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Stress-related neuropsychiatric disorders, 
such as depression and anxiety, are debili-
tating diseases that impose a great cost for 
patients, their families and society. Current 
first-line treatments for major depressive dis-
order and anxiety disorders target serotoner-
gic neurotransmission, but the female-biased 
prevalence of these disorders has long sug-
gested a role for hormones in the etiology and 
treatment of these diseases. Perhaps the most 
common hypothesis in this regard is that 
ovarian hormones promote resilience whereas 
declining hormone levels (e.g., after child-
birth or menopause) increase susceptibility 
to depressive disorders. In fact, administering 
the potent estrogen, estradiol, as hormone 
therapy to perimenopausal women improves 
mood [1]. Moreover, polymorphisms in the 
genes for estrogen receptor (ER) α and the 
enzyme that metabolizes serotonin are both 
independently linked to depressive symp-
toms in menopausal women [2]. In addition 
to serotonin, times of endocrine flux may 
also contribute to vulnerability by causing 
dysregulation in oxytocin (OT) signaling. 
Methylation of the OT receptor (OTR) gene 
is associated with diagnoses of anxiety and/
or depression in older women [3] and post-
partum women [4]. The relationship between 
OT and affect may be enhanced during these 
periods because estradiol regulates both 
OT and OTR through activation of ER-β 
and -α, respectively [5]. Together these data 
implicate gonadal steroid hormones, such as 

estradiol, and its cognate receptors as integral 
modulators of genes that regulate mood and 
anxiety. This further raises the possibility of 
harnessing hormone-sensitive brain networks 
as a therapeutic intervention for patients with 
diseases involving mood and affect. In this 
article, we will discuss two potential neural 
networks, the serotonergic system and the 
OTergic system, that could prove to be par-
ticularly useful targets for endocrine therapy.

Principle among antidepressant drug ther-
apies are selective serotonin reuptake inhibi-
tors (SSRIs), which prolong serotonergic 
signaling by increasing the time serotonin 
spends in synapses. Estrogenic hormones 
have been shown to mediate the efficacy of 
serotonin-related treatments. The anxiolytic 
effects of SSRI treatment are prevented by 
ovariectomy and are restored by estrogen 
replacement [6], and estrogen treatment aug-
ments the antidepressant effects of SSRIs in 
ovariectomized rats [7]. These results may be 
attributed to a serotonergic coordination of 
the anxiolytic and antidepressant effects of 
estrogen, as estradiol increases the expression 
of the serotonin transporter and serotonin-1B 
autoreceptor and blocking the serotonin-1B 
autoreceptor prevents the anxiolytic effects 
of estrogen [6,8]. Moreover, SSRI treatment 
itself can alter the endocrine state of patients. 
SSRIs are known to be endocrine disruptors 
and can reduce fertility, reduce androgens 
and increase the estrogen:androgen ratio 
in adrenocortical cell cultures, p ossibly by 
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i ncreasing aromatase activity [9]. This further strength-
ens the need for understanding the relationship 
between the serotonin system and endocrine systems. 
Efficacious treatments are needed for distinct popu-
lations (e.g., women who hope to become mothers 
and perimenopausal women), and perhaps targeting 
identified hormone-sensitive neural circuits directly 
rather than providing systemic treatments could be an 
 alternative strategy.

Serotonergic brain regions, such as the dorsal raphe, 
are exquisitely sensitive to hormones. Treating non-
human primates with estradiol increases a number of 
genes and/or proteins that enhance serotonin neuro-
transmission, including TPH2, serotonin-1A receptors 
and serotonin-1B receptors [10,11]. ERs are expressed by 
serotonergic and nonserotonergic neurons of the dorsal 
raphe. However, estrogens are certainly not the only 
hormones that affect serotonergic neurotransmission. 
The neurons of the dorsal raphe also express high levels 
of glucocorticoid receptors, progesterone receptors and 
OTRs. Of these, the OTR is of particular interest. In 
fact, administering OT to healthy men has dramatic 
effects on serotonin signaling in the brain. By visual-
izing binding of a serotonin-1a receptor antagonist, 
Mottolese et al. showed that OT reduces extracel-
lular serotonin in the dorsal raphe and several of its 
targets, including the amygdala. Administering OT to 
men increased between-region correlation in antago-
nist binding in the dorsal raphe and the amygdala, 
which suggests enhanced cross-talk between the two 
regions [12]. These findings are of particular importance 
because while both serotonin and OT were known to 
act in the amygdala to mediate behavioral responses 
to threatening stimuli, it was previously unknown 
whether the two systems operated i ndependently or 
could interact.

