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Influence of uncertainties on the positioning of cable-driven parallel
robots

J-P. Merlet1

Abstract— Positioning accuracy of cable-driven parallel
robots is influenced by many factors such as geometry, actuator
sensor accuracy and disturbances in the applied wrench.
Another uncertainty source is the elasticity of the cables. While
the influence of many factors may be decreased by calibration
and/or sensor fusion, elasticity parameters are difficult to
estimate and their effect on the positioning errors has yet
to be determined. In this paper we consider a generic cable
model that include cable elasticity and the effect of cable weight
and we propose a generic algorithm that allows one to safely
calculate the minimum and maximum of the positioning error
at a given pose when the elasticity parameters are constrained
to lie within some given bounds. The algorithm is designed
for being able to manage the effect of different uncertainties
sources and we compare the influence of elasticity versus the
effect of uncertainties in the cable lengths.

Index terms: parallel robot cable-driven parallel
robot,accuracy,uncertainties

I. INTRODUCTION

We consider a variant of parallel robots, namely cable-
driven parallel robots (CDPR), in which the rigid legs of
parallel robots are substituted by coilable/uncoilable cables.
Cables are coiled on a winch whose cable output is a fixed
point A, while the cable extremity is attached to the end-
effector at point B (figure 1). For CDPR any kinematic
problem involves also cable tensions as cables can exert
only a pulling action so that the name kineto-static is often
used. Consequently kinematic modeling of CDPR is highly
dependent upon the statics modeling of cable. In a vast
majority of works cables are assumed to be ideal i.e. the
cable shape is the straight line between A and B and its
length L0 is independent from the cable tension τ , figure 1.
But a more realistic modeling is to consider that there is
elasticity in the cable and not to ignore the cable weight,
both factors having an influence on the kineto-static behavior
of the robot.

Elasticity behavior is usually based on the knowledge
of the Young modulus of the cable material. However
measuring this parameter is not easy and this parameter
is time-varying because of the cable wear. Managing this
type of uncertainties for CDPR is not a well-studied topic.
Researchers rely on robust control [1],[2], the effect of
uncertain wrench applied on the platform [3] or on the cable
lengths [4] or the use of additional sensors for reducing the
effect of the uncertainties [5] or even to get rid of any model
by using a vision system [6]. Still is lacking an analysis of the
consequences of uncertainties on the elasticity parameters.
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Fig. 1. A CDPR and various cable model

The purpose of this paper is to consider a realistic cable
model and to determine the minimum and maximum posi-
tioning error first around a nominal pose that is a solution of
the direct kinematics for fixed cable lengths, assuming that
the Young modulus of the cable material is uncertain but is
constrained to lie within known intervals.

II. CABLE MODEL

In this paper we will use the Irvine sagging cable model
that is valid for elastic and deformable cable with mass [7]
and that has been shown to be in very good agreement
with experimental results [8] (note that the attribution of
this model to Irvine is uncertain). This model is widely
used for medium-size and large CDPR [9], [10], [11], [12]
and we have shown that it is interesting to use for the
exploitation of additional sensors beside the cable lengths
with the purpose of improving the accuracy of CDPR [13].
Beside its agreement with experimental data, the motivation
for using this cable model is that it allows to include in a
compact way both the elasticity of the cable and the effect
of the cable weight, while lumped-mass model [14] have
a much larger set of parameters. Another interest of the
Irvine model is that it leads to the ideal cable model if
E →∞, µ→ 0, thereby allowing the use of a continuation
approach for managing kinematics problems [15]. Much
complex cable models exist [16], [17], [18] but have not
yet been used for CDPR..

