1 Title: Effects of several inocula on the biochemical hydrogen potential of sludge-

2 vinasse co-digestion

3 Miriam Tena^a, Montserrat Perez^a, Rosario Solera^a

^aDepartment of Environmental Technologies. IVAGRO. Faculty of Marine and Environmental Sciences
 (CASEM). University of Cádiz. Pol. Río San Pedro s/n, 11510 Puerto Real (Cádiz), España.

6

7 Abstract

8	The influence of the inoculum on the Biochemical Hydrogen Potential test
9	(BHP) was investigated. Thermophilic BHP from sludge-vinasses co-digestion (50:50)
10	was studied employing three types of inocula: Acidogenic Inoculum, Sludge Inoculum
11	and Thermal Sludge Inoculum. The maximum hydrogen yield was obtained with a
12	sludge inoculum (177mL H ₂ /g VS _{added}). This yield was 21 and 36% higher than for
13	acidogenic inoculum and thermal sludge inoculum, respectively. The percentages
14	between Eubacteria:Archaea increased from 59.2:40.8 to 92.0:9.0 during BHP tests
15	using the sludge inoculum while it remained stablish in the others cases around 50:50.
16	Furthermore, hydrogen production was accompanied by the generation of volatile fatty
17	acids, mainly acetic, butyric and propionic acids. There were no differences in the rate
18	of hydrogen production in any of the BHP.

19

Keywords: Biochemical hydrogen potential; Inoculum; Sludge; Vinasse; Anaerobic codigestion; *Eubacteria*

1. Introduction

In recent years, the energy crisis has imposed the necessity to achieve a sustainable future built on alternative sources of energy and materials. Molecular hydrogen represents a storable form of energy [1]. Moreover, its combustion does not generate polluting products and it has high specific energy [2–4].

Hydrogen production can occur during the anaerobic digestion (AD) process. This 28 29 process can be divided into two stages: dark fermentation (DF) and methanogenesis. 30 The first stage involves the production of volatile fatty acids (VFAs), H₂ and CO₂, while the second one converts VFAs into CH_4 and CO_2 [5,6]. Simple operation conditions, 31 32 low operating cost, low energy demand and fast reaction rate are some one-off advantages of dark fermentation [7]. Hydrogen generation using the DF process is 33 34 possible with a wide range of waste materials such as sludge [8], food waste [9], cheese whey [10], algal biomass [11] and vinasse [12]. Recently, numerous studies have found 35 36 that co-digestion of two or more substrates can increase the load of biodegradable 37 organic matter, improve the balance of nutrients, improve microbial diversity leading to enhance hydrogen production [13,14]. Although there are numerous studies on 38 hydrogen production by co-digestion of sludge with different substrates such as 39 40 perennial ryegrass [2], food waste [15] and glycerol [16], no prior studies have been published on the production of hydrogen via sludge-vinasse co-digestion. 41

Vinasse is an effluent generated during the production of alcohol in the wine
distillation process. This effluent can be highly damaging in the areas in which it is
discarded due to its high organic load, low pH and high corrosivity. Instead of harmful,
vinasse may be considered as a substrate for hydrogen generation through the dark
fermentation process because of the surplus organic load.

Biochemical hydrogen potential (BHP) corresponds to the maximum hydrogen 47 production at dark fermentation infinite time and is a key parameter to evaluate the 48 suitability of substrates to obtain biohydrogen. Batch methods have recently been 49 applied to evaluate the BHP of numerous substrates, although the operating conditions 50 (such as pH, temperature) have yet to be standardized. Moreover, there is no consensus 51 regarding the nature of the inoculum to use in these tests or the type of pre-treatment 52 they should receive (Table 1). One of the most widely used types of inoculum is the 53 anaerobic sludge, though from different sources such as municipal sewage [17,18], 54 wastewater [2], poultry slaughterhouse wastewater [19,20] and citrate-producing 55 56 wastewater have also been used.

Most research studies use inocula subjected to thermal pre-treatment in order to 57 enrich the inoculum in terms of the hydrogen-producing bacteria. The pre-treatment is 58 generally carried out at a temperature of 100°C [2,17,18,21,22], although it has been 59 carried out at 90°C in other cases [19,20,23] or even at a temperature above 100°C 60 61 [24,25]. The exposure times of the inoculum to thermal shock vary greatly, ranging from 15 to 30 minutes in most cases [2,17,18]. However, in the studies by Giordano et 62 al. [25] and Mohan et al. [22], the exposure time was longer (2-4 hours). Other authors 63 use a hydrogen-producing inoculum [3,12,26]. The results of these studies are 64 inconclusive; hence the lack of consensus regarding the type of inoculum or the thermal 65 pre-treatment conditions to be employed in BHP tests. 66

In this study, BHP tests with different natural inocula and pre-treatment conditions
were carried out to study their influence on BHP results. The main purpose of this
research is to discern which type of inoculum to use for future BHP tests.

70

71 **2.** Materials and methods

72 2.1. Substrates

Waste activated sludge (WAS) and vinasse (V) were used as substrates. The
WAS was collected from Guadalete municipal wastewater treatment plant, Jerez de la
Frontera, Cadiz, Spain. The V was provided by the González Byass winery located in
Jerez de la Frontera, Cadiz, Spain, and kept frozen (-20°C) until use.

A mixture of both substrates in a 50:50 ratio was used as the feedstock in all theBHP tests.

79 2.2. Inocula

Three types of inocula were used: Acidogenic Inoculum (AI), Sludge Inoculum 80 81 (SI) and Thermal Sludge Inoculum (TSI). The AI was collected from a laboratory scale semi-continuous acidogenic thermophilic anaerobic digester treating waste activated 82 sludge-vinasse (50:50) for hydrogen production. The reactor operated at pH 5.5, a 83 temperature of 55°C and a HRT of 4 days. The AI was thus already conditioned to treat 84 the mixture of WAS-vinasse co-substrates and is, therefore, a hydrogen -producing 85 inoculum. The SI and TSI were collected from a laboratory scale semi-continuous 86 thermophilic anaerobic digester treating waste activated sludge operating at pH 7.0, a 87 temperature of 55 °C and a HRT of 20 days. The TSI was heat-treated in a hot oven at 88 100°C for 15 min. 89

- 90 Three BHP tests were carried out, Tests 1, 2 and 3, with the aforementioned
 91 inocula, AI, SI and TSI, respectively.
- 92 The physic-chemical characteristics of the inocula and substrates are93 summarized in Table 2.

Parameters	Units	AI	SI	TSI	WAS+V
pН		5.32	5.49	5.52	5.39
TS	g/L	28.68	40.71	38.01	41.07
VS	g/L	21.50	31.85	29.39	33.51
TCOD	g/L	51.81	49.51	42.27	63.75
SCOD	g/L	37.52	22.58	22.62	28.06
Total VFA	g/L	4.93	2.67	3.41	2.14

94 Table 2. Physico-chemical characteristics of the inocula and substrates

96 *2.3.Biochemical hydrogen potential*

Hydrogen fermentation was performed in 250mL glass bottles with a 120mL
working volume and a 130mL headspace volume. For each reactor, a mixing ratio of
inoculum to feedstock of 1:1 (v/v) was used. The initial pH of each bottle was set at 5.5,
a value at which methanogenic *Archaea* are inhibited. Nitrogen was fluxed for 5 min to
displace any air present in the bottles and hence ensure an anaerobic environment. All
the bottles were maintained at constant temperature under thermophilic conditions
(55°C) in an orbital shaker incubator.

104 All the experiments were carried out in triplicate and inoculum control bottles 105 were also prepared. Three bottles were used as control for each inoculum without any 106 substrate. The hydrogen production from the control was subtracted from the hydrogen 107 production obtained in the substrate assays prior to data analysis.

108 *2.4. Analyses*

Both the volume and composition of the biogas were determined daily. The produced biogas was quantified using a gas flow meter (Ritter TG1) and a gas suction pump (KNF Laboport). Gas volumes were converted to standard conditions and corrected by subtracting the production of the blank. The composition of the biogas was determined by gas chromatography separation (Shimadzu GC-2010 system). H₂, CO₂,

CH₄ and O₂ were analysed by means of a thermal conductivity detector (TCD) using a 114 Supelco Carboxen 1010 Plot column [27]. Total solids (TS), volatile solids (VS), total 115 chemical oxygen demand (TCOD) and soluble chemical oxygen demand (SCOD) were 116 117 analysed according to the Standard Methods [28] at the beginning and end of each experiment. Volatile fatty acids (VFA) were determined by gas chromatography on a 118 Shimadzu GC-2010 system equipped with a flame ionization detector (FID) and a 119 capillary column filled with Nukol [29]. The pH was measured at the beginning and end 120 121 of the tests using a Crison 20 Basic pH meter [28].

122 2.5. Microbial analyses

Fluorescence *in situ* hybridization (FISH) was used to count the microorganisms contained in the reactors. The main steps of FISH of whole cells using 16S rRNAtargeted oligonucleotide probes are cell fixation followed by permeabilization and hybridization with the desired probe(s). Samples from batch reactors were collected in sterile universal bottles at the beginning and end of the BHP test. A 1:1 (v/v) ratio of absolute ethanol was added to the bottles. The samples were stored at -20°C until they were fixed. Further details of this procedure are given in Montero et al. [30].

The technique used for fixing and permeabilizing cells was based on the method 130 described by Amann et al. [31,32]. The 16S rRNA-targeted oligonucleotide probes used 131 132 in this study are shown in Table 3: bacterial-universal probe EUB338 [31,32], and Archaea-universal probe ARC915 [33]. The cellular concentration and percentages of 133 *Eubacteria* and *Archaea* were obtained by FISH. The total population was estimated as 134 the sum of the populations of Eubacteria and Archaea for the reason that most 135 136 anaerobic microorganisms in anaerobic reactors belong to these two groups [34]. Samples were examined visually and the cells were counted under an Axio Imager 137 Upright epifluorescence microscope (Zeiss) equipped with a 100 W mercury lamp and a 138

- 139 100 x oil objective lens. The filter employed depended on the identity of the labelled
- probe: a B-2A filter (DM 510, Excitation 450-490 and Barrer 520) was used for 6-
- 141 FAM; while a G-2A filter (DM 580, Excitation 510-560 and Barrer 590) was used for
- 142 Cy3. In addition, microbial activity was evaluated from biochemical activity according
- to the methods reported by Montero et al. [30] and Zahedi et al. [35]. The activity was
- 144 calculated as the ratio of H_2 generated and the number of microorganisms inside the
- 145 reactor obtained by FISH staining.
- 146 Table 3. Oligonucleotide probes used in this study

	Probe sequences (from 5' to 3')	Target	Formamide(%)	Time (h)	T (°C)	Reference
EUB338	GCTGCCTCCCGTAGGAGT	Eubacteria	20	1.5	46	[31,32]
ARC915	GTGCTCCCCCGCCAATTCCT	Archaea	35	1.5	46	[33]

148 **3. Results and discussion**

149 *3.1. Physico-chemical analysis*

150	The physical-chemical characteristics of three tests at the beginning and end of
151	the tests are summarized in Table 4. The pH remained relatively stable during
152	experimentation, varying from 5 to 5.5. There were no abrupt variations in pH,
153	demonstrating that the systems were capable of self-regulating in order to favour
154	microbial activity [34].
155	VS and TS removal rates ranged between 1.7 and 17.3%. The lowest rate was
156	achieved with the acidogenic inoculum (Test 1).
157	As for SCOD removal, this was lower than 23% in all tests. Yang and Wang [2]
158	also found that the SCOD concentration decreased, with significant reductions in
159	removal rates of 7.1-31.3%. These authors state that their results indicated that the

160 hydrolysis amount of particular organics by hydrolytic bacteria was lower than the

utilization amount of soluble organics by hydrogen producers. In terms of TCOD, the
removal rate was greater, with percentages ranging between 50-60%. These results are
in line with those obtained by Torquato et al. [21], in which the maximum removal rate
of 41% was obtained in the digestion of vinasse to produce hydrogen. However, Silva et
al. [17,18] reported that COD removal was lower than 20% when testing the codigestion of food waste, sewage sludge and crude glycerol.

167

168

Table 4. Physico-chemical and microbial characterization of the three tests

Deremetera	Unita	Test 1		Test 2		Test 3	
Parameters	Units	Initial	Final	Initial	Final	Initial	Final
Physico-chemical c	characteristics						
pН		5.35	5.07	5.32	5.27	5.46	5.39
TS	g/L	34.99	34.35	41.24	35.80	40.54	34.26
VS	g/L	27.67	27.19	32.25	27.83	31.33	25.90
TCOD	g/L	68.00	33.78	65.63	28.35	86.38	30.64
SCOD	g/L	35.38	27.17	26.44	22.46	25.75	22.83
Total VFA	g/L	3.40	5.31	2.53	5.27	2.80	5.90
Microbial characte	rization						
Total population	10 ⁸ cells/mL	13.51	13.29	14.95	85.90	15.29	13.27
Eubacteria	%	41.3	42.6	59.2	92.1	46.3	44.6
Archaea	%	58.7	57.5	40.8	8.0	53.7	55.4

169

As regards intermediate compounds, a large amount of VFAs was produced during the tests. At the end of the BHP tests, the dominant species were acetic, butyric and propionic acids, the concentrations for each inoculum being shown in Fig. 1. Generally, hydrogen production via dark fermentation produces acetic and butyric acids as by-products [36]. Butyric acid was predominant in Test 2 (using SI), which presents a higher hydrogen yield. Luo et al. [37]and Chen et al. [38] also found that the highest hydrogen production was obtained when butyric acid predominated. Butyric acid-type
fermentation is considered one of the most effective pathways for hydrogen production
[17] [17]. On the other hand, TSI showed the highest production of propionic acid, which is
detrimental for hydrogen production [19]. Tyagi et al. [3] found that hydrogen yield
decreases with increasing propionic acid concentration.

181

182

Figure 1. Volatile fatty acids generated during the tests.

183 *3.2.Biogas production*

Fig. 2 shows the cumulative hydrogen production for sludge-vinasse codigestion with different inocula. In all the BHP tests, hydrogen production commenced in the first hours, as the lag phase was short. Furthermore, the biogas generated in all three tests was composed of hydrogen and carbon dioxide, no methanogenic activity being observed (i.e. the biogas was methane free). All this is due to the fact that the pH values fell within the 5-6 range, which is optimal to enhance H₂ generation and avoid methanogenesis [18].

Figure 2. Cumulative hydrogen production during the operating of batch reactors withdifferent inocula.

The sludge inoculum led to the highest maximum accumulated H₂ volume 194 (391mL H₂) compared to the acidogenic inoculum (298mL H₂) and the thermally pre-195 196 treated inoculum (TSI) (243mL H₂). In terms of H₂ yield (as per millilitres of hydrogen 197 per gram of volatile solids of the substrate initially added to each reactor), the highest value was also achieved at the test using the SI ($177mL H_2/g VS_{added}$), corresponding to 198 199 an increase of 21 and 36% in relation to that obtained in the Test 1 (146 mL H_2/g 200 VS_{added}) and the Test 3 (130 mL H₂/g VS_{added}) (Fig.3). According to these results, 201 hydrogen production is inhibited rather than enhanced when the inoculum is submitted to a thermal pre-treatment with the purpose of inactivating H₂-consuming Archaea and 202 203 avoiding methane generation, as proposed by several authors [2,17–23,25]. These 204 results are concordant and discrepant at the same time with those collected in the 205 literature. Thus, Luo et al. [37] also observed this tendency, the best condition was without any inoculum treatment. However, Albanez et al. [39] observed a slight 206

improvement was noticed when performing the inoculum heat shock pretreatment in the 207 co-digestion of vinasse and molasses. In a recent study, Lovato et al. [19]subjected the 208 209 inoculum used in the co-digestion of cheese whey and glycerin to a heat shock pretreatment (90°C for 10 min), obtaining significantly higher values for hydrogen 210 211 productivities and yields than using untreated inoculum. In other studies using the same 212 inoculum though treating glycerin-based wastewater, the thermally pre-treated inoculum was not found to be significantly different from the untreated sludge in terms of molar 213 214 productivity and molar hydrogen yield [23]. It is important to emphasize that the last three studies were done in AnSBBR at mesophilic conditions. 215

216

217

218 Figure 3. Hydrogen yield for batch tests using different inocula.

219 *3.3.Hydrogen production rate*

In order to ease identification of differences between the inocula, the hydrogenproduction rate of the first ten days is shown in Fig. 4. As for the SI and STI inocula

233 *3.4. Statistical analysis*

Fig. 5 shows the average of hydrogen yield produce to each inoculum with their standard deviation. In order to evaluate differences between results of the three inocula, hydrogen yield and hydrogen production rate results were analysed statistically by

- single-factor analysis of variance (ANOVA). Table 5 shows the results of this analysis.
- 238 A confidence level of 95% was selected for all comparisons.

Figure 5. Average hydrogen yield for batch tests using different inocula with standard deviation.
In the matter of hydrogen yield, for the comparison between inocula, the p value is
smaller than 0.05 in all cases, therefore there is significant difference between the yields
of hydrogen produced in SI inoculum and those of the other two.

Table 5. ANOVA results for the hydrogen yield and hydrogen production rate.

		Degrees of freedom	Sum of squares	Mean square	F value	P value
TT. days and	Inoculas AI and SI	1	18559	18559	8.057	0.00585
Hydrogen vield	Inoculas SI and STI	1	17435	17435	8.865	0.00393
yield	Inoculas AI and STI	1	18	17.6	0.01	0.919
Hadaaaaa	Inoculas AI and SI	1	12.5	12.53	0.691	0.409
production	Inoculas SI and STI	1	29.1	29.13	1.238	0.269
rate	Inoculas AI and STI	1	3.5	3.452	0.249	0.619

²⁴⁵

- 246 Conversely, for the hydrogen production rate there is no significant difference (p >
- 247 0.05) between all of the three tested inocula.

248 *3.5. Microbial population dynamics*

249	The concentrations of microorganisms in the samples before and after the
250	different tests were studied. The amounts and relative percentages of the main microbial
251	groups are shown in Table 4. In Test 2, in which the highest hydrogen yield (177mL
252	$H_2/g VS_{added}$) was obtained, the population size increased during the time of
253	experimentation. Instead, in Test 1 and Test 3, the population size remained stable at the
254	end of the BHP tests in all cases; significantly, the amount of substrate for acidogenic
255	phase was sufficient. Eubacteria was the major phylogenetic domain in all cases. No
256	significant variation was found in Eubacteria: Archaea ratios at the beginning and end
257	of the experiments in Test 1 or Test 3: 41-46% and 59-54%, respectively. In Test 2,
258	however, the percentages of Eubacteria increased from 59% to 92%. Thus, BHP test
259	with sludge inoculum could increase the abundance of the specific bacteria in the
260	reactor, which were beneficial for the hydrogen production.
261	Although methane is not generated, the analyses showed the largest number of

Archaea present. In terms of productivity, it may be stated that *Archaea* were inactive[40].

264 4. Conclusions

265 H₂ generation from sludge vinasse co-digestion, using different inocula, was studied.

266 The batch tests were successfully in all cases. Significant differences have been found in

the production of hydrogen among the three inoculums. The highest hydrogen

yield,177mL $H_2/g VS_{added}$, was obtained with a sludge inoculum. Even though,

269 Eubacteria was the major phylogenetic domain in all cases, sludge inoculum showed a

270 greater growth of Eubacteria during the test, increasing the percentage of this population

from 59.2 to 92.1. The rate of hydrogen production was comparable between the

272	differ	ent inocula, that is, the duration of the test is independent of the type of inoculum					
273	used.	Furthermore, hydrogen production was chiefly accompanied by the production of					
274	acetic and butyric acids.						
275	Ackn	owledgements					
276		This research was supported by the Spanish Ministry of Economy, Industry and					
277	Comp	petitiveness, specifically via project CTM2015-64810R entitled "Coproducción de					
278	hidró	geno y metano mediante codigestión de biosólidos y vinazas", financed by the					
279	Europ	bean Regional Development Fund (ERDF).					
280	Refer	rences					
281	[1]	Silva Benavides AM, Rudin MC, Villalobos N, Touloupakis E, Torzillo G.					
282		Growth and hydrogen production by three Chlamydomonas strains cultivated in a					
283		commercial fertilizer. Int J Hydrogen Energy 2019;4:0-6.					
284		doi:10.1016/j.ijhydene.2018.11.209.					
285	[2]	Yang G, Wang J. Co-fermentation of sewage sludge with ryegrass for enhancing					
286		hydrogen production: Performance evaluation and kinetic analysis. Bioresour					
287		Technol 2017;243:1027-36. doi:10.1016/j.biortech.2017.07.087.					
288	[3]	Tyagi VK, Angériz Campoy R, Álvarez-Gallego CJ, Romero García LI.					
289		Enhancement in hydrogen production by thermophilic anaerobic co-digestion of					
290		organic fraction of municipal solid waste and sewage sludge - Optimization of					
291		treatment conditions. Bioresour Technol 2014;164:408-15.					
292		doi:10.1016/j.biortech.2014.05.013.					
293	[4]	Seo YH, Yun YM, Lee H, Han JI. Pretreatment of cheese whey for hydrogen					
294		production using a simple hydrodynamic cavitation system under alkaline					

295		condition. Fuel 2015;150:202-7. doi:10.1016/j.fuel.2015.01.100.
296	[5]	Pecorini I, Baldi F, Iannelli R. Biochemical hydrogen potential tests using
297		different inocula. Sustain 2019;11:1–17. doi:10.3390/su11030622.
298	[6]	Paudel S, Kang Y, Yoo YS, Seo GT. Effect of volumetric organic loading rate
299		(OLR) on H2and CH4production by two-stage anaerobic co-digestion of food
300		waste and brown water. Waste Manag 2017;61:484–93.
301		doi:10.1016/j.wasman.2016.12.013.
302	[7]	Yang G, Wang J. Enhancement of biohydrogen production from grass by ferrous
303		ion and variation of microbial community. Fuel 2018;233:404-11.
304		doi:10.1016/j.fuel.2018.06.067.
305	[8]	Assawamongkholsiri T, Reungsang A, Pattra S. Effect of acid, heat and
306		combined acid-heat pretreatments of anaerobic sludge on hydrogen production by
307		anaerobic mixed cultures. Int J Hydrogen Energy 2013;38:6146-53.
308		doi:10.1016/j.ijhydene.2012.12.138.
309	[9]	Cappai G, De Gioannis G, Friargiu M, Massi E, Muntoni A, Polettini A, et al. An
310		experimental study on fermentative H2 production from food waste as affected
311		by pH. Waste Manag 2014;34:1510-9. doi:10.1016/j.wasman.2014.04.014.
312	[10]	Akhlaghi M, Boni MR, De Gioannis G, Muntoni A, Polettini A, Pomi R, et al. A
313		parametric response surface study of fermentative hydrogen production from
314		cheese whey. Bioresour Technol 2017;244:473-83.
315		doi:10.1016/j.biortech.2017.07.158.
316	[11]	Sivagurunathan P, Kumar G, Kobayashi T, Xu K, Kim SH. Effects of various
317		dilute acid pretreatments on the biochemical hydrogen production potential of

- marine macroalgal biomass. Int J Hydrogen Energy 2017;42:27600-6. 318
- doi:10.1016/j.ijhydene.2017.05.106. 319

- Peixoto G, Pantoja-Filho JLR, Agnelli JAB, Barboza M, Zaiat M. Hydrogen and 320 [12] methane production, energy recovery, and organic matter removal from effluents 321 in a two-stage fermentative process. Appl Biochem Biotechnol 2012;168:651-71. 322 323 doi:10.1007/s12010-012-9807-4.
- 324 [13] Mamimin C, Kongjan P, O-Thong S, Prasertsan P. Enhancement of biohythane 325 production from solid waste by co-digestion with palm oil mill effluent in twostage thermophilic fermentation. Int J Hydrogen Energy 2019;44:3347–55. 326 doi:10.1016/j.ijhydene.2018.08.021.
- 328 [14] Pan Y, Zhi Z, Zhen G, Lu X, Bakonyi P, Li YY, et al. Synergistic effect and 329 biodegradation kinetics of sewage sludge and food waste mesophilic anaerobic 330 co-digestion and the underlying stimulation mechanisms. Fuel 2019;253:40-9. doi:10.1016/j.fuel.2019.04.084. 331
- Li Z, Chen Z, Ye H, Wang Y, Luo W, Chang JS, et al. Anaerobic co-digestion of 332 [15] sewage sludge and food waste for hydrogen and VFA production with microbial 333 334 community analysis. Waste Manag 2018;78:789-99.
- doi:10.1016/j.wasman.2018.06.046. 335
- Rivero M, Solera R, Perez M. Anaerobic mesophilic co-digestion of sewage 336 [16] sludge with glycerol: Enhanced biohydrogen production. Int J Hydrogen Energy 337 2014;39:2481-8. doi:10.1016/j.ijhydene.2013.12.006. 338
- 339 [17] Silva FMS, Oliveira LB, Mahler CF, Bassin JP. Hydrogen production through anaerobic co-digestion of food waste and crude glycerol at mesophilic conditions. 340 Int J Hydrogen Energy 2017;42:22720–9. doi:10.1016/j.ijhydene.2017.07.159. 341

342	[18]	Silva FMS, Mahler CF, Oliveira LB, Bassin JP. Hydrogen and methane
343		production in a two-stage anaerobic digestion system by co-digestion of food
344		waste, sewage sludge and glycerol. Waste Manag 2018;76:339-49.
345		doi:10.1016/j.wasman.2018.02.039.
346	[19]	Lovato G, Albanez R, Stracieri L, Ruggero LS, Ratusznei SM, Rodrigues JAD.
347		Hydrogen production by co-digesting cheese whey and glycerin in an AnSBBR:
348		Temperature effect. Biochem Eng J 2018;138:81–90.
349		doi:10.1016/j.bej.2018.07.007.
350	[20]	Lazaro CZ, Perna V, Etchebehere C, Varesche MBA. Sugarcane vinasse as
351		substrate for fermentative hydrogen production: The effects of temperature and
352		substrate concentration. Int J Hydrogen Energy 2014;39:6407–18.
353		doi:10.1016/j.ijhydene.2014.02.058.
354	[21]	Torquato LDM, Pachiega R, Crespi MS, Nespeca MG, de Oliveira JE,
355		Maintinguer SI. Potential of biohydrogen production from effluents of citrus
356		processing industry using anaerobic bacteria from sewage sludge. Waste Manag
357		2017;59:181-93. doi:10.1016/j.wasman.2016.10.047.
358	[22]	Venkata Mohan S, Vijaya Bhaskar Y, Murali Krishna P, Chandrasekhara Rao N,
359		Lalit Babu V, Sarma PN. Biohydrogen production from chemical wastewater as
360		substrate by selectively enriched anaerobic mixed consortia: Influence of
361		fermentation pH and substrate composition. Int J Hydrogen Energy
362		2007;32:2286-95. doi:10.1016/j.ijhydene.2007.03.015.
363	[23]	Lovato G, Moncayo Bravo IS, Ratusznei SM, Rodrigues JAD, Zaiat M. The
364		effect of organic load and feed strategy on biohydrogen production in an
365		AnSBBR treating glycerin-based wastewater. J Environ Manage 2015;154:128-

37. doi:10.1016/j.jenvman.2015.02.014.

- Shi XY, Jin DW, Sun QY, Li WW. Optimization of conditions for hydrogen
 production from brewery wastewater by anaerobic sludge using desirability
 function approach. Renew Energy 2010;35:1493–8.
- doi:10.1016/j.renene.2010.01.003.
- 371 [25] Giordano A, Cantù C, Spagni A. Monitoring the biochemical hydrogen and
 372 methane potential of the two-stage dark-fermentative process. Bioresour Technol
 373 2011;102:4474–9. doi:10.1016/j.biortech.2010.12.106.
- 374 [26] Fernandes BS, Peixoto G, Albrecht FR, Saavedra del Aguila NK, Zaiat M.
- Potential to produce biohydrogen from various wastewaters. Energy Sustain Dev
 2010;14:143–8. doi:10.1016/j.esd.2010.03.004.
- 377 [27] Zahedi S, Solera R, García-Morales JL, Ennouri H, Sales D. Evaluation of the
- effect of glycerol supplementation on the anaerobic digestion of real municipal
- solid waste in batch mode. Fuel 2017;193:15–21. doi:10.1016/j.fuel.2016.12.024.
- 380 [28] Standard methods for the examination of water and wastewater. In: APHA,

381 AWWA, WPCF. 22th Ed Washingt Am Public Heal Assoc 2012.

- 382 [29] Zahedi S, Sales D, García-Morales JL, Solera R. Obtaining green energy from
- dry-thermophilic anaerobic co-digestion of municipal solid waste and biodiesel
- 384 waste. Biosyst Eng 2018;170:108–16. doi:10.1016/j.biosystemseng.2018.04.005.
- 385 [30] Montero B, García-Morales JL, Sales D, Solera R. Analysis of methanogenic
- activity in a thermophilic-dry anaerobic reactor: Use of fluorescent in situ
- 387 hybridization. Waste Manag 2009;29:1144–51.
- doi:10.1016/j.wasman.2008.08.010.

389	[31]	Amann RI, Binder BJ, Olson RJ, Chisholm SW, Devereux R, Stahl DA.
390		Combination of 16S rRNA-Targeted Oligonucleotide Probes with Flow
391		Cytometry for Analyzing Mixed Microbial Populations. Appl Environ Microbiol
392		1990;56:1919–25. doi:10.1128/AEM.67.1.142.
393	[32]	Amann RI, Krumholz L, Stahl DA. Fluorescent-oligonucleotide probing of whole
394		cells for determinative, phylogenetic, and environmental studies in microbiology.
395		J Bacteriol 1990;172:762-70. doi:10.1128/jb.172.2.762-770.1990.
396	[33]	Speece RE. Anaerobic biotechnology for industrial wastewaters. Archae Press
397		1996.
398	[34]	Zahedi S, Solera R, García-Morales JL, Sales D. Effect of the addition of
399		glycerol on hydrogen production from industrial municipal solid waste. Fuel
400		2016;180:343-7. doi:10.1016/j.fuel.2016.04.063.
401	[35]	Zahedi S, Sales D, Romero LI, Solera R. Optimisation of the two-phase dry-
402		thermophilic anaerobic digestion process of sulphate-containing municipal solid
403		waste: Population dynamics. Bioresour Technol 2013;148:443-52.
404		doi:10.1016/j.biortech.2013.09.002.
405	[36]	Nualsri C, Reungsang A, Plangklang P. Biochemical hydrogen and methane
406		potential of sugarcane syrup using a two-stage anaerobic fermentation process.
407		Ind Crops Prod 2016;82:88–99. doi:10.1016/j.indcrop.2015.12.002.
408	[37]	Luo G, Xie L, Zou Z, Wang W, Zhou Q. Evaluation of pretreatment methods on
409		mixed inoculum for both batch and continuous thermophilic biohydrogen
410		production from cassava stillage. Bioresour Technol 2010;101:959-64.
411		doi:10.1016/j.biortech.2009.08.090.

412	[38]	Chen CC, Lin CY, Lin MC. Acid-base enrichment enhances anaerobic hydrogen
413		production process. Appl Microbiol Biotechnol 2002;58:224-8.
414		doi:10.1007/s002530100814.

- 415 [39] Albanez R, Lovato G, Zaiat M, Ratusznei SM, Rodrigues JAD. Optimization,
- 416 metabolic pathways modeling and scale-up estimative of an AnSBBR applied to
- biohydrogen production by co-digestion of vinasse and molasses. Int J Hydrogen

418 Energy 2016;41:20473–84. doi:10.1016/j.ijhydene.2016.08.145.

419 [40] Montañés R, Solera R, Pérez M. Anaerobic co-digestion of sewage sludge and

420 sugar beet pulp lixiviation in batch reactors: Effect of temperature. Bioresour

421 Technol 2015;180:177–84. doi:10.1016/j.biortech.2014.12.056.

	Inoculum		Substrates	Experimentation	Maximum	References
Туре	Source	Pretratam ent		conditions	yield	
Anaerobic sludge	Wastewater	100°C, 15 min	Sludge and perennial ryegrass	Batch 37°C	60mL H ₂ /g VS _{added}	[2]
Anaerobic sludge	Municipal sewage	100°C, 30 min	Food waste and crude glycerol	Batch 35°C	180mL H ₂ /g VS _{consumed}	[17]
Anaerobic sludge	Municipal sewage	100°C, 30 min	Food waste, sewage sludge and crude glycerol	Batch 35°C	$\begin{array}{l} 179mL \ H_2/g \\ VS_{consumed} \end{array}$	[18]
Anaerobic sludge	OFMSW		OFMSW and sewage sludge	Batch 55°C	$51 mL H_2/g VS_{consumed}$	[3]
Anaerobic sludge (Upflow anaerobic sludge blanket UASB)	Wastewater from poultry slaughterhouse	90°C, 10 min	Cheese whey and glycerin	Anaerobic sequencing batch biofilm reactor (AnSBBR) 30°C	5.4mol H ₂ /kg COD 2.3mol H ₂ /kg COD	[19]
Granular (UASB)	Wastewater from poultry slaughterhouse	90°C, 10 min	Glycerin-based wastewater	AnSBBR 30°C	20mol H ₂ /kg COD _{consumed} 19.8mol H ₂ /kg COD _{consumed}	[23]
Granular mesophilic sludge (UASB)	Potato wastes	105°C, 4h	Glucose Wheat bran from common wheat Wheat bran from durum wheat Wastes from mashed	Batch 35°C	185L H ₂ /kg COD 47L H ₂ /kg COD 76L H ₂ /kg COD 177L H ₂ /kg	[25]

			potatoes		COD	
			Wastes from steam- peeling potatoes		134L H ₂ /kg COD	
Anaerobic granular sludge	Municipal sewage	100°C, 10 min	Citrus vinasse	Batch 37°C	2.0mmol H ₂ /g COD	[21]
Anaerobic sludge	Citrate- producing wastewater	102°C, 30 min	Brewery wastewater	Batch 36°C	149.6mL H ₂ /g COD	[24]
Anaerobic (Fixed-bed)	Sucrose-based synthetic wastewater		Domestic sewage Glycerin wastewater	Batch 25°C	6.01mmol Ha/g COD	[26]
					6.03mmol H ₂ /g COD 24.97mmol	
			Sugarcane vinasse		H_2/g COD	
Anaerobic (Fixed-bed)	Sucrose-based synthetic wastewater		Vinasse	Batch 25°C	20.8mL H ₂ /g COD	[12]
Anaerobic mixed microflora (UASB)	Chemical wastewater	100°C, 2h pH 3, 24h	Synthetic wastewater and domestic sewage wastewater	Batch 29°C	0.71mmol H ₂ /g COD	[22]
Anaerobic sludge (UASB)	Wastewater from poultry slaughterhouse	90°C, 10 min	Sugarcane vinasse	Batch 55°C	2.31mmol H ₂ /g COD	[20]
Anaerobic granular sludge		90°C, 1 h Chlorofor m 0.2% pH 12 pH 3 Loading- shock	Cassava stillage	Batch 60°C	$\begin{array}{c} 65.3 mL \ H_2/g \\ VS \\ 57.4 mL \ H_2/g \\ VS \\ 32.9 mL \ H_2/g \\ VS \\ 59.0 mL \ H_2/g \\ VS \\ 46.5 mL \ H_2/g \\ VS \\ 64.4 mL \ H_2/g \\ VS \\ VS \end{array}$	[37]
Anaerobic sludge	Wastewater from poultry slaughterhouse	90°C, 15 min	Vinasse and molasses	AnSBBR	0.8mol H ₂ /kg COD _{consumed} 0.5mol H ₂ /kg COD _{consumed}	[39]
Anaerobic sludge	Waste activated sludge and vinasse		XX 7 , , , , , 1 1 1	Batch 55°C	146.37mL H ₂ /g Vs _{added}	ed The present study
	Waste activated sludge		and vinasse		177.23mL H ₂ /g VS _{added}	
	Waste activated sludge	100°C, 15 min			130.17mL H ₂ /g VS _{added}	

Table 1. Comparative study on hydrogen production in anaerobic reactors.