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Received: date / Accepted: date

Abstract Fractional flow reserve (FFR) has proved its efficiency in improving patients diagnosis. In this
paper, we consider a 2D reconstructed left coronary tree with two artificial lesions of different degrees. We
use a generalized fluid model with a Carreau law and implement the Windkessel boundary conditions at
the outlets. We introduce our methodology to quantify the FFR, and lead several numerical experiments.
For two different finite element meshes, we compare the FFR results for Navier Stokes versus generalized
flow models, and for Windkessel versus free outlets boundary conditions. We also used mixed boundary
conditions. Our results highlight the fact that free outlets boundary conditions are sensitive to the FFR
sensor position. The computational FFR results show that the degree of stenosis is not enough to classify a
lesion, while there is a good agreement between Navier Stokes and generalized flow model in classifying
the lesions.

Keywords Generalized flow model · Fractional flow reserve ·Windkessel model.

1 Introduction

The coronary arteries are a common and important site of the development of sclerotic lesions. Thus, a
detailed hemodynamic evaluation of the flow and its spatial and temporal distribution may give important
insight to understand the progression of atherosclerosis, which has a useful clinical value. In this view, the
fractional flow reserve (FFR) plays a central role, see [13]. The fractional flow reserve (FFR) is an invasive
measure that consists in introducing a pressure wire to a diseased artery to measure in vivo two values
of blood pressure : the aortic pressure Paortic, and the pressure distal to a lesion, Pdistal . These pressure
values are then used to calculate the FFR ratio. According to the value obtained, the clinician decides
whether the lesion is hemodynamically significant (FFR lower than 0.80) or non-significant (FFR higher
than 0.80). In the case of a significant lesion, a revascularization is necessary. In this case, a realistic
simulation of vascular blood flow inside the coronary arteries can be a better alternative to the invasive
FFR, see [2] and [18] . On the one hand, a realistic blood flow simulation requires the use of an adequate
flow model. For instance, Boujena and al. [2] presented a Non Newtonian flow model adapted to describe
blood flow in the presence of atherosclerosis. Simulation in their paper was performed in 2D and 3D
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simplified geometries. On the other hand, the choice of suitable boundary conditions is crucial. In our
previous paper [13], we presented a first virtual FFR estimation using the generalized fluid model in [2]
and led different simulations to study the impact of the lesions parameters on the FFR value. However,
we considered a simplified 2D geometry and reduced boundary conditions. In this paper, the domain
of simulation corresponds to a realistic diseased coronary tree with many outlets. Thus, we address a
special concern to the boundary conditions model. In fact, the shape and the type of the function at the
inlet are determinant of the flow and pressure patterns obtained in the domain. In the case where the
study aims at comparing the results to in vivo measurements, the inlet boundary condition should be
adequately chosen. Many works explored the effect of the inlet boundary condition, among them Liu and
al. [4] and Taylor and al. [3] presented realistic forms of inlet boundary condition in the case of coronary
blood flow. Concerning the outlet, the most common boundary condition for blood flow correspond to a
constant pressure. However, this choice is not realistic when it comes to complex geometries, with many
outlets. The strategy of resolution in this case consists in dividing the domain into two parts : the upstream
domain, and the downstream domain that includes the outlets. The outlet boundary conditions are defined
in the downstream domain using an appropriate model, usually based on an electrical analogy, known as
the Windkessel effect, see [5] and [6]. In the first section, we give the essential elements for simulation :
the 2D multi-stenotic domain defined using segmentation techniques, the realistic flow model and finally
suitable boundary conditions. In the second section, we present the pressure and the flow distributions
obtained for three different outlet boundary conditions. Finally, in the last section, we give an estimation
of the fractional flow reserve (FFR) for two lesions using the pressure pattern in the stenotic coronary tree.
The FFR calculation is performed using two different flow models: Navier Stokes and the generalized flow
model, and considering diverse outlet boundary conditions.

2 Methods

2.1 Domain definition: 2D image segmentation

In order to create a realistic geometry for numerical simulation, we started from a 2D patient specific
angiography. An enhancement technique was done before this image could be segmented. In this phase,
different filters were used to improve the contrast of the original image, see [15]. Then opening/closing
Matlab functions were used to extract a black and white image that contains only the coronary tree in
which we are interested. It should be noticed that despite the fact that the original angiography corre-
sponds to a stenotic coronary tree, due to the lower quality of the image, and to the small degree of
stenosis of the lesion, this last could not appear in the black and white image. Since our aim in this paper
is to investigate the impact of the flow model and the boundary conditions on the FFR, we introduced two
different artificial lesions in the coronary tree. The first lesion corresponds to 68% stenosis and was drawn
in the same location of the real patient’s lesion. The second lesion corresponds to 56% stenosis and was
drawn at the entrance of the longest branch in the coronary tree. This choice is justified by the purpose
of calculating the fractional flow reserve in the case of free outlet boundary conditions. The resulting 2D
multi-stenotic domain, the original extracted tree, and the original angiography are given in figure 1.

