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Abstract. Authenticated encryption (AE) schemes are widely used to
secure communications because they can guarantee both confidentiality
and authenticity of a message. In addition to the standard AE security
notion, some recent schemes offer extra robustness, i.e. they maintain
security in some misuse scenarios. In particular, Ashur, Dunkelman and
Luykx proposed a generic AE construction at CRYPTO’17 that is secure
even when releasing unverified plaintext (the RUP setting), and a con-
crete instantiation, GCM-RUP. The designers proved that GCM-RUP is
secure up to the birthday bound in the nonce-respecting model.
In this paper, we perform a birthday-bound universal forgery attack
against GCM-RUP, matching the bound of the proof. While there are
simple distinguishing attacks with birthday complexity on GCM-RUP,
our attack is much stronger: we have a partial key recovery leading to
universal forgeries. For reference, the best known universal forgery attack
against GCM requires 22n/3 operations, and many schemes do not have
any known universal forgery attacks faster than 2n. This suggests that
GCM-RUP offers a different security trade-off than GCM: stronger pro-
tection in the RUP setting, but more fragile when the data complexity
reaches the birthday bound. In order to avoid this attack, we suggest a
minor modification of GCM-RUP that seems to offer better robustness
at the birthday bound.
Keywords: GCM-RUP, partial key recovery, universal forgery, birthday
bound.

1 Introduction

Authenticated encryption (AE) schemes aim to achieve both confidentiality and
authentication of the encapsulated data. The first AE schemes were designed
by combining a symmetric encryption scheme with a message authentication
code (MAC). The encryption scheme provides confidentiality while the message
authentication code ensures authenticity. Several generic composition schemes
have been formalized and analyzed by Bellare and Namprempre [3]: Encrypt-
and-MAC, MAC-then-Encrypt, and Encrypt-then-MAC. Their analysis consid-
ers black-box composition, without specific details of the underlying symmetric
encryption scheme and MAC, in order to only focus on the security of the generic



composition at a high level. Their analysis shows that only the Encrypt-then-
MAC composition is generically secure.

Later, new AE modes have been proposed [11,17,28] to provide confidential-
ity and authentication in a single scheme, which is more efficient than the generic
composition of conventional mechanisms. AE schemes are now widely used in In-
ternet protocols, and there is an ongoing effort to design and standardize new AE
schemes with the recent CAESAR competition [34], and the NIST lightweight
standardisation effort [37] currently running. The design and cryptanalysis of
AE schemes is a very active topic in the cryptographic community today.

One of the most widely used AE schemes today is the Galois/Counter mode
(GCM) [8], an AE scheme following the Encrypt-then-MAC paradigm. GCM
has been widely deployed thanks to its excellent software performance and hard-
ware support, and because there are no intellectual property restrictions to its
use. It has been standardized in TLS [7], ISO/IEC [36], NSA Suite B [38] and
IEEE 802.1 [35]. GCM encrypts data using a variation of the counter mode of
operation (CTR) which requires a single block cipher encryption per message
block, and does not need to perform block cipher decryption, even when decrypt-
ing the message. The ciphertext and associated data are authenticated with a
Wegman-Carter-Shoup authenticator, where the keyed universal hash function
is a polynomial evaluation over a binary Galois field. However, GCM is not ro-
bust against implementation errors or misuse. In particular, if a nonce is used
just two times, the confidentiality and authentication for GCM are compromised
with Joux’s “forbidden attack” [16]. GCM also loses its security if a device re-
leases the plaintext corresponding to invalid ciphertext before verifying the tag.
Therefore, variants of GCM have been proposed to achieve some more robust
security notions.

In 2015, Gueron et al. presented GCM-SIV [12] combining GCM’s underlying
components with the SIV paradigm designed by Rogaway and Shrimpton [29], to
provide nonce-misuse resistance. Later, at CRYPTO’17, Ashur et al. introduced
a generic construction of AE scheme using a tweakable block cipher (TBC),
which resists attacks in the RUP setting [2] (with Release of Unverified Plain-
text). Based on the generic AE scheme, an instantiation GCM-RUP with high-
efficiency is put forward using AES-GCM’s components. The designers proved
that GCM-RUP is secure up to the birthday bound in the nonce-respecting
model and RUP setting. On the other hand, no attacks are known so far against
the authentication part of GCM-RUP. Therefore we do not know whether the
proof is tight, and we do not know what kind of security degradation to expect
after the birthday bound.

1.1 Contributions

In this paper we describe a universal forgery attack against GCM-RUP with
time and data complexity close to 2n/2, where n denotes the block size of the
underlying block cipher. This attack matches the security proof given in [2],
showing that it is tight. However, our main result is not only about tightness
of the (birthday) security bound, but rather about how badly the construction
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of GCM-RUP breaks when the bound is reached: a universal forgery attack is
much stronger than a distinguishing attack.

This is significant because no similar attack is known against GCM: on the
one hand there are attacks with roughly

√
n×2n/2 queries and time 2n [19,21,24],

and on the other hand attacks with
√
n× 22n/3 queries and time n× 22n/3 [19].

Our results show that universal forgery attacks against GCM-RUP are easier
than against GCM, even though the security bounds from the proofs are similar,
and both proofs are known to be tight (with simple distinguishing attacks).

Our attack is based on the following techniques:

– We show that inner collisions in the authentication part of GCM-RUP can
be detected efficiently, and give out the output difference of the universal
hash function GHASHK2 ;

– Due to the structure of GHASH, we build a polynomial equation in K2, which
can be solved efficiently;

– Finally, when K2 is known, we can sign arbitrary messages. This defines a
universal forgery attack with complexity 2n/2 (time and data).

Since our attack points out a weakness in the structure of GCM-RUP, we also
suggest a minor modification to GCM-RUP to prevent the leakage of the output
of GHASHK2

by using an extra block cipher call EK4
to encrypt the output of

GHASHK2
. The objective of our variant is to achieve better security in the RUP

setting and in the classical setting.
Many designs use GHASH because of its high performances. However, the

output of GHASH may leak information about the key, as exploited in our
attack. Therefore, the stronger GHASH variant we proposed could be applied to
not only GCM like scheme but also future GHASH-based designs.

1.2 Related Works

Modes of operation are usually studied with security proofs, but there is a grow-
ing interest in generic attacks, showing how the security degrades when the proof
doesn’t hold. In particular, many attacks focus on (partial) key-recovery: most
modes of operations have distinguishing attacks with birthday complexity 2n/2,
but key-recovery and universal forgery attacks with the same complexity show
that some schemes are more fragile than others when approaching the birthday
bound.

For instance, in 1996, Preneel and Van Oorshot gave a full key recovery attack
against the Envelope MAC with complexity 2n/2 [27]. In 2003, Mitchell studied
several variants of CBC-MAC and compared their security against key-recovery
attacks; for some schemes the best attack reported requires an exhaustive search
over an n-bit key, but attacks with birthday complexity can recover a partial key
for TMAC and OMAC [31], leading to stronger forgery attacks. More recently, a
series of works has shown birthday attacks against HMAC, with full key recovery
when the hash function uses an internal checksum [18] and universal forgeries [25]
in general. During the CAESAR competition, it was pointed out that the security
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of AEZ collapses at the birthday bound, with a full key recovery [10]. The scheme
was modified to avoid the attack, but a variant is still applicable [6].

Besides MAC algorithms, there has also been work on message-recovery at-
tacks on encryption modes, with a stronger impact than distinguishers. The
well-known collision attack against CBC has been shown to be usable in prac-
tice with 64-bit block ciphers [4], and message-recovery attacks have also been
shown against the CTR mode [19], even though the well-known distinguisher is
much weaker.

All these results clearly show the importance of cryptanalysis work against
modes of operation, even when the attacks do not contradict the proofs. In
addition, this type of work sometimes detects mistakes in the proofs, as shown
with GCM [15] and OCB2 [14].

1.3 Organization

The remainder of this paper is organized as follows. Section 2 gives the prelimi-
naries. Section 3 briefly describes the generic construction and its instantiation
GCM-RUP. We recover the authentication key in Section 4, and a universal
forgery is provided in Section 5. Section 6 recommends a minor modification to
GCM-RUP to resist our forgery attack. Finally, Section 7 concludes this paper.

2 Preliminaries

This section will show notations, operations and some cryptographic schemes
used in this paper.

2.1 Notations and Operations

– n: The block size of the block cipher (for GCM-RUP, n = 128).
– {0, 1}≤x: The set of strings with length no greater than x bits.
– {0, 1}∗: The set of strings with arbitrary length.
– |X|: Length of X, if X ∈ {0, 1}∗.
– X ⊕ Y : Bit-wise exclusive OR of X and Y , if X,Y ∈ {0, 1}∗.
– X · Y : Galois field multiplication of X and Y , if X,Y ∈ {0, 1}n.
– X‖Y or XY : Concatenation of X and Y , if X,Y ∈ {0, 1}∗.
– ε: The empty string.
– 0n: n-bit string consisting of only zeros.
– lenn(X): Length of X modulo 2n as an n-bit string.
– X0∗n: X padded on the right with 0-bits to get a string of length a multiple

of n.
– |X|n: X’s length in n-bit blocks |X|n = d|X|/ne.
– X[1]X[2] . . . X[x]

n←− X: Split X into substrings such that |X[i]| = n for
i = 1, . . . , x− 1, 0 < |X[x]| ≤ n, and X[1]‖ . . . ‖X[x] = X.

– int(Y ): Map the j bits string Y = aj−1 . . . a1a0 to the integer i = aj−12j−1+
· · ·+ a12 + a0.
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– strj(i): Map the integer i = aj−12j−1 + · · ·+a12+a0 < 2j to the j-bit string
aj−1 . . . a1a0.

– incm(X): The function which adds one modulo 2m to X when viewed as an
integer: incm(X) := strm(int(X) + 1 mod 2m).

– msbj(X): j most significant bits of X: msbj(ai−1 . . . a1a0) := ai−1 . . . aa−j .
– lsbj(X): j least significant bits of X: lsbj(ai−1 . . . a1a0) := aj−1 . . . a0.
– F ← E(C‖·): Define F (X) = E(C‖X) where C is fixed as constant.

– a
?
= b: Evaluate to > if a equals b, and ⊥ otherwise.

– ∆X: The difference on the string X.

2.2 AE, Separated AE and TBC

An authenticated encryption scheme is a symetric key algorithm that provides
both confidentiality and authenticity. Bellare and Namprempre [3] defined the
formal notion of authenticated encryption as follows:

Definition 1 (AE [3]). An AE scheme consists of a pair of functions, the
encryption function Enc and the decryption function Dec,

Enc : K ×N ×M→ C,
Dec : K ×N × C →M∪ {⊥},

with K the key space, N the nonce space, M the message space, C the ciphertext
space, and ⊥ an error symbol not contained in M, which represents verification
failure. It must be the case that for all K ∈ K, N ∈ N , and M ∈M,

DecNK(EncNK(M)) = M.

The decryption process typically has two phases: plaintext computation and
verification; the plaintext obtained from decryption is only given out out after
successful verification. However, keeping the full plaintext in memory can be an
issue for constrained devices, and side-channel attacks can potentially recover in-
formation about the plaintext while it is decrypted. Therefore, new models have
been introduced to take into account the effect of releasing unverified plaintext.
In particular, Andreeva et al. [1] defined separated AE schemes where the plain-
text computation is disconnected from verification; in this model the decryption
function always releases the plaintext, without verifying it. Formally, a separated
AE scheme is defined as:

Definition 2 (separated AE [1]). A separated AE scheme consists of a triplet
of functions, the encryption function SEnc, the decryption function SDec, and
the verification function SVer, where

SEnc : K ×N ×M→ C,
SDec : K ×N × C →M,

SVer : K ×N × C → {>,⊥},
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with K the key space, N the nonce space, M the message space, C the cipher-
text space. The special symbols > and ⊥ indicate the success and failure of the
verification, respectively. It must be the case that for all K ∈ K, N ∈ N , and
M ∈M,

SDecNK(SEncNK(M)) = M and SVerNK(SEncNK(M)) = >.

If an AE scheme is secure in the RUP setting, forging is hard even when given
access to those three oracles.

Finally, we need to introduce the notion of tweakable block cipher (TBC),
which is used in GCM-RUP. A tweakable block cipher is a generalization of a
block cipher with an additional tweak input, generating a family of independent
block ciphers [20]:

Definition 3 (TBC [20]). A TBC could be regarded as a pair of functions
(E,D), with

E : K × T × X → X ,
D : K × T × X → X ,

where K is the key space, T is the tweak space, and X is the domain. For all
K ∈ K, T ∈ T and X ∈ X , ETK is a permutation of X with DTK as inverse and

DTK(ETK(X)) = X.

3 Brief Description of GCM-RUP [2]

Ashur, Dunkelman and Luykx proposed a generic construction of an efficient
separated AE scheme at CRYPTO’17 [2]. Their construction uses an encryption
scheme and a TBC, and achives security in the RUP setting, assuming that the
encryption scheme is strongly indistinguishable-from-random-bits (SRND) [13,
30], and the TBC is a strong pseudorandom permutation (SPRP) [30]. Based
on the generic construction, a dedicated instantiation GCM-RUP is built using
AES-GCM’s primitives. This section will describe this construction and GCM-
RUP.

3.1 Generic Construction with RUP Security [2]

Let (Enc,Dec) be an encryption scheme (without authentication), with K the key
space, N the nonce space,M the message space, and C the ciphertext space. Let
(E,D) denote a TBC with key space L, tweak space T = C, and domain X = N .
Then define the separated AE scheme (SEnc,SDec,SVer) as follows,

SEncNK,L(M) :=
(
S = ECL (N), C = EncNK(α‖M)

)
,

SDecK,L(S,C) := lsb|C|−τ (Dec
DC

L (S)
K (C)),

SVerK,L(S,C) := msbτ (Dec
DC

L (S)
K (C)

?
= α,
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where (K,L) ∈ K×L is the key, N is the nonce space,M is the message space,
N ×C is the ciphertext space, and α = {0, 1}τ is some pre-defined constant. The
construction is depicted in Fig. 1. The procedures of encryption, decryption and
verification are illustrated in Fig. 1 (a), (b) and (c), respectively.

The novelty of the generic construction is that the nonce is encrypted using
the ciphertext as a tweak. This provides security in the RUP setting, because
if an attacker modifies the ciphertext or the encrypted nonce, the decryption
oracle will output a random plaintext. The authentication security comes from
the redundancy in the plaintext, with the pre-defined constant α (known by
both sides); the length of α determines the security level. In order to maintain
security up to the birthday bound on the block size, the size of α and the nonce
size are fixed to be the same as the block size n.

3.2 GCM-RUP [2]

GCM-RUP is an instantiation of the generic construction using the counter mode
(CTR) for encryption and the XTX construction with GHASH for the tweakable
block cipher. It reuses the component of GCM in order to benefit from the effi-
cient implementations available, while offering more robustness with security in
the RUP setting. Before describing GCM-RUP itself, we first define the primi-
tives borrowed from GCM. Let n denote the block length of the available block
cipher, in this case n = 128.

The first one is the universal hash function GHASH, which takes a key a key
H and two strings M and M ′ as input (in GCM, GHASH is used in the Wegman-
Carter construction to build a MAC [32]). The core of GHASH is defined with
a single string M constituted of full blocks, and evaluates a polynomial defined
from M at H as follows,

GHASHcoreH(M) =

|M |n−1⊕
i=0

M [i] ·H |M |n−i. (1)

The symbol “·” represents multiplication in the Galois field GF (2n). All the
computations are performed by the rule of operations defined in finite field.
GHASH is defined from GHASHcore; it takes two strings M and M ′ as input,
zero-pads and concatenates them, and adds the binary representation of the
lengths of M and M ′ before processing the result through GHASHcore,

GHASHH(M,M ′) = GHASHcoreH(M0∗n‖M ′0∗n‖strn/2(|M |)‖strn/2(|M ′|)),

where the function strj(i) maps the integer i = aj−12j−1 + · · ·+ a12 + a0 < 2j

to the j-bit string aj−1 . . . a1a0. Algorithm 1 describes the procedure of the
function.

The second important auxiliary function is the CTR mode. Given a counter
value X, a positive integer m and a predefined keyed function F as input, this
function CTR[F ](X,m) outputs a string S with m blocks. Each block of S is
computed by S[i] = F (incix(X)), where incx represents counter incrementation,
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Algorithm 1 GHASHH(M,M ′)

Input: H ∈ {0, 1}n, M ∈ {0, 1}≤n(2
n/2−1), M ′ ∈ {0, 1}≤n(2

n/2−1)

Output: Y ∈ {0, 1}n
1: X ←M0∗n‖M ′0∗n‖strn/2(|M |)‖strn/2(|M ′|)
2: X[1]X[2] . . . X[x]

n←− X
3: Y ← 0n

4: for 1 ≤ j ≤ x do
5: Y ← H · (Y ⊕X[j])
6: end for
7: return Y

Algorithm 2 CTR[F ](X,m)

Input: F : {0, 1}x → {0, 1}n, X ∈ {0, 1}x, m ∈ N
Output: S ∈ {0, 1}mn
1: I ← X
2: for 1 ≤ j ≤ m do
3: S[j]← F (I)
4: I ← incx(I)
5: end for
6: S ← S[1]S[2] . . . S[m]
7: return S

adding one modulo 2x to X, with the convention that incix represents i successive
implementations. The CTR mode is defined in Algorithm 2.

Finally, GCM-RUP uses three keys: K1 is used for the CTR encryption, and
K2 and K3 are used for the TBC following the XTX construction (K2 is used
for GHASH, and K2 is used for the underlying block cipher call). GCM-RUP
encrypts a message M together with its associated data A and a nonce N , into
a ciphertext C and an encrypted nonce S. The associated data, the message and
the ciphertext are all seen as sequences of blocks of length n. GCM-RUP follows
the generic construction given above, and is described in Fig. 2, with pseudocode
in Algorithm 3 (with ε an empty string). In the figure, EncK1

corresponds to
CTR mode encryption, and EK2,K3

to the TBC.
As an instantiation of the generic construction with RUP security, GCM-RUP

is secure under RUP setting. More precisely, GCM-RUP can provide security up
to the birthday bound on the block size (because this is the security of the
underlying AE scheme and TBC).

4 Partial Authentication Key Recovery for GCM-RUP

Our analysis focuses on the GHASHK2 function, which can be written as a poly-
nomial in K2. In this section, we analyze properties of GHASHK2

which are then
used to recover K2. After recovering K2, it is possible to perform a forgery attack
for GCM-RUP.
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Algorithm 3 GCM-RUPK1,K2,K3
(N,A,M)

Input: K1K2K3 ∈ {0, 1}3n, A ∈ {0, 1}n2
32

, M ∈ {0, 1}n2
32

Output: (S,C) ∈ {0, 1}n × {0, 1}τ+|M|
1: M ← 0τ‖M
2: L← EK1(0n)
3: I ← GHASHL(ε,N)
4: m← |M |n
5: F ← EK1(msb96(I)‖·)
6: S ← CTR[F ](inc32(lsb32(I)),m)
7: C ←M ⊕msb|M|(S)
8: G← GHASHK2(A,C)
9: S ← EK3(N ⊕G)⊕G

10: return (S,C)

The main property used in our attacks is that G, the output of GHASHK2

as defined in Fig. 2, is linearly dependent on the input (A,C) for fixed K2.
Therefore, the output difference ∆G between two input tuples (N1, A,M) and
(N2, A,M) is independent of the value of (A,M), and is only a function of N1

and N2.
Based on this property, we retrieve K2 with the following two steps.

– For a fixed associated data and message, we search for a pair of nonces
(N1, N2) which produce a collision for the input of EK3 using a birthday
attack. For such pair of nonces (N1, N2), ∆G = N1 ⊕N2 = S1 ⊕ S2.

– With a known∆G, a polynomial equation inK2 is derived from the GHASHK2

definition. Then K2 can be retrieved by solving this equation.

In this section, we will give the detailed description of the recovery of K2.

4.1 Properties of GHASH

Let Π = (SEnc,SDec,SVer) denote the scheme GCM-RUP. We focus on the
component GHASHK2

with inputs the associated data A and the ciphertext C.
In order to clearly describe the attack, we rewrite GHASHK2

as

G = GHASHK2(A,C) = GHASHcoreK2(A‖C‖strn/2(|A|)‖strn/2(|C|)).

According to the definition of GHASHcore given by Equation (1), G is linearly
dependent on the GHASHcore input (A‖C‖strn/2(|A|)‖strn/2(|C|)) for a fixed
K2. Therefore, we consider the difference ∆G in the output of GHASHK2

for a
pair of inputs.

Property 1 If GCM-RUP is used to process a fixed associated data A and
message M under two distinct nonces (N1, N2), the output difference of the
function GHASHK2

is only dependent on the nonces N1 and N2, but independent
on A and M . This also holds for the input difference of EK3

.
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Proof. For two tuples (N1, A,M) and (N2, A,M), query SEnc and get

(S1, C1)← GCM-RUP(N1, A,M),

(S2, C2)← GCM-RUP(N2, A,M).

Let G1 and G2 represent the corresponding outputs of the function GHASHK2

in the encryptions under nonces N1 and N2, respectively,

G1 = GHASHK2
(A,C1),

G2 = GHASHK2
(A,C2),

where

C1 = (0τ‖M)⊕ EncK1(N1),

C2 = (0τ‖M)⊕ EncK1(N2).

Hence,

∆G = G1 ⊕G2

= GHASHK2(A,C1)⊕ GHASHK2(A,C2).
(2)

From the definition of GHASH, we have

∆G = GHASHcoreK2

(
A⊕A‖C1 ⊕ C2‖

(strn/2(|A|)‖strn/2(|C1|))⊕ (strn/2(|A|)‖strn/2(|C2|))
)

= GHASHcoreK2(0|A|‖∆C‖0n)

= GHASHcoreK2
(0|A|‖EncK1

(N1)⊕ EncK1
(N2)‖0n),

(3)

which shows that the output difference of the function GHASHK2 depend only
on N1 and N2 for two tuples (N1, A,M) and (N2, A,M). The input difference
of EK3

can be computed as

∆In = N1 ⊕N2 ⊕∆G
= N1 ⊕N2 ⊕ GHASHcoreK2

(0|A|‖∆C‖0n),
(4)

so it is also independent of A and M . 2

In particular, if we can recover a value ∆G, we can then extract K2 by
solving a polynomial equation, given the ciphertext difference∆C and the output
difference ∆G:

∆G = GHASHcoreK2
(0|A|‖∆C‖0n).

For simplicity, we assume that |M | = n and τ = n, this implies |C1| = |C2| = 2n:

∆G = ∆C[0] ·K3
2 ⊕∆C[1] ·K2

2 .

This a polynomial equation in K2 in the Galois field with 2128 elements. Luckily,
there are efficient algorithm to factor polynomials over finite fields. For instance,
the Cantor-Zassenhaus algorithm [5] requires O(n2(log(r) log(q) + n)) field op-
erations to factor a degree-n polynomial with r irreducible factors over a field
with q elements. In practice, with the parameters used here, this takes negligible
time using the implementation of SageMath [39].

11



4.2 Recovering K2 from Inner Collisions

As explained earlier, the first step of the attack is to identify collisions in the
input of EK3 , defined as In = N ⊕ G. Following the analysis above, we start
with a fixed associated data A and message M , and query SEnc for q different
nonces, to receive the corresponding encrypted nonces S and ciphertexts C.

In order to simplify the description, we focus on the value In, and we consider
the function mapping N,A,M to In, denoted as PEnc, and represented by Fig. 3.
The output values of PEnc can not be accessed by the attacker, but collisions in
PEnc can be detected because they imply N1 ⊕N2 = S1 ⊕ S2 = ∆G. Since they
give out the value of ∆G, these collisions can be used to recover K2. Moreover,
the corresponding pairs can be identified efficiently. We just build a list of all
nonces indexed by Ni ⊕ Si, sort the list and look for collisions: each collision
corresponds to a pair with N1 ⊕ S1 = N2 ⊕ S2 i.e. N1 ⊕N2 = S1 ⊕ S2. We now
consider the converse, and evaluate the probability of a collision in PEnc when
N1 ⊕N2 = S1 ⊕ S2.

N

GHL
ε 

inc32 inc32 inc32 inc32

0τ M

C

GH
A

S

msbτ+|M|

K1E K1E K1E K1E

K3E K2

96

32

G

In

PEnc

N A M

In

Fig. 3. Representation of the Function PEnc

We formally define the two events as X and Y :

– X (N1 ⊕N2 = S1 ⊕ S2): the event identifying pairs of nonces (N1, N2) with
the input difference equal to the output difference of EK3

, which is called
outer collision (equivalently, it can be defined as ∆In = ∆Out).

– Y (∆In = 0): the event identifying pairs of nonces with collision in PEnc,
i.e. zero input difference for EK3

, which is called inner collision.

12



First, we observe that Y ⊆ X, because if ∆In = 0, then ∆Out = 0 and
N1 ⊕N2 = S1 ⊕ S2 = ∆G. Therefore, we have

Pr[Y |X] =
Pr[Y ]

Pr[X]
.

Moreover, we have Pr[Y ] = 2−n because the output of PEnc with a fresh
nonce is random, assuming that E is a PRF. In order to compute Pr[X], we
consider two cases, depending on event Y :

1. ∆In = 0. Then we have necessarily ∆Out = 0, i.e. Pr[X|∆In = 0] = 1.

2. ∆In 6= 0. A pair with non-zero input difference must produce a non-zero
output difference. Assuming that E is a PRF, we have Pr[X|∆In 6= 0] =

1
2n−1 .

Therefore,

Pr(X) =Pr[∆In = ∆Out]

=Pr[∆In = ∆Out|∆In = 0]× Pr[∆In = 0]+

Pr[∆In = ∆Out|∆In 6= 0]× Pr[∆In 6= 0]

=1× 1

2n
+

1

2n − 1
× 2n − 1

2n

=
1

2n−1
.

(5)

Finally, we can conclude

Pr[∆In = 0|N1 ⊕N2 = S1 ⊕ S2] =
2−n

2−n+1
=

1

2
. (6)

Attack Procedure. We can now give the detailed procedure to recover K2:

1. Choose an arbitrary associated data A and a single-block message M , then
query SEnc for q different nonces N and receive the corresponding encrypted
nonces S and ciphertexts C; save them in a table indexed by N ⊕ S. With
a suitable value of q (in the order of 2n/2), there are two pairs of nonces
(N1, N2) satisfying N1 ⊕N2 = S1 ⊕ S2, one of which is expected to further
satisfy ∆In = 0.

2. For each pair with N1 ⊕ N2 = S1 ⊕ S2, assuming that ∆In = 0, we have
∆G = ∆S and we obtain a cubic polynomial equation with unknown variable
K2, which can be solved with factoring tools:

∆S = GHASHcoreK2(0|A|‖∆C‖0n) = ∆C[0] ·K3
2 ⊕∆C[1] ·K2

2 .

3. Identify the correct candidate for K2 with forgery attempts.

13



Using two pairs of nonces, this attack suggests a small set of six key candi-
dates. The correct key can be identified with forgery attempts, or by using more
pairs and looking for a repeated key candidate.

More precisely, we will describe how to construct a forgery with known can-
didate of K2 for GCM-RUP in Section 5 for a given message, which can be used
to filter the correct K2. There would be two cases:

– If the forgery is constructed under the correct candidate for K2, it can pass
the verification algorithm of GCM-RUP.

– If the forgery is constructed under the wrong candidate for K2, it will receive
a failure of the verification of GCM-RUP.

We only need to query the verification oracle SVer six times to identify the
correct K2. The cost for this step is negligible.

Complexity Estimation. As already mentioned, the probability of two ran-
dom nonces N1 and N2 satisfying ∆In = 0 is 2−128. Starting from a set of q
queries, we can evaluate the probability p of finding an inner collision following
the analysis of the birthday paradox:

p ' 1− e−q
2/(2×2128).

Thus,

q '
√

2× 2128 ln
1

1− p
.

Table 1 shows number of nonces needed to achieve the given probability of
success.

Table 1. Number of Nonces Needed to Achieve the Given Success Probability

Number of nonces to identify inner collision Probability of finding inner collision

263 11%
264 39%
265 86%
266 99.9%

4.3 Experimental Verification with Mini-GCM-RUP

In order to verify our attack theory, we use a mini version of GCM-RUP con-
structed with the 16-bit block cipher 4-round Mini-AES [26] to experimentally
recover K2. This experiment identifies pairs of nonces in event X and Y from
29 random nonces, and recover K2 with SageMath. We execute this experiment

14



Table 2. Experimental Verification with Mini-GCM-RUP

(K1,K2,K3) Pair of nonces in X ∆In Pr(X) Pr(Y |X)

(0x3d0e,0x2afc,0x2e91)
(0x2704,0x0889) 0 1

28
1

(0x7649,0x7b0d) 0

(0x4ef3,0x454b,0x1e9a)

(0x2323,0x602d) 0

7
29

3
7

(0x11b7,0x2b2e) 0x0af7
(0x7bab,0x3a72) 0
(0x1215,0x1e05) 0xa3b5
(0x6593,0x093d) 0xbce8
(0x09bd,0x2db2) 0x03cf
(0x7d35,0x5e97) 0

(0x5388,0x2641,0x7a4f)

(0x0ba9,0x46f5) 0x5393

3
28

1
2

(0x684d,0x5786) 0
(0x334c,0x22e1) 0x0636
(0x4487,0x13f0) 0
(0x5413,0x03d8) 0
(0x5a91,0x179f) 0x0c06

(0x5691,0x2ee9,0x5a68)
(0x3874,0x7546) 0x3fcb 1

28
1
2(0x44b0,0x4323) 0

several times to give some results to show the validity of probabilities of event
X and Y in our paper, the detail is listed in Table 2.

In this table, we see that probabilities of event X and Y conform to Equation
(5) and (6), respectively. The complexity of this experiment is dominated by 29.

5 Universal Forgery Attack of GCM-RUP

In this section, we will construct forgeries for GCM-RUP given a candidate for
K2. We consider a challenge message M∗ (and possibly a challenge associated
data A∗), and our goal is to construct a valid ciphertext for M∗.

5.1 Almost Universal Forgery Attack

The first forgery attack makes only one query to the encryption oracle SEnc and
then constructs a forgery by solving an equation over GF (2128).

For an arbitrary nonce N , associated data A and message M (with |M | =
|M∗|), query (N,A,M), and receive the corresponding ciphertext (S,C). Let
G = GHASHK2(A,C), and the keystream used to XOR message is computed by

EncK1
(N) = C ⊕ (0τ‖M).

We create a valid encryption of M∗ by reusing the same nonce N and the values
G and S.

15



First, we compute C∗ corresponding to M∗:

C∗ = 0τ‖M∗ ⊕ EncK1
(N)

= 0τ‖M∗ ⊕ (C ⊕ 0τ‖M).
(7)

Then we construct A′ such that

GHASHK2
(A′, C∗) = GHASHK2

(A,C),

where A, C, C∗ and K2 are known. This gives a linear equation over GF (2128)
which can easily be solved assuming that |A′| ≥ 128 and K2 6= 0.

To summarize, for any chosen message M∗, we can give a successful forgery
(A′,M∗, S′, C ′) satisfying (S′ = S,C ′ = 0τ‖M∗⊕(C⊕0τ‖M)). This is an almost
universal forgery, because we can choose M∗ freely but not A′.

5.2 Universal Forgery Attack

Alternatively, we can design an attack where we choose both A∗ and M∗, using
2n/2 queries. First, we make 2n/2 queries (Ni, A,M), for fixed A and M with
|M | = |M∗|, and receive the corresponding (Si, Ci). Since K2 is known, we can
compute Gi = GHASH(A,Ci), and recover the corresponding inputs and outputs
to EK3

: EK3
(Ni ⊕Gi) = Si ⊕Gi.

Then, we can use the same nonces Ni to build a forgery. For each Ni, we
build the corresponding C ′i from M∗ and Ci as above, and we check whether
Ni⊕GHASH(A∗, C ′i) is in the set of known inputs to EK3 . With high probability,
one of the nonces will result in a match Ni ⊕ GHASH(A∗, C ′i) = Nj ⊕ Gj , and
we deduce a forgery using S′ = Sj ⊕Gj ⊕ GHASH(A∗, C ′i).

6 Variant of GCM-RUP

Our forgery attack against GCM-RUP highlights a potential weakness on the
structure of GCM-RUP: the output difference of the function GHASHK2

can
be recovered with birthday complexity and this leads to a recovery of K2. In
order to prevent this attack, we suggest to add a block cipher call in the TBC
construction used in GCM-RUP, as shown in Fig. 4, to avoid leakage of the
output difference of the function GHASHK2 .

This modified TBC still follows the XTX construction of Iwata and Mine-
matsu [23], using universal hash function EK4

(GHASHK2
(A,C)) instead of the

original GHASHK2
(A,C). The new universal hash function has the same security

bounds, but does not leak the key from an output difference. Thus, the security
proof of GCM-RUP is still applicable to this variant. The extra block cipher has
a limited impact on efficiency, and might offer better security by avoiding our
attack.

More generally, the modified GHASH could replace GHASH in other designs.
In particular, the corresponding modification of GCM would prevent the uni-
versal forgery attack with complexity 22n/3 given in [19]. We believe that this
construction is worth further study. Further work will be needed to determine
whether this modification actually provides extra security and how much.
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7 Conclusion

This paper shows a birthday-bound attack against GCM-RUP [2] using inner
collisions to recover the output difference of the function GHASHK2

. Hence, K2

can be retrieved by solving a polynomial equation, and this directly leads to
a universal forgery attack against GCM-RUP. This forgery attack shows that
the construction of GCM-RUP breaks drastically when the security bound is
reached. This is surprising because no such attack is known on GCM: the best
known universal forgery attack requires 22n/3 operations.

Finally, a minor modification of GCM-RUP is suggested to prevent this kind
of attack, using an additional block cipher to protect the output of GHASH.
With little performance loss, this design focusing on GHASH can be applied to
all GHASH-based designs.

In a more general setting, our attack technique can be applied to the LRW
construction [20] with a polynomial universal hash function, as used in OCB, for
instance. Actually, the corresponding attack on OCB would match the previous
attack by Ferguson [9].
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