. Thus, even though Lemma 4.1 appears to allow
for coset-preserving skew-morphisms of Z18 with kernel of order 6 >

√
18, no such

skew-morphisms actually exist. This is due to another important property of coset-
preserving skew-morphisms. Namely, if ϕ were a coset-preserving skew-morphism
with kernel of order 6, the size of the coset of 1 would also be equal to 6, and hence
the length of the orbit of 1 under ϕ would be at most 6. Recall also that the order
m of ϕ would have to match the size of the orbit of 1 (a generator for Z18), and that
the power function π of ϕ would be a homomorphism from Z18 into Z

∗
m. However,

|Z∗
m| ≤ 2, for 2 ≤ m ≤ 6, m �= 5, and hence the order of ϕ cannot be 2, 3, 4 or 6 as

we would not have three distinct power function values for the three distinct cosets
of the kernel. It cannot be equal to 5 either, as that would require the existence of
a homomorphism from Z18 onto Z

∗
5, but 4 does not divide 18.

All the above skew-morphisms also appear on the list of the skew-morphisms of Z18

maintained by Conder [3]. Next, we list the non-coset-preserving skew-morphisms
(equivalently, skew-morphisms with periodicity at least 2) for the sake of complete-
ness, although they are simply lifted from [3]. We also list their periodicities and
their corresponding powers that belong to the above list of coset-preserving skew-
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morphisms. Such powers always exist due to Theorem 3.2.

ϕ15 = (1, 11, 7, 5, 13, 17) (2, 16, 14, 4, 8, 10) (3, 15) (6, 12), pϕ15 = 2, ϕ2
15 = ϕ3,

ϕ16 = (1, 17, 7, 11, 13, 5) (2, 4, 14, 10, 8, 16) (3, 15) (6, 12), pϕ16 = 2, ϕ2
16 = ϕ3,

ϕ17 = (1, 5, 13, 11, 7, 17) (2, 16, 8, 10, 14, 4) (3, 15) (6, 12), pϕ17 = 2, ϕ2
17 = ϕ5,

ϕ18 = (1, 17, 13, 5, 7, 11) (2, 10, 8, 4, 14, 16) (3, 15) (6, 12), pϕ18 = 2, ϕ2
18 = ϕ5,

ϕ19 = (1, 9, 5, 7, 15, 11, 13, 3, 17) (2, 14, 8) (4, 10, 16), pϕ19 = 3, ϕ3
19 = ϕ9,

ϕ20 = (1, 15, 5, 7, 3, 11, 13, 9, 17) (2, 8, 14) (4, 16, 10), pϕ20 = 3, ϕ3
20 = ϕ9,

ϕ21 = (1, 15, 17, 7, 3, 5, 13, 9, 11) (2, 14, 8) (4, 10, 16), pϕ21 = 3, ϕ3
21 = ϕ9,

ϕ22 = (1, 3, 17, 7, 9, 5, 13, 15, 11) (2, 8, 14) (4, 16, 10), pϕ22 = 3, ϕ3
22 = ϕ9,

ϕ23 = (1, 3, 11, 7, 9, 17, 13, 15, 5) (2, 14, 8) (4, 10, 16), pϕ23 = 3, ϕ3
23 = ϕ9

ϕ24 = (1, 9, 11, 7, 15, 17, 13, 3, 5) (2, 8, 14) (4, 16, 10), pϕ24 = 3, ϕ3
24 = ϕ9,

ϕ25 = (1, 11, 15, 13, 5, 9, 7, 17, 3) (2, 14, 8) (4, 10, 16), pϕ25 = 3, ϕ3
25 = ϕ12,

ϕ26 = (1, 17, 3, 13, 11, 15, 7, 5, 9) (2, 8, 14) (4, 16, 10), pϕ26 = 3, ϕ3
26 = ϕ12,

ϕ27 = (1, 17, 9, 13, 11, 3, 7, 5, 15) (2, 14, 8) (4, 10, 16), pϕ27 = 3, ϕ3
27 = ϕ12,

ϕ28 = (1, 5, 15, 13, 17, 9, 7, 11, 3) (2, 8, 14) (4, 16, 10), pϕ28 = 3, ϕ3
28 = ϕ12,

ϕ29 = (1, 5, 3, 13, 17, 15, 7, 11, 9) (2, 14, 8) (4, 10, 16), pϕ29 = 3, ϕ3
29 = ϕ12,

ϕ30 = (1, 11, 9, 13, 5, 3, 7, 17, 15) (2, 8, 14) (4, 16, 10), pϕ30 = 3, ϕ3
30 = ϕ12.
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