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Abstract 7 

The influence of the inoculum on the Biochemical Hydrogen Potential test 8 

(BHP) was investigated. Thermophilic BHP from sludge-vinasses co-digestion (50:50) 9 

was studied employing three types of inocula: Acidogenic Inoculum, Sludge Inoculum 10 

and Thermal Sludge Inoculum. The maximum hydrogen yield was obtained with a 11 

sludge inoculum (177mL H2/g VSadded). This yield was 21 and 36% higher than for 12 

acidogenic inoculum and thermal sludge inoculum, respectively. The percentages 13 

between Eubacteria:Archaea increased from 59.2:40.8 to 92.0:9.0 during BHP tests 14 

using the sludge inoculum while it remained stablish in the others cases around 50:50. 15 

Furthermore, hydrogen production was accompanied by the generation of volatile fatty 16 

acids, mainly acetic, butyric and propionic acids. There were no differences in the rate 17 

of hydrogen production in any of the BHP.  18 
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1. Introduction 23 

In recent years, the energy crisis has imposed the necessity to achieve a sustainable 24 

future built on alternative sources of energy and materials. Molecular hydrogen 25 

represents a storable form of energy [1]. Moreover, its combustion does not generate 26 

polluting products and it has high specific energy [2–4].  27 

Hydrogen production can occur during the anaerobic digestion (AD) process. This 28 

process can be divided into two stages: dark fermentation (DF) and methanogenesis. 29 

The first stage involves the production of volatile fatty acids (VFAs), H2 and CO2, while 30 

the second one converts VFAs into CH4 and CO2 [5,6]. Simple operation conditions, 31 

low operating cost, low energy demand and fast reaction rate are some one-off 32 

advantages of dark fermentation [7]. Hydrogen generation using the DF process is 33 

possible with a wide range of waste materials such as sludge [8], food waste [9], cheese 34 

whey [10], algal biomass [11] and vinasse [12]. Recently, numerous studies have found 35 

that co-digestion of two or more substrates can increase the load of biodegradable 36 

organic matter, improve the balance of nutrients, improve microbial diversity leading to 37 

enhance hydrogen production [13,14]. Although there are numerous studies on 38 

hydrogen production by co-digestion of sludge with different substrates such as 39 

perennial ryegrass [2], food waste [15] and glycerol [16], no prior studies have been 40 

published on the production of hydrogen via sludge-vinasse co-digestion. 41 

Vinasse is an effluent generated during the production of alcohol in the wine 42 

distillation process. This effluent can be highly damaging in the areas in which it is 43 

discarded due to its high organic load, low pH and high corrosivity. Instead of harmful, 44 

vinasse may be considered as a substrate for hydrogen generation through the dark 45 

fermentation process because of the surplus organic load.  46 
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Biochemical hydrogen potential (BHP) corresponds to the maximum hydrogen 47 

production at dark fermentation infinite time and is a key parameter to evaluate the 48 

suitability of substrates to obtain biohydrogen. Batch methods have recently been 49 

applied to evaluate the BHP of numerous substrates, although the operating conditions 50 

(such as pH, temperature) have yet to be standardized. Moreover, there is no consensus 51 

regarding the nature of the inoculum to use in these tests or the type of pre-treatment 52 

they should receive (Table 1). One of the most widely used types of inoculum is the 53 

anaerobic sludge, though from different sources such as municipal sewage [17,18], 54 

wastewater [2], poultry slaughterhouse wastewater [19,20] and citrate-producing 55 

wastewater have also been used.  56 

Most research studies use inocula subjected to thermal pre-treatment in order to 57 

enrich the inoculum in terms of the hydrogen-producing bacteria. The pre-treatment is 58 

generally carried out at a temperature of 100°C [2,17,18,21,22], although it has been 59 

carried out at 90°C in other cases [19,20,23] or even at a temperature above 100°C 60 

[24,25]. The exposure times of the inoculum to thermal shock vary greatly, ranging 61 

from 15 to 30 minutes in most cases [2,17,18]. However, in the studies by Giordano et 62 

al. [25] and Mohan et al. [22], the exposure time was longer (2-4 hours). Other authors 63 

use a hydrogen-producing inoculum [3,12,26]. The results of these studies are 64 

inconclusive; hence the lack of consensus regarding the type of inoculum or the thermal 65 

pre-treatment conditions to be employed in BHP tests.  66 

In this study, BHP tests with different natural inocula and pre-treatment conditions 67 

were carried out to study their influence on BHP results. The main purpose of this 68 

research is to discern which type of inoculum to use for future BHP tests. 69 

 70 
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2. Materials and methods 71 

2.1. Substrates 72 

Waste activated sludge (WAS) and vinasse (V) were used as substrates. The 73 

WAS was collected from Guadalete municipal wastewater treatment plant, Jerez de la 74 

Frontera, Cadiz, Spain. The V was provided by the González Byass winery located in 75 

Jerez de la Frontera, Cadiz, Spain, and kept frozen (-20°C) until use. 76 

A mixture of both substrates in a 50:50 ratio was used as the feedstock in all the 77 

BHP tests. 78 

2.2. Inocula 79 

Three types of inocula were used: Acidogenic Inoculum (AI), Sludge Inoculum 80 

(SI) and Thermal Sludge Inoculum (TSI). The AI was collected from a laboratory scale 81 

semi-continuous acidogenic thermophilic anaerobic digester treating waste activated 82 

sludge-vinasse (50:50) for hydrogen production. The reactor operated at pH 5.5, a 83 

temperature of 55°C and a HRT of 4 days. The AI was thus already conditioned to treat 84 

the mixture of WAS-vinasse co-substrates and is, therefore, a hydrogen -producing 85 

inoculum. The SI and TSI were collected from a laboratory scale semi-continuous 86 

thermophilic anaerobic digester treating waste activated sludge operating at pH 7.0, a 87 

temperature of 55 °C and a HRT of 20 days. The TSI was heat-treated in a hot oven at 88 

100°C for 15 min. 89 

Three BHP tests were carried out, Tests 1, 2 and 3, with the aforementioned 90 

inocula, AI, SI and TSI, respectively. 91 

The physic-chemical characteristics of the inocula and substrates are 92 

summarized in Table 2. 93 
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Table 2. Physico-chemical characteristics of the inocula and substrates 94 

Parameters Units AI SI TSI WAS+V 

pH  5.32 5.49 5.52 5.39 
TS g/L 28.68  40.71 38.01  41.07  
VS g/L 21.50  31.85  29.39  33.51 
TCOD g/L 51.81  49.51  42.27 63.75 
SCOD g/L 37.52  22.58  22.62  28.06  
Total VFA g/L 4.93 2.67 3.41 2.14 
 95 

2.3.Biochemical hydrogen potential  96 

Hydrogen fermentation was performed in 250mL glass bottles with a 120mL 97 

working volume and a 130mL headspace volume. For each reactor, a mixing ratio of 98 

inoculum to feedstock of 1:1 (v/v) was used. The initial pH of each bottle was set at 5.5, 99 

a value at which methanogenic Archaea are inhibited. Nitrogen was fluxed for 5 min to 100 

displace any air present in the bottles and hence ensure an anaerobic environment. All 101 

the bottles were maintained at constant temperature under thermophilic conditions 102 

(55°C) in an orbital shaker incubator.  103 

All the experiments were carried out in triplicate and inoculum control bottles 104 

were also prepared. Three bottles were used as control for each inoculum without any 105 

substrate. The hydrogen production from the control was subtracted from the hydrogen 106 

production obtained in the substrate assays prior to data analysis. 107 

2.4. Analyses 108 

Both the volume and composition of the biogas were determined daily. The 109 

produced biogas was quantified using a gas flow meter (Ritter TG1) and a gas suction 110 

pump (KNF Laboport). Gas volumes were converted to standard conditions and 111 

corrected by subtracting the production of the blank. The composition of the biogas was 112 

determined by gas chromatography separation (Shimadzu GC-2010 system). H2, CO2, 113 
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CH4 and O2 were analysed by means of a thermal conductivity detector (TCD) using a 114 

Supelco Carboxen 1010 Plot column [27]. Total solids (TS), volatile solids (VS), total 115 

chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) were 116 

analysed according to the Standard Methods [28] at the beginning and end of each 117 

experiment. Volatile fatty acids (VFA) were determined by gas chromatography on a 118 