Starting from the new multi-stenotic coronary tree, the segmentation and the meshing were performed
later using a homemade Freefem++ code, see [7].

2.2 Coronary blood flow model

The blood was assumed as an incompressible, non-Newtonian viscous fluid obeying the Carreau law with
the viscosity shear rate relation given by :

µ = µ∞ +(µ0−µ∞)(1+(λ s(u))2)(n−1)/2 (1)
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Fig. 1 From left to right: The original angiography image, the coronary tree of interest is framed with red. The Black and white
original image. The resulting multi-stenotic coronary tree.

Fig. 2 The 2D geometry considered. Arrows indicate the isoline orientation.

where µ0 = 0.0456 Pa.s and µ∞ = 0.0032 Pa.s are the values of the viscosity for the lowest and highest
shear rates. The parameters values λ = 10.03s and n = 0.344 are typical for the Carreau law. The shear
rate s(u) is defined as follows:

(s(u))2 = 2Du : Du = 2∑
i, j
(Du)i j(Du) ji (2)

with :
Du =

1
2
(∇u+∇

T u) (3)

The geometrical 2D domain Ω f is given in figure 2. The time dependent two dimensional generalized
fluid equations presented in [1] were considered as the governing equations in the tree domain Ω f :

{
ρ f

∂u
∂ t

+ρ f (u.∇)u−∇.(2µ(s(u))Du)+∇p = 0, in Ω f × (0,Tc)

∇.u = 0, in Ω f × (0,Tc)
(4)

where u is the incompressible velocity and p
is the pressure. In the computations, the blood density ρ f was assumed to be constant at 1060 Kg.m−3. A
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Fig. 3 Left, spline function approaching left coronary blood flow. Right, the flow function prescribed at the inlet I(t).

no-slip condition was applied to the velocities at the lumen wall, considered to be inelastic and imperme-
able. A steady Stokes initial condition, with a Poiseuille function at the inlet was imposed. Tc corresponds
to the duration of a cardiac cycle under normal conditions, we took Tc = 0.8s (corresponding to a heart
rate of 75 beats per minute).

2.3 Boundary conditions : Inlet / Outlets

Since the processed image treated corresponds to a left coronary artery, we used sinusoı̈dal functions to
approach the inlet flow distribution into the left coronary artery. The shape of this function is well known,
see [4]. Considering that Tsys is the period of systole, ts the start of the systolic phase of the current cardiac
cycle and td the start of the diastolic phase, this periodic function I(t) can be written as follows:

I(t) =
{
(Ip + I0 ∗ sin(π ∗ (t− ts)/T sys),0), 0≤ t ≤ Tsys
(Ip + Ic ∗ sin(π ∗ (t− td)/(Tc−T sys)),0), Tsys ≤ t ≤ Tc.

(5)

where Ip = 10 cm/s represents the dominant flow, I0 = 10 cm/s and Ic = 10 cm/s. Tsys is taken
equal to 0.33s. The remaining duration from the cardiac cycle corresponds to a diastole. The profile of
this function is given in figure 3.

To assess the influence of outlet boundary conditions on the pressure and flow fields, two different
outlet boundary conditions were utilized in this study: free pressure and a 2 elements Windkessel model
[6] to incorporate the resistant effect of the downstream bed. In order to comply to the physics of the
downstream domain, additional terms have to be added to the flow model. At this level, we need to
introduce the two operators: M = [Mm,

−→
Mc] and H = [Hm,

−→
Hc]. Each one of M and H is composed of a

momentum and a continuity operator respectively. They are defined at the outlets based on the chosen
model to represent the downstream domain, see [6]. In this paper, we opted for a Windkessel model. The
variational formulation of our problem in this case can be written as follows:
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ρ f

∫
Ω f

∂u
∂ t

vdx+(Au,v)+ρ f b(u,u,v)−
∫

Γout

v.(Mm(u, p)+Hm(u, p)).−→n ds

+
∫

Γout

q.(
−→
Mc(u, p)+

−→
Hc(u, p)).−→n ds = 0, ∀v ∈V,∀p ∈ P

u = I(t), in Γin
u(0) = u0, in Ω f

(6)

with :

(Au,v) =
∫

Ω f

2µ(s(u))Du : Dvdx, (7)

b(u,v,w) =
2

∑
i, j=1

∫
Ω f

ui
∂v j

∂xi
w jdx (8)

The expressions of the boxed terms are given in the next section.

2.4 The Windkessel model

The Windkessel model (or the lumped parameter model) was originally derived by the physiologist Otto
Frank in an article published in 1899 [8] to describe the afterload of the heart related to pumping blood
through the arterial system, as described in [6]. It is based on an electrical analogy where an arterial
tree is assimilated to an electric circuit. The parameters of the components of the circuit (resistances,
capacitances, etc) correