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Abstract

We present an 802.15.4 compatible transceiver that
operates without any off-chip frequency reference. With
integrated Cortex-MO, the chip can also transmit BLE
beacons with only three external connections (power, ground,
and antenna). The RF transmitter operates with >10% system
efficiency at -10 dBm output power from a regulated supply.
The entire chip, including the microprocessor, can operate
below 1 mW peak power when transmitting. The analog
receiver power consumption is 1.03 mW from a 1.5V battery.
Keywords: low-power radio, system-on-chip, smart dust,
crystal free, BLE, 802.15.4

Introduction

Building a standards compatible 802.15.4 or BLE radio
with no crystal reference is challenging due to local oscillator
(LO) frequency drift, phase noise, chip/bit clock jitter, and
real time clock jitter (for time slotted protocols). We report a
low-power transceiver (TRX) that, through one-time
calibration and periodic network compensation, operates
without the use of an external frequency reference while
maintaining compatibility with commercial off-the-shelf
802.15.4 wireless SoCs. The key elements of our solution are
a digital controlled oscillator (DCO) with a source-
degenerated capacitor DAC for fine-tuning/ modulation, and a
combination of room-temperature frequency calibration with
a network-based IF-tracking loop in the receiver. The
transmitter (TX) is also capable of transmitting BLE
advertising (iBeacon) packets using only power, ground, and
antenna connections, and no other external components. The
TRX is co-integrated with a Cortex-MO and packet handling.

Implementation and Measured Results

The RF DCO is implemented with a class-B CMOS LC
tank architecture. The thick-metal 65 nm process allows for a
large inductance and high Q (7.4 nH and a Q of 18, both
simulated). A high LQ product is important for having a
voltage large swing, which impacts both mixer and PA
performance so that no power is burned in high frequency LO
buffering. Two separate, overlapping, 5-bit capacitor DACs
located at the drains of the cross-coupled devices are used for
band and channel tuning. 5-bit fine tuning and direct
frequency modulation is performed with a degenerated
capacitor [1]. The minimum frequency resolution is between
90 kHz and 100 kHz across the ISM band (an equivalent AC
of ~9.4 aF) without the use of a varactor, series capacitor, or
dithering. The full DCO tuning range is 26%, and the peak
FOM is -188 dBc/Hz. A benefit of operating without a PLL,
in addition to power savings, is a reduced turn-on time. With
a pre-set frequency, the LO settles from cold start within
50 us (Fig. 2). This is limited by the settling time of the
constant-g,, current source that is filtered to prevent its noise
from degrading the phase noise of the oscillator. An integer
divider is used for LO frequency calibration and testing, and

can be used for chipping clocks of both 802.15.4 and BLE TX.

Transmitter efficiency versus output power is shown in Fig.
3. The peak system (LO + PA) sub-mW efficiency is 11.8%
at approximately -10 dBm output power with a TX power
consumption of 847 uW. This power does not include
microprocessor power and is calculated from the regulated
PA and LO voltages (~800 mV). The transmitter can back off
to -20 dBm output power with 600 uW power consumption
from a 1.5 V battery voltage, albeit at < 2% system efficiency.

The receiver is a mixer-first low-IF architecture that uses a
passive resonant tapped-capacitor match both for voltage gain
and to boost the 50 Q source impedance to approximately
1.1 kQ (simulated). In-phase and quadrature oscillation is
derived from the LO with a single stage RC polyphase filter.
The complex down-conversion mixer is followed by an OTA
with tunable resistive feedback for gain control. Filtering is
performed using a series of three second-order discrete-time
switched-capacitor IIR filter stages [2] that form a bandpass
filter centered at the 2.5 MHz IF. The signal is sampled with
two four-bit ADCs at 16 Msps. RX performance is in Fig. 4.

Crystal-Free Operation

Single-temperature calibration is sufficient to find channels
in the ISM band, as shown in Fig. 5. However, if temperature
changes, the LO frequency will drift. Doing a one-time
measurement of three frequency points at room temperature
allows for a polynomial fit calibration accurate to within +40
ppm for all 802.15.4 channels (Fig. 5). Once an initial channel
has been acquired, network based feedback can be used to
maintain channel accuracy in the presence of temperature and
supply variations. To demonstrate crystal-free operation
across temperature, an off-the-shelf TI CC2538 was used to
transmit 802.15.4 packets every 125 ms. The RX, which had
already been calibrated to find the initial channel, locked onto
this series of incoming packets and activated its radio in sync
with the expected rate of incoming packets. For every packet
received that had a valid CRC the receiver estimated the
average IF and tuned the LO DAC to maintain a constant [F
as in [3]. The RX chipping clock, which is derived from a free
running RC oscillator, can be calibrated by making a
comparison against the divided LO frequency. The resulting
LO and RX chip clock accuracy is shown in Fig. 6.
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Fig. 1: Single Chip Mote architecture and block diagram. Supply Fig. 2: Local Oscillator schematic and start-up transients, output
conditioning circuits are not shown. spectra with MSK and GFSK modulation, and divider spurs
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Fig. 3: Transmitter schematic with matching network and TX efficiencies Fig. 4: Receiver sensitivity across temperature (left) and blocker

under various operating conditions. Power consumptions and efficiencies tolerance (right). For the blocker plot, the desired signal was at

are calculated using regulated supply voltages. -82 dBm input power on 802.15.4 channel 11. Modulated
interferers are +5, +10, and +15 MHz away.
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Fig. 5: Open-loop Local Oscillator calibration for channel selection Fig. 6: Network-based frequency compensation of LC oscillator
at room temperature (top-left) and frequency change at single using IF feedback (bottom), resulting LC frequency error (top-
channel without compensation (top-right) and with temperature left) and derived IF chipping clock error (top-right).
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