Shimadzu GC-2010 system equipped with a flame ionization detector (FID) and a 119 

capillary column filled with Nukol [29]. The pH was measured at the beginning and end 120 

of the tests using a Crison 20 Basic pH meter [28]. 121 

2.5. Microbial analyses 122 

Fluorescence in situ hybridization (FISH) was used to count the microorganisms 123 

contained in the reactors. The main steps of FISH of whole cells using 16S rRNA-124 

targeted oligonucleotide probes are cell fixation followed by permeabilization and 125 

hybridization with the desired probe(s). Samples from batch reactors were collected in 126 

sterile universal bottles at the beginning and end of the BHP test. A 1:1 (v/v) ratio of 127 

absolute ethanol was added to the bottles. The samples were stored at -20°C until they 128 

were fixed. Further details of this procedure are given in Montero et al. [30]. 129 

The technique used for fixing and permeabilizing cells was based on the method 130 

described by Amann et al. [31,32]. The 16S rRNA-targeted oligonucleotide probes used 131 

in this study are shown in Table 3: bacterial-universal probe EUB338 [31,32], and 132 

Archaea-universal probe ARC915  [33]. The cellular concentration and percentages of 133 

Eubacteria and Archaea were obtained by FISH. The total population was estimated as 134 

the sum of the populations of Eubacteria and Archaea for the reason that most 135 

anaerobic microorganisms in anaerobic reactors belong to these two groups [34]. 136 

Samples were examined visually and the cells were counted under an Axio Imager 137 

Upright epifluorescence microscope (Zeiss) equipped with a 100 W mercury lamp and a 138 
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100 x oil objective lens. The filter employed depended on the identity of the labelled 139 

probe: a B-2A filter (DM 510, Excitation 450-490 and Barrer 520) was used for 6-140 

FAM; while a G-2A filter (DM 580, Excitation 510-560 and Barrer 590) was used for 141 

Cy3. In addition, microbial activity was evaluated from biochemical activity according 142 

to the methods reported by Montero et al.  [30] and Zahedi et al. [35]. The activity was 143 

calculated as the ratio of H2 generated and the number of microorganisms inside the 144 

reactor obtained by FISH staining.  145 

Table 3. Oligonucleotide probes used in this study 146 

 
Probe sequences (from 5' to 3') Target  Formamide(%) Time (h) T (°C) Reference 

EUB338 GCTGCCTCCCGTAGGAGT Eubacteria 20 1.5 46 [31,32] 
ARC915 GTGCTCCCCCGCCAATTCCT Archaea 35 1.5 46 [33] 

 147 

3. Results and discussion 148 

3.1. Physico-chemical analysis 149 

The physical-chemical characteristics of three tests at the beginning and end of 150 

the tests are summarized in Table 4. The pH remained relatively stable during 151 

experimentation, varying from 5 to 5.5. There were no abrupt variations in pH, 152 

demonstrating that the systems were capable of self-regulating in order to favour 153 

microbial activity [34]. 154 

VS and TS removal rates ranged between 1.7 and 17.3%. The lowest rate was 155 

achieved with the acidogenic inoculum (Test 1).   156 

As for SCOD removal, this was lower than 23% in all tests. Yang and Wang [2] 157 

also found that the SCOD concentration decreased, with significant reductions in 158 

removal rates of 7.1-31.3%. These authors state that their results indicated that the 159 

hydrolysis amount of particular organics by hydrolytic bacteria was lower than the 160 
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utilization amount of soluble organics by hydrogen producers. In terms of TCOD, the 161 

removal rate was greater, with percentages ranging between 50-60%. These results are 162 

in line with those obtained by Torquato et al. [21], in which the maximum removal rate 163 

of 41% was obtained in the digestion of vinasse to produce hydrogen. However, Silva et 164 

al. [17,18] reported that COD removal was lower than 20% when testing the co-165 

digestion of food waste, sewage sludge and crude glycerol.  166 

 167 

Table 4. Physico-chemical and microbial characterization of the three tests 168 

 169 

As regards intermediate compounds, a large amount of VFAs was produced 170 

during the tests. At the end of the BHP tests, the dominant species were acetic, butyric 171 

and propionic acids, the concentrations for each inoculum being shown in Fig.1. 172 

Generally, hydrogen production via dark fermentation produces acetic and butyric acids 173 

as by-products [36]. Butyric acid was predominant in Test 2 (using SI), which presents 174 

a higher hydrogen yield. Luo et al. [37]and Chen et al. [38] also found that the highest 175 