The Irvine model assumes that the cable lies in a vertical
plane and is a 2D model (figure 2). In this plane a frame is
defined with origin the upper attachment point of the cable
A(0,0) and horizontal and vertical axis xr, zr. The cable
lower attachment point B has as coordinates (xr ≥ 0, zr <
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1Fig. 2. Notation for a sagging cable

0). Vertical and horizontal forces Fz, Fx > 0 are exerted on
the cable at point Bi. For a cable with length at rest L0 the
coordinates of B are given by [7]:

xr = Fx(
L0

EA0
+
sinh−1(Fz)− sinh−1(Fz − µgL0/Fx)

µg
)(1)

zr =
Fz
EA0

−µgL
2
0

2
+

√
F 2
x+F 2

z −
√
F 2
x+(Fz−µgL0)2

µg
(2)

where E is the Young modulus, A0 is the cable cross-section
area, and µ is the cable linear density. CDPR uses a set
of cables whose Young modulus Ei (for cable i) will be
considered to be independent but also constrained to lie in a
known range [Ei, Ei]. While µ may be estimated accurately,
the Young modulus is more difficult to measure and will
change over time because of the wear of the cable. But the
influence of these changes on the positioning accuracy of a
CDPR has yet to be determined. Hence one objective of this
paper

III. KINEMATICS AND STATICS

We will consider the pose X of a CDPR with n cables
obtained for given values for the cable lengths at rest
{L1

0, L
2
0, . . . , L

n
0}, so that X is a solution of the direct

kinematic problem. We consider a CDPR with n cables, cable
i being attached on the platform at point Bi while the output
point of the cable at the winch will be denoted by Ai.

We define a reference frame (O,x,y, z) with a vertical
upward z axis and the components of the vector OAi in this
frame are assumed to be known. We also define a mobile
frame for the platform (C,xm,ym, zm), where C is the
center of mass of the platform, and we assume that the
components of the vector CBim in this frame are known.
A pose of the CDPR will be defined by the coordinates of
C in the reference frame and by a rotation matrix R that
transform a vector from the mobile frame to the reference
frame. With this notation we have in the reference frame

AiBi = OC + CBi −OAi = OC +RCBim −OAi

For using the Irvine equation we need to obtain AiBi in
the cable frame. For that purpose we have to use a unique
rotation matrix Ri that describe a rotation of angle α around
the vertical and such that RiAiBi = (xri > 0, 0, zri )T ,
where zri is the z component of AiBi. We have therefore a
constraint Aα = 0 on α that must be such that the second
component of RiAiBi must be 0. The unknowns of the
direct kinematics are therefore the 2n F ix, F

i
z , the n αi and

the components of X (6 for a 6 d.o.f robot and 3 for a planar
robot) for a total of 3n + 6 unknowns (3n + 3 for a planar
robot).

As for the constraints we the 2n Irvine equations for xir, z
i
r

and the n constraints Aiα = 0. But we have to consider
that the system is in a mechanical equilibrium. If (Fxi >
0, Fzi) are the components of the force that is applied by
the platform on the cable at Bi in its plane, then the force
exerted by the cable on the platform in the reference frame
is Fi

a = RTi (Fxi
> 0, Fzi)

T We assume that the platform is
subjected only to gravity which exert a vertical force F and
no torque around the platform center of mass C. Hence the
mechanical equilibrium imposes

j=n∑
j=1

Fj
a + F = 0

j=n∑
j=1

CBi × Fj
a = 0 (3)

This provides 6 additional constraints (3 for a planar robot)
so that we have 3n + 6 constraints (3n + 3 for a planar
robot). Consequently solving the direct kinematics requires
to a solve a square system H(X) = 0, which will admit, in
general, a finite number of solutions.

IV. EXTREMAL POSITIONING ERROR AROUND A POSE

We assume that the CDPR should be in a nominal pose
Xn associated to a set of cable lengths {L1

0n , L
2
0n , . . . , L

n
0n}.