In addition to being a potent regulator of serotonin 
signaling, the neural OT system could be a therapeu-
tic target itself. While OT is classically known for its 
roles in reproduction [13] and social behavior [14], it 
also modulates mood and affect. Preclinical research 
has reported both anxiolytic [15] and antidepressive [16] 
effects of OT. Moreover, electroconvulsive therapy 
(ECT) increases neurophysin I, which is stimulated by 
estrogen and released stoichiometrically with OT, and 
the treatment-induced increase is greater in patients for 
whom ECT reduced depressive symptoms than those 
who were not relieved by ECT [17]. In contrast, a more 
recent report indicated that while depressed patients 
had lower levels of circulating OT than nonpatients, 
neither antidepressant drugs nor ECT had any effect 
on serum OT levels [18]. Patients with mood disorders 
may show abnormalities in OT function, as brain 
tissue from depressed human subjects indicates an 

e levation of OT mRNA in the paraventricular nucleus 
of the hypothalamus, a major site of OT synthesis [19] 
for oxytocin neurotransmission to forebrain sites that 
regulate behaviors [20]. This finding has also been 
observed in a preclinical model of depression known 
as the chronic stress model, as exposure to the chronic 
stress paradigm has induced an upregulation of OT 
mRNA within the paraventricular nucleus of the male 
rat [21]. Thus, it appears that affective disorders may be 
associated with dysregulated OT signaling.

The effects of OT on mood are believed to stem 
from this hormone’s mediation of two distinct path-
ways: the serotonergic system and the hypothalamo–
pituitary–adrenal (HPA) axis. Approximately, a fourth 
of serotonergic neurons in the dorsal raphe express 
OTR and, conversely, a third of OTR expressing 
neurons in the raphe are serotonergic. These neuro-
anatomical results are consistent with the observa-
tion that although OT acts in the raphe to reduce 
anxiety [22], this may not be due to OT action directly 
on serotonergic neurons because knocking out OTR 
from serotonergic cells had no effect on anxiety-like 
behavior [23]. These data suggest that OT’s anxio-
lytic effects in the raphe may instead be coordinated 
by nonserotonergic neurons. The HPA axis, a major 
regulator of neuroendocrine stress responsivity, fre-
quently shows dysregulation in patients with mood 
disorders [24], where depressed patients are unable to 
respond to glucocorticoids with negative feedback 
inhibition in a dexamethasone:corticotropin releasing 
hormone suppression test. While central OT largely 
has a suppressive effect on the HPA axis [25], the nature 
of OT’s influence on this axis appears to be site-depen-
dent since OT reportedly acts on the anterior pituitary 
gland to augment HPA axis activity through enhanc-
ing the secretogoue activity of corticotropin releasing 
hormone receptor CRFR1 [26]. Given this divergence 
in OT’s effects on HPA axis activity, any treatment tar-
geting the OT system to alleviate affective symptoms 
must consider its sites of action.

Despite the anti-anxiety and antidepressive qualities 
of OT, its clinical utility has been limited by its inabil-
ity to penetrate the blood–brain barrier. Intranasal OT 
administration has shown potential in reducing symp-
toms of anxiety and, to a lesser extent, depression when 
delivered in high enough concentrations [27]. However, 
further investigation is still required to determine 
the efficacy of this treatment. Research using OTR 
agonists is currently limited, and while intracerebro-
ventricular administration of the agonist carbetocin 
decreases anxiety-like behavior in the mouse, this 
compound has no effects on behavior when admin-
istered peripherally [28], providing further support for 
the hypothesis that the blood–brain barrier prevents 
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peripheral OT manipulations from being effective. 
Thus, there is currently no known OTR agonist with 
therapeutic potential for the treatment of affective 
disorders. One promising means for indirectly activat-
ing the OT system is through treatment with estro-
gens. Estradiol upregulates expression of both OT 
and OTR [5]. If the OT system could be targeted by 
a circuit-specific endocrine therapy such as a selective 
ER modulator, it may be possible to induce a central 
OT response to peripherally administered treatments. 
Unfortunately, one caveat is that current compounds 
would not be feasible as they would likely cause off 
target effects in other brain regions.

Serotonin and OT are two of several neuromodula-
tors with strong links to affect and mood disorders in 
humans and with robust literatures indicating involve-
ment in nonhuman animal models of depression- and 
anxiety-related behaviors. Both of these neurotrans-
mitter systems are sensitive to regulation by gonadal 
hormones, particularly estradiol. The development of 
approaches that can target ER activity with restricted 
effects to estrogen sensitive neural circuits in specific 
brain nuclei could open a new therapeutic avenue. 
Although recent advances have been able to deliver 
estradiol specifically to the brain [29], thereby bypassing 

potential peripheral side effects, brain region or circuit 
level specificity of such a targeted approach is beyond 
the reach of today’s technology. The race to develop 
brain region or circuit-specific therapeutics could one 
day yield many beneficial treatment avenues for phar-
maceutical exploration.

Author contributions
MA Holschbach and AP Borrow wrote the article with support 

and assistance from RJ Handa.

Financial & competing interests disclosure
Funding  from NIH  via  R01  NS039951  and MH082900  sup-

ported this work. The authors have no other relevant affilia-

tions or financial involvement with any organization or entity 

with a financial interest in or financial conflict with the subject 

matter  or materials  discussed  in  the manuscript  apart  from 

those disclosed.

No writing assistance was utilized in the production of this 

manuscript.

Open access
This work is licensed under the Creative Commons Attribution 

4.0 License. To view a copy of this license, visit http://creative-

commons.org/licenses/by/4.0/

References
Papers of special note have been highlighted as:  
• of interest; •• of considerable interest

1 Schmidt PJ, Rubinow DR. Sex hormones and mood in the 
perimenopause. Ann. NY Acad. Sci. 1179, 70–85 (2009).

2 Rozycka A, Slopien R, Slopien A et al. The MAOA, COMT, 
MTHFR and ESR1 gene polymorphisms are associated with 
the risk of depression in menopausal women. Maturitas 84, 
42–54 (2016).

3 Chagnon YC, Potvin O, Hudon C, Preville M. DNA 
methylation and single nucleotide variants in the brain-
derived neurotrophic factor (BDNF) and oxytocin receptor 
(OXTR) genes are associated with anxiety/depression in 
older women. Front. Genet. 6, 230 (2015).

4 Kimmel M, Clive M, Gispen F et al. Oxytocin 
receptor DNA methylation in postpartum depression. 
Psychoneuroendocrinology 69, 150–160 (2016).

5 Borrow AP, Handa RJ. Estrogen receptors modulation of 
anxiety-like behavior. Vitam. Horm. 103, 27–52 (2017).

6 Charoenphandhu J, Teerapornpuntakit J, Nuntapornsak A, 
Krishnamra N, Charoenphandhu N. Anxiety-like behaviors 
and expression of SERT and TPH in the dorsal raphe 
of estrogen- and fluoxetine-treated ovariectomized rats. 
Pharmacol. Biochem. Behav. 98(4), 503–510 (2011).

7 Ibrahim WW, Safar MM, Khattab MM, Agha AM. 17beta-
Estradiol augments antidepressant efficacy of escitalopram in 
ovariectomized rats: neuroprotective and serotonin reuptake 
transporter modulatory effects. Psychoneuroendocrinology 74, 

240–250 (2016).

8 Donner N, Handa RJ. Estrogen receptor beta regulates 
the expression of tryptophan-hydroxylase 2 mRNA 
within serotonergic neurons of the rat dorsal raphe nuclei. 
Neuroscience 163(2), 705–718 (2009).

9 Hansen CH, Larsen LW, Sorensen AM, Halling-Sorensen 
B, Styrishave B. The six most widely used selective serotonin 
reuptake inhibitors decrease androgens and increase estrogens 
in the H295R cell line. Toxicol. In vitro 41, 1–11 (2017).

10 Bethea CL, Lu NZ, Gundlah C, Streicher JM. Diverse 
actions of ovarian steroids in the serotonin neural system. 
Front. Neuroendocrinol. 23(1), 41–100 (2002).

11 Bethea CL, Kohama SG, Reddy AP, Urbanski HF. Ovarian 
steroids regulate gene expression in the dorsal raphe of old 
female macaques. Neurobiol. Aging 37, 179–191 (2016).

12 Mottolese R, Redoute J, Costes N, Le Bars D, Sirigu A. 
Switching brain serotonin with oxytocin. Proc. Natl Acad. 
Sci. USA 111(23), 8637–8642 (2014).

13 Borrow AP, Cameron NM. The role of oxytocin in mating 
and pregnancy. Horm. Behav. 61(3), 266–276 (2012).

14 Lukas M, Toth I, Reber SO, Slattery DA, Veenema AH, 
Neumann ID. The neuropeptide oxytocin facilitates pro-
social behavior and prevents social avoidance in rats and 
mice. Neuropsychopharmacology 36(11), 2159–2168 (2011).

15 Bale TL, Davis AM, Auger AP, Dorsa DM, McCarthy 
MM. CNS region-specific oxytocin receptor expression: 
importance in regulation of anxiety and sex behavior. J. 
Neurosci. 21(7), 2546–2552 (2001).

www.future-science.com 10.4155/fsoa-2017-0060



future science group

Editorial    Holschbach, Borrow & Handa

16 Yan Y, Wang Y-L, Su Z et al. Effect of oxytocin on the 
behavioral activity in the behavioral despair depression rat 
model. Neuropeptides 48(2), 83–89 (2014).

17 Scott AI, Whalley LJ, Bennie J, Bowler G. Oestrogen-
stimulated neurophysin and outcome after electroconvulsive 
therapy. Lancet 1(8495), 1411–1414 (1986).

18 Ozsoy S, Esel E, Kula M. Serum oxytocin levels in patients 
with depression and the effects of gender and antidepressant 
treatment. Psychiatry Res. 169(3), 249–252 (2009).

19 Meynen G, Unmehopa UA, Hofman MA, Swaab DF, 
Hoogendijk WJG. Hypothalamic oxytocin mRNA 
expression and melancholic depression. Mol. Psychiatry 12(2), 
118–119 (2007).

20 Knobloch HS, Charlet A, Hoffmann LC et al. Evoked axonal 
oxytocin release in the central amygdala attenuates fear 
response. Neuron 73(3), 553–566 (2012).

21 Babygirija R, Bulbul M, Yoshimoto S, Ludwig K, Takahashi 
T. Central and peripheral release of oxytocin following 
chronic homotypic stress in rats. Auton. Neurosci. 167(1–2), 
56–60 (2012).

22 Yoshida M, Takayanagi Y, Inoue K et al. Evidence that 
oxytocin exerts anxiolytic effects via oxytocin receptor 
expressed in serotonergic neurons in mice. J. Neurosci. 29(7), 
2259–2271 (2009).

23 Pagani JH, Williams Avram S, Cui Z et al. Raphe serotonin 
neuron-specific oxytocin receptor knockout reduces 

aggression without affecting anxiety-like behavior in male 
mice only. Genes Brain Behav. 14(2), 167–176 (2015).

24 Watson S, Mackin P. HPA axis function in mood disorders. 
Psychiatry 5(5), 166–170 (2006).

25 Neumann ID, Krömer SA, Toschi N, Ebner K. Brain 
oxytocin inhibits the (re)activity of the hypothalamo–
pituitary–adrenal axis in male rats: involvement of 
hypothalamic and limbic brain regions. Regul. Pept. 96(1–2), 
31–38 (2000).

26 Gibbs D, Vale W, Rivier J, Yen S. Oxytocin potentiates the 
ACTH-releasing activity of CRF (41) but not vasopressin. 
Life Sci. 34(23), 2245–2249 (1984).

27 Hofmann SG, Fang A, Brager DN. Effect of intranasal 
oxytocin administration on psychiatric symptoms: a meta-
analysis of placebo-controlled studies. Psychiatry Res. 228(3), 
708–714 (2015).

28 Mak P, Broussard C, Vacy K, Broadbear JH. Modulation 
of anxiety behavior in the elevated plus maze using peptidic 
oxytocin and vasopressin receptor ligands in the rat. J. 
Psychopharmacol. 26(4), 532–542 (2012).

29 Prokai L, Nguyen V, Szarka S et al. The prodrug DHED 
selectively delivers 17β-estradiol to the brain for treating 
estrogen-responsive disorders. Sci. Transl. Med. 7(297), 
297ra113 (2015).

10.4155/fsoa-2017-0060 Future Sci. OA (2017) 3(4), FSO222


	Honing in on Hormone-Sensitive Neural Targets for Therapeutic Intervention: Mission Impossible?
	tmp.1582820692.pdf.8Dewg