Parameters Units 
Test 1  Test 2 Test 3 

Initial Final Initial Final Initial Final 

Physico-chemical characteristics       

pH  5.35 5.07 5.32 5.27 5.46 5.39 
TS g/L 34.99  34.35 41.24  35.80 40.54  34.26 
VS g/L 27.67  27.19  32.25  27.83  31.33  25.90  
TCOD g/L 68.00  33.78  65.63  28.35 86.38  30.64 
SCOD g/L 35.38  27.17  26.44  22.46  25.75  22.83  
Total VFA g/L 3.40 5.31 2.53 5.27 2.80 5.90 

Microbial characterization       

Total population 108cells/mL 13.51 13.29 14.95 85.90 15.29 13.27 
Eubacteria % 41.3 42.6 59.2 92.1 46.3 44.6 
Archaea % 58.7 57.5 40.8 8.0 53.7 55.4 
        



9 
 

hydrogen production was obtained when butyric acid predominated. Butyric acid-type 176 

fermentation is considered one of the most effective pathways for hydrogen production 177 

[17]. On the other hand, TSI showed the highest production of propionic acid, which is 178 

detrimental for hydrogen production [19]. Tyagi et al. [3] found that hydrogen yield 179 

decreases with increasing propionic acid concentration. 180 

 181 

Figure 1. Volatile fatty acids generated during the tests. 182 

3.2.Biogas production 183 

Fig. 2 shows the cumulative hydrogen production for sludge-vinasse co-184 

digestion with different inocula. In all the BHP tests, hydrogen production commenced 185 

in the first hours, as the lag phase was short. Furthermore, the biogas generated in all 186 

three tests was composed of hydrogen and carbon dioxide, no methanogenic activity 187 

being observed (i.e. the biogas was methane free). All this is due to the fact that the pH 188 

values fell within the 5-6 range, which is optimal to enhance H2 generation and avoid 189 

methanogenesis [18]. 190 

0

500

1000

1500

2000

2500

3000

Test 1 Test 2 Test 3

VF
A,

 m
g/

L 

Acetic acid
Propionic acid
Butyric acid



10 
 

 191 

Figure 2. Cumulative hydrogen production during the operating of batch reactors with 192 

different inocula. 193 

The sludge inoculum led to the highest maximum accumulated H2 volume 194 

(391mL H2) compared to the acidogenic inoculum (298mL H2) and the thermally pre-195 

treated inoculum (TSI) (243mL H2). In terms of H2 yield (as per millilitres of hydrogen 196 

per gram of volatile solids of the substrate initially added to each reactor), the highest 197 

value was also achieved at the test using the SI (177mL H2/g VSadded), corresponding to 198 

an increase of 21 and 36% in relation to that obtained in the Test 1 (146 mL H2/g 199 

VSadded) and the Test 3 (130 mL H2/g VSadded) (Fig.3). According to these results, 200 

hydrogen production is inhibited rather than enhanced when the inoculum is submitted 201 

to a thermal pre-treatment with the purpose of inactivating H2-consuming Archaea and 202 

avoiding methane generation, as proposed by several authors [2,17–23,25]. These 203 

results are concordant and discrepant at the same time with those collected in the 204 

literature. Thus, Luo et al. [37] also observed this tendency, the best condition was 205 

without any inoculum treatment. However, Albanez et al. [39] observed a slight 206 
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improvement was noticed when performing the inoculum heat shock pretreatment in the 207 

co-digestion of vinasse and molasses. In a recent study, Lovato et al. [19]subjected the 208 

inoculum used in the co-digestion of cheese whey and glycerin to a heat shock pre-209 

treatment (90°C for 10 min), obtaining significantly higher values for hydrogen 210 

productivities and yields than using untreated inoculum. In other studies using the same 211 

inoculum though treating glycerin-based wastewater, the thermally pre-treated inoculum 212 

was not found to be significantly different from the untreated sludge in terms of molar 213 

productivity and molar hydrogen yield [23]. It is important to emphasize that the last 214 

three studies were done in AnSBBR at mesophilic conditions. 215 

 216 

 217 

Figure 3. Hydrogen yield for batch tests using different inocula. 218 

3.3.Hydrogen production rate 219 

In order to ease identification of differences between the inocula, the hydrogen 220 

production rate of the first ten days is shown in Fig. 4. As for the SI and STI inocula 221 

0

40

80

120

160

200

0 10 20 30 40 50

H
2 y

ie
ld

, m
L 

H
2/g

 V
S a

dd
ed

 

t, days 

Test 1 Test 2 Test 3



12 
 

behaved similarly with a significant lead of SI inoculum. This could be expected 222 

because both inocula have the same source. As for AI inoculum, a broader and lower 223 

peak than in the other inocula was detected. The maximum hydrogen production rate 224 

observed in the tests 1 and 2, with the AI and STI inocula, reached the peak after three 225 

days, and amounted to 11 mL H2/(gVSadded d) and 20 mL H2/(gVSadded d), respectively. 226 

On the other hand, the maximum hydrogen production rate observed in the Test 2 with 227 

the sludge inoculum reached the peak at about the second day of experimentation, 228 

amounting to 28 mL H2/(gVSadded d). As could be expected, the highest maximum 229 

hydrogen production rate was noticed in the experiment with higher hydrogen yield. 230 

 231 

Figure 4. Hydrogen production rate for batch tests using different inocula. 232 

3.4. Statistical analysis 233 

Fig. 5 shows the average of hydrogen yield produce to each inoculum with their 234 

standard deviation. In order to evaluate differences between results of the three inocula, 235 

hydrogen yield and hydrogen production rate results were analysed statistically by 236 
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single-factor analysis of variance (ANOVA). Table 5 shows the results of this analysis. 237 

A confidence level of 95% was selected for all comparisons. 238 

 239 

Figure 5. Average hydrogen yield for batch tests using different inocula with standard deviation. 240 

In the matter of hydrogen yield, for the comparison between inocula, the p value is 241 

smaller than 0.05 in all cases, therefore there is significant difference between the yields 242 

of hydrogen produced in SI inoculum and those of the other two.  243 

Table 5. ANOVA results for the hydrogen yield and hydrogen production rate. 244 

  

Degrees of 
freedom 

Sum of 
squares Mean square F value P value 

Hydrogen 
yield 

Inoculas AI and SI 1 18559 18559 8.057 0.00585 
Inoculas SI and STI 1 17435 17435 8.865 0.00393 
Inoculas AI and STI 1 18 17.6 0.01 0.919 

Hydrogen 
production 
rate 

Inoculas AI and SI 1 12.5 12.53 0.691 0.409 
Inoculas SI and STI 1 29.1 29.13 1.238 0.269 
Inoculas AI and STI 1 3.5 3.452 0.249 0.619 

 245 

Conversely, for the hydrogen production rate there is no significant difference (p > 246 

0.05) between all of the three tested inocula. 247 
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3.5. Microbial population dynamics 248 

The concentrations of microorganisms in the samples before and after the 249 

different tests were studied. The amounts and relative percentages of the main microbial 250 

groups are shown in Table 4. In Test 2, in which the highest hydrogen yield (177mL 251 

H2/g VSadded) was obtained, the population size increased during the time of 252 

experimentation. Instead, in Test 1 and Test 3, the population size remained stable at the 253 

end of the BHP tests in all cases; significantly, the amount of substrate for acidogenic 254 

phase was sufficient. Eubacteria was the major phylogenetic domain in all cases. No 255 

significant variation was found in Eubacteria: Archaea ratios at the beginning and end 256 

of the experiments in Test 1 or Test 3: 41-46% and 59-54%, respectively. In Test 2, 257 

however, the percentages of Eubacteria increased from 59% to 92%. Thus, BHP test 258 

with sludge inoculum could increase the abundance of the specific bacteria in the 259 

reactor, which were beneficial for the hydrogen production.  260 

Although methane is not generated, the analyses showed the largest number of 261 

Archaea present. In terms of productivity, it may be stated that Archaea were inactive 262 

[40]. 263 

4. Conclusions 264 

H2 generation from sludge vinasse co-digestion, using different inocula, was studied.  265 

The batch tests were successfully in all cases. Significant differences have been found in 266 

the production of hydrogen among the three inoculums. The highest hydrogen 267 

yield,177mL H2/g VSadded, was obtained with a sludge inoculum. Even though, 268 

Eubacteria was the major phylogenetic domain in all cases, sludge inoculum showed a 269 

greater growth of Eubacteria during the test, increasing the percentage of this population 270 

from 59.2 to 92.1. The rate of hydrogen production was comparable between the 271 
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different inocula, that is, the duration of the test is independent of the type of inoculum 272 

used. Furthermore, hydrogen production was chiefly accompanied by the production of 273 

acetic and butyric acids. 274 
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 422 

Inoculum Substrates Experimentation 
conditions 

Maximum                                    
hydrogen 
yield 

References 

Type Source Pretratam
ent  

Anaerobic 
sludge Wastewater  100°C, 

15 min 
Sludge and perennial 
ryegrass Batch 37°C 60mL H2/g 

VSadded 
[2] 

Anaerobic 
sludge 

Municipal 
sewage 

100°C, 
30 min 

Food waste and crude 
glycerol Batch 35°C 180mL H2/g 

VSconsumed  
[17] 

Anaerobic 
sludge 

Municipal 
sewage 

100°C, 
30 min 

Food waste, sewage 
sludge and crude 
glycerol 

Batch 35°C 179mL H2/g 
VSconsumed 

[18] 

Anaerobic 
sludge OFMSW   OFMSW and sewage 

sludge Batch 55°C 51mL H2/g 
VSconsumed 

[3] 

Anaerobic 
sludge 
(Upflow 
anaerobic 
sludge blanket 
UASB) 

Wastewater 
from poultry 
slaughterhouse 

90°C, 10 
min 

Cheese whey and 
glycerin 

Anaerobic 
sequencing batch 
biofilm reactor 
(AnSBBR) 30°C 

5.4mol H2/kg 
COD 

[19] 
  2.3mol H2/kg 

COD 

Granular 
(UASB) 

Wastewater 
from poultry 
slaughterhouse 

90°C, 10 
min Glycerin-based 

wastewater AnSBBR 30°C 

20mol H2/kg 
CODconsumed 

[23] 

  
19.8mol 
H2/kg 
CODconsumed 

Granular 
mesophilic 
sludge 
(UASB) 

Potato wastes 105°C, 
4h 

Glucose   

Batch 35°C 

185L H2/kg 
COD 

[25] 
Wheat bran from 
common wheat  

47L H2/kg 
COD 

Wheat bran from 
durum wheat  

76L H2/kg 
COD 

Wastes from mashed 177L H2/kg 
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potatoes  COD 

Wastes from steam-
peeling potatoes 

134L H2/kg 
COD 

Anaerobic 
granular 
sludge 

Municipal 
sewage 

100°C, 
10 min Citrus vinasse Batch 37°C 2.0mmol 

H2/g COD [21] 

Anaerobic 
sludge 

Citrate-
producing 
wastewater 

102°C, 
30 min Brewery wastewater Batch 36°C 149.6mL 

H2/g COD [24] 

Anaerobic 
(Fixed-bed) 

Sucrose-based 
synthetic 
wastewater  

Domestic sewage 

Batch 25°C 

6.01mmol 
H2/g COD 

[26] Glycerin wastewater 6.03mmol 
H2/g COD 

Sugarcane vinasse 24.97mmol 
H2/g COD 

Anaerobic 
(Fixed-bed) 

Sucrose-based 
synthetic 
wastewater 

  Vinasse Batch 25°C 20.8mL H2/g 
COD [12] 

Anaerobic 
mixed 
microflora 
(UASB) 

Chemical 
wastewater 

100°C, 
2h             
pH 3, 
24h 

Synthetic wastewater 
and  domestic sewage 
wastewater 

Batch 29°C 0.71mmol 
H2/g COD [22] 

Anaerobic 
sludge 
(UASB) 

Wastewater 
from poultry 
slaughterhouse 

90°C, 10 
min Sugarcane vinasse Batch 55°C 2.31mmol 

H2/g COD [20] 

Anaerobic 
granular 
sludge  

 

Cassava stillage Batch 60°C 

65.3mL H2/g 
VS 

[37] 

90°C, 1 h 57.4mL H2/g 
VS 

Chlorofor
m 0.2% 

32.9mL H2/g 
VS 

pH 12 59.0mL H2/g 
VS 

pH 3 46.5mL H2/g 
VS 

Loading-
shock 

64.4mL H2/g 
VS 

Anaerobic 
sludge 

Wastewater 
from poultry 
slaughterhouse 

90°C, 15 
min Vinasse and molasses AnSBBR  

0.8mol H2/kg 
CODconsumed [39] 

  0.5mol H2/kg 
CODconsumed 

Anaerobic 
sludge 

Waste activated 
sludge and 
vinasse  

Waste activated sludge 
and vinasse Batch 55°C 

146.37mL 
H2/g Vsadded 

The present 
study 

Waste activated 
sludge   

177.23mL 
H2/g VSadded 

Waste activated 
sludge  

100°C, 
15 min 

130.17mL 
H2/g VSadded 
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Table 1. Comparative study on hydrogen production in anaerobic reactors. 424 