The Young modulus Ei for each cable is supposed to lie in
the range [Ei, Ei]. According to the variation of the Eis the
real pose of the CDPR will be Xr and we have to solve the
following optimization problem: Find Min/Max of (Xi

r−Xi
n)

under the constraints H(Xr) = 0 and all Ei ∈ [Ei, Ei] with
the guarantee of finding the global minimum and maximum
∆Xi

m,∆X
i
M up to an arbitrary accuracy α (the returned

value differing from the global extrema by at most α). As
this is a difficult problem we will rely on a 2 steps approach:
first we will determine the minimum and maximum obtained
for extremal values of the Ei and then we will check if a
better extremum may be obtained for Ei not equal to Ei, Ei.

A. Minimum and maximum positioning error candidates

We have therefore to determine the values of the elements
of ∆X = Xr − Xn for all possible combinations of the
Ei involving their extremal values. The status code of a
combination j is a pair constituted of Sj, a n-dimensional
list whose elements i-th is 1 if Ei = Ei and -1 if Ei = Ei
and an associated pose Xj . If the pose associated to this
combination is not yet known, then a flag Uj is set in the
status code. The cables lengths for reaching Xn have been
obtained by solving the inverse kinematic problem, assuming
known value Eni for the Ei and we will assume that we have



Eni = Ei], although this assumption is not restrictive, as will
be seen later on.

When starting all combinations have this flag set in
their status code except the first combination with S1 =
{1, 1, . . . , 1} and X1 = Xn. A key element for finding
the Xj of all combinations is an algorithm A that find
the unknown Xj of a combination j as soon as there is a
combination k with known Xk with Sk that differs from Sj

only by a single element numbered l (this occurs for example
for the combination with S2 = {−1, 1, 1, . . . , 1}, which
differs from S1 only by its first element). The algorithm
A(Xk) is based on a continuation process that starts with
El = El: :

• we set El = El − ε, where ε is an arbitrary positive
number, lower or equal to El − El, and we use the
Newton scheme with Xk as initial guess for determining
the robot pose. for the new El. To guarantee the
convergence of the Newton method and the uniqueness
of the solution in the vicinity of Xk we check if the
Kantorovitch theorem conditions are satisfied [19]. If
this is the case the uniqueness of the solution and
the convergence of the Newton scheme are guaranteed,
otherwise we divide ε by 2 and check again the Kan-
torovitch conditions. Convergence should be guaranteed
for some ε to obtain the pose Xj for the current El

• the process is repeated until we get El = El.
Note that this process may also be used if one or several Eni
are not equal to Ei or Ei: we will change each Ei in turn to
get them to the closest Ei, Ei to end up with a combination
that has only extremal Ei.

We may now describe the algorithm we are using for
finding the pose for all combinations. The status code of
all the combinations is described in a list L of size h, whose
i-th element is the status code of combination i and we use
an index k initially set to 1:

1) if k = h+ 1, then exit
2) if Uj = 0, then k = k + 1, goto step 1
3) if there is a m such that Sm differs from Sk by a single

element and such that Um = 0, then Xk = A(Xm).
Set k = 1, goto step 1

This algorithm just build up incrementally on a combination
Sm with known pose to determine the pose for all the
combinations.

After this step we will have obtained a lower bound
ˆ∆XM
i for the maximum and an upper bound ˆ∆Xm

i for the
minimum of each element i of ∆X.

V. CHECKING STEP

Our ultimate goals are to determine the global minimum
and maximum of ∆X with an accuracy α but also to have
a method that is extensible for managing all the uncertainty
sources (such as uncertainties on the location of the A,B)
and provide a worst case analysis. One of the numerical
methods that allows for determining global extremum is
interval analysis that is especially convenient in our case
as as all uncertainties are bounded.

Using the data of the previous section we have already an
estimate of the minimum and maximum of the positioning
errors under the assumption that the extremum is obtained
when the Ei have all an extremal value. But we have to check
if if the global maximum and minimum may be reached for
values of the Ei that are not all extremal.

For that purpose we set in turn each element Xi either to
ˆ∆Xm
i −α or to ˆ∆XM

i +α, while the other elements Xj will
be assigned an interval value of [ ˆ∆Xm

j ,
ˆ∆XM
j ]. Our purpose

here is to detect if there are values for the Ei in [Ei, Ei] such
that ∆Xi exceed ˆ∆Xm

j , ˆ∆XM
j . For that purpose we use an

interval analysis-based approach that relies heavily on the
specific properties of the Irvine equations [20]. For example
it may be shown that the derivatives of xr, zr with respect
to Fx, Fz have a constant sign if the upper bound of Fz is
lower than µgL0/2 or the lower bound of Fz is greater than
µgL0/2. This implies that in that cases the interval evaluation
of xr, zr will not be overestimated if L0 has a constant value,
with a high consequence on the computation time of interval
analysis-based algorithm.

If there is no location of the Ei with a better extremum
this algorithm is relatively fast except when the Ei have
values that are close to the extremal values that have led to

ˆ∆XM
i , ˆ∆Xm

i . But in that case we use the implicit function
theorem to obtain the derivatives of the unknown function
S(E) that provides the unknowns X, Fx, Fz . Then the mean
value theorem is used to find bounds S(E), that are used to
filter out the current intervals for these unknowns.

If values for the Ei are found such that ˆ∆XM
i + α or

ˆ∆Xm
i − α are reached, then we use a gradient-descent

algorithm to obtain new value for ˆ∆Xm
i or ˆ∆XM

i and the
check step is repeated.

This approach requires to determine bounds for the un-
knowns Fx, Fz but the Irvine equations allows to establish
safe bounds for these variables as presented in the Annex.

VI. EXTENSIONS

In the previous sections we have addressed uncertainties
in the Ei but the approach may deal with other uncertainties
without changing its principle. For example we can use
exactly the same algorithm for dealing with uncertainties
in the Li0 instead of the Ei. We may also as well manage
uncertainties in both Ei and Li0. This increase the number
of extremal cases to consider (we have 2n such cases if we
consider n variables with uncertainties) but we will see in
the example section that the complexity is still tractable.

An important aspect of this possible extension is to in-
corporate uncertainties in the Ei but use the possibility to
manage interval values for the L0. A box for the L0 will be
mapped to a region in the operational workspace, meaning
that by doing this calculation for several boxes we may
check the positioning accuracy over a pre-defined operational
workspace. For that purpose it will be required to somewhat
modify the algorithm of section IV-A. Extremal points in that
case are described by a n-uplet of Ei and a n-uplet of L0 and
we consider that the nominal pose Xn is the one obtained



for the n-uplet of Ei. Initial values for the extremum of the
positioning error will then be calculated as the difference
between Xn and the poses obtained for all combinations of
Ei that include at least one Ei. A similar change has to made
for the verification checking.

This extension has also the interest of allowing to manage
simultaneously all the solutions of the inverse kinematics
even for redundant CDPR i.e. calculating the worst case for
the positioning errors. The algorithm and its extension will
be illustrated in the next section.

VII. EXAMPLE

We are considering a redundant planar 4-cables CDPR
that lies in a vertical plane. The coordinates x, z in meters
of its attachment points are A1(−1, 1), A2(1, 1), A3(1,−1),
A4(−1,−1), while the platform is a square with edge length
0.5, the center of mass of the platform being the center of the
square. The Young modulus of the cable material is set either
to 5e6 Pa (typical for Nitrile), 5e9 Pa (typical for Nylon) or
1e11 (typical for Aramid), the cable diameter is 6 mm and
µ = 0.2219 kg/m. The platform parameters are the xC , zC
coordinates of the center of mass and the rotation angle θ
which is the angle between the x axis of the reference frame
and of the mobile frame.

We choose as nominal pose xC =, zC = −0.2 and θ =
0 degrees. We use an inverse kinematics solver to obtain
one solution for the cable lengths at this pose with L1

0 =
L2
0 = 1.39387 and L3

0 = L4
0 = 1.152159 for Ei = 5e6,

L1
0 = L2

0 = 1.6325, L3
0 = L4

0 = 1.2907 for Ei = 5e9 and
L1
0 = L2

0 = 1.6327, L3
0 = L4

0 = 1.29088 for Ei = 1e11.
Note that if we have assumed ideal cable we will have got
L1
0 = L2

0 = 1.63248277, L3
0 = L4

0 = 1.29034879005. We
then assume that because of the wear the Young modulus of
the cable may decrease by 20%, leading to a range for the Ei
respectively equal to [4e6, 5e6] Pa, [4e9, 5e9] and [8e10, 1e11].

The initial estimations of the extremum obtained by using
the algorithm presented in section IV-A, implemented in
Maple, with a load of 1 kg, for two ranges for the Ei are
presented in table I,where the three first columns represent
the ∆, while the following number are 1 if Ei = Ei, -1
if Ei = Ei. The computation time is 0.97 seconds in both
cases.

E [4e6, 5e6] [4e9, 5e9] [8e10, 1e11] 1 2 3 4
ˆ∆xmC -0.03031 −0.5e−4 −0.2628e−5 1 -1 -1 1
ˆ∆xMC 0.03031 0.51e−4 0.2628e−5 -1 1 1 -1
ˆ∆zmC -0.028 −5.46e−5 −0.29e−5 -1 -1 1 1
ˆ∆zMC 0.0182 1.38e−5 0.7e−6 1 1 -1 -1
ˆ∆θmC -0.071039 −0.808e−4 −0.412e−5 1 -1 1 -1
ˆ∆θMC 0.071039 0.808e−4 −0.412e−5 -1 1 -1 1

TABLE I
EXTREMAL POSITIONING VARIATION (IN METER AND RADIAN) FOR

EXTREMAL VALUE OF THE Ei

We then set α to 1e−5 for the first range and 1e−9 for the
second one and use the algorithm presented in section V to

verify if the above result may be exceeded. The computation
time for checking each of the 6 extrema is about 30 seconds.

We then set the platform mass to 100 kg. For Ei in the
range [4e9, 5e9] we get ∆xmC =-0.438 cm, ∆xMC = 0.438 cm,
∆zmC =-0.308cm, ∆zMC = 0.234 cm, ∆θmC = -0.00714 rd and
∆θMC = 0.00714 rd.

For Ei in the range [8e10, 1e11] we get ∆xmC =-0.023
cm, ∆xMC = 0.023 cm, ∆zmC =-0.0157cm, ∆zMC = 0.0119 cm,
∆θmC = -0.000358 rd and ∆θMC = 0.000358 rd.

As may be seen from this examples change in the Ei
have a very small effect on the positioning accuracy except
if the cable are very elastic. A change on the Young modulus
has also a small effect on the inverse kinematic solving. For
example for a mass m=100 kg and Ei = 1e11 we get a
kinematic solution with L1

0 = L2
0 = 1.63118261912 and

L3
0 = L4

0 = 1.28950359. If we change Ei to 0.8e11, while
keeping the same values of L1

0, L
2
0 obtained for Ei = 1e11,

we get L3
0 = L4

0 = 1.2895727468 and therefore a minimal
change. On the other hand we get significant changes in the
cable tensions: for example for Ei = 1e11 the tensions are
τ1 = τ2 = 2000.25883N, τ3 = τ4 = 1854.447216270N,
while for Ei = 0.8e11 we have τ1 = τ2 = 801.41032518N,
τ3 = τ4 = 1362.4796774. A good point for safety must be
noticed: if we use the inverse kinematics solutions obtained
for the upper bound of the Young modulus, then the cable
tension will decrease if the Young modulus is lower than this
upper bound.

We then consider having uncertainties in the Li0 instead of
the Ei. We assume that the Li0 may have a value that differs
from the nominal value Ln0 by ±∆L0. We set Ei = 5e6, m=
1kg and table II presents the result for ∆L0=0.01 m and
0.02m. In these tables the two first columns represents the
∆, while the other numbers are 1 if Li0 = Ln0 + ∆L0 and -1
if Li0 = Ln0 −∆L0

∆L0 ±0.01 ±0.02 1 2 3 4
ˆ∆xmC -0.016398 -0.03278 -1 1 1 -1
ˆ∆xMC 0.016398 0.03278 1 -1 -1 1
ˆ∆zmC -0.01287 -0.0257 1 1 -1 -1
ˆ∆zMC 0.0182862 0.02573 -1 -1 1 1
ˆ∆θmC -0.03833 -0.077 -1 1 -1 1
ˆ∆θMC 0.03833 0.077 1 -1 1 -1

TABLE II
EXTREMAL POSITIONING VARIATION (IN METER AND RADIAN) FOR

EXTREMAL VALUE OF THE Li
0 FOR ∆L0 = ±0.01,±0.02m, m= 1KG

AND Ei = 5e6Pa.

If we set now m= 100kg, Ei = 1e11Pa, then we get the
results presented in table III.

The analysis of this section shows clearly that in term
of positioning accuracy the influence of uncertainty in the
elasticity parameter has a marginal effect compared to un-
certainties in cable lengths. On the other hand cable tensions
may be severely impacted by these uncertainties.

We have mentioned in the extension section VI that the
proposed algorithm allows one to check not only a pose but



∆L0 ±0.01 ±0.02 1 2 3 4
ˆ∆xmC -0.01923 -0.03845 -1 1 1 -1
ˆ∆xMC 0.01923 0.03845 1 -1 -1 1
ˆ∆zmC -0.0118 -0.0236 1 1 -1 -1
ˆ∆zMC 0.011785 0.02355 -1 -1 1 1
ˆ∆θmC -0.029273 -0.05855 -1 1 -1 1
ˆ∆θMC 0.029273 0.05855 1 -1 1 -1

TABLE III
EXTREMAL POSITIONING VARIATION (IN METER AND RADIAN) FOR

EXTREMAL VALUE OF THE Li
0 FOR ∆L0 = ±0.01,±0.02m, m= 100KG

AND Ei = 1e11Pa.

also a set of poses defined by a box for the L0. As an example
we have considered such a box defined by a range for all
Li0 equal to [Ln0i , [L

n
0i − 0.1], where Ln0i is the cable lengths

used for the pose (0,-0.2,0). We assume a mass of 1 kg and
a range [4e6, 5e6] for the Ei. The results is that the extrema
presented in table I are still valid.

VIII. CONCLUSION

The algorithm proposed in this paper is generic for evaluat-
ing the effect of parameter uncertainties in CDPR at a given
pose with a possible extension for checking the maximal
positioning error over a whole workspace. The analysis of
a planar and redundant CDPR has shown that errors in the
evaluation of the Young modulus of the cable material has
a marginal influence on the inverse kinematic solution and
on the positioning errors, compared to errors generated by
uncertainties on the cable lengths. On the other hand the
elasticity has a strong influence on the cable tensions. If
these results were confirmed over the whole workspace and
for the general case of 6 d.o.f. CDPR, then this suggest that it
will make sense of using a simplified Irvine model, assuming
infinite value for the Young modulus and then correcting for
the influence of elasticity by using a continuation approach
(as the Irvine model is continuous in terms of the E,µ
parameters).

The proposed algorithm has the advantage to provide an
estimation of the global extremal positioning errors with
an arbitrary accuracy. But this guarantee has a cost in
term of computation time, especially in the verification step.
Improving the computation time of this step (e.g. by using
the first and second order optimality condition) and applying
the algorithm for CDPR with 6 d.o.f, possibly redundant,. are
our next objectives.

IX. ANNEX

The purpose of this annex is to show that being given
the pose of a CDPR and consequently the location of its
attachment points in the cable plane, it is then possible
to determine lower and upper bounds for the Fx, Fz . The
calculation of these bounds is also valid for a set of poses
that are constrained to lie within a bounded domain.

A. Finding bounds for Fz
By looking at the Irvine equations 2 it is easy to see that

we will get zr = 0 for Fz = µgL0/2 and that zr < (>)0 if
Fz < (>)µgL0/2.

Let us assume that zr is negative (or equivalently that
Fz < µgL0/2). Equation (2) may be written as zr = B+A
with A = (

√
F 2
x+F 2

z −
√
F 2
x+(Fz−µgL0)2)/(µg) that is

negative and B = FzL0/(EA0)− µgL0/2. Hence we have
zr = B − epsilon with ε > 0 and B = zr + ε > zr which
leads to

Fz >
EA0z

r

L0
+
µgL0

2

and EA0z
r/L0 + µgL0/2 is a lower bound for Fz . Note

that we have already the upper bound µgL0/2 for Fz but
we may improve this bound. Indeed we have√

F 2
x + (Fz − µgL0)2 ≤√

F 2
x + F 2

z +
√

2µgL0(µgL0/2− Fz)
which leads to √

F 2
x + (Fz − µgL0)2 =√

F 2
x + F 2

z +
√

2µgL0(µgL0/2− Fz)− ε
Consequently we have

zr = B +
(ε−

√
2µgL0(µgL0/2− Fz))|

µg

Fz
EA0

−µgL
2
0

2
−

√
2µgL0(µgL0/2− Fz)

µg
= zr − ε

µg
< zr

Let us define a =
√
µgL0/2− Fz > 0 and consider the

equation

H = −L0a
2

EA0
−
√

2µgL0

µg
a− zr = 0

This equation has a negative root u2 and a positive root u1
with

u1 =
EA0

2L0
(

√
2L0

µg
− 4L0zr

EA0
−
√

2L0

µg
)

that is independent from Fz H is positive for a ∈]u1, u2[
and as a must be positive H will be negative for a ≥ u1.
This implies that H will be negative if µgL0/2−Fz > u21 or
equivalently if Fz < µgL0/2− u21. Therefore µgL0/2− u21
is an improved upper bound for Fz if we consider zr.

Let us assume that zr is positive (or equivalently that Fz >
µgL0/2). In that case A is positive so that zr = B + ε with
ε > 0. Therefore we have B < zr which leads to

Fz <
EA0z

r

L0
+
µgL0

2

and consequently EA0zr/L0 + µgL0/2 is an upper bound
of Fz , while µgL0/2 is a lower bound that can be improved.
Consider that √

F 2
x + (Fz − µgL0)2 ≥√

F 2
x + F 2

z −
√

2µgL0(Fz − µgL0/2)



so that A = (
√

2µgL0(Fz − µgL0/2) − ε)/(µg). so that
G = B+

√
2µgL0

√
Fz − µgL0/2 = zr + ε/(µg) > zr. If a

denote
√
Fz − µgL0/2 it is easy to show that G−zr will be

positive only if B is larger than the positive root u2 (that is
equal to the previous u1) of G− zr considered as a quadric
polynomial in a. We get that

Fz >
µgL0

2
+ u22

that will be minimal at zr. If zr has a negative lower bound
and a positive upper bound, then the range for Fz will be
obtained by taking as lower bound the one obtained for zr
and as upper bound the one obtained for zr.

B. Finding bounds for Fx
According to equation (1) we have

xr = Fx(U + V )

with

U = L0/(EA0)

V = (sinh−1(Fz/Fx)− sinh−1((Fz − µgL0)/Fx))/(µg)

If Fz < µgL0/2, then V is negative so that we have xr =
FxU + ε with ε > 0 so that FxU = xr − ε < xr. The
inequality FxU < xr leads to

Fx <
EA0x

r

L0

and an upper bound for Fx is therefore EA0xr/L0. A natural
lower bound for Fx is 0 but this bound may easily be
improved. Indeed it is easy to show that ∂xr/∂Fx is positive
so that if xr(Fx) is lower than xr, then the lower bound
for Fx is larger than Fx and a better bound may be found
efficiently by using a dichotomy process.
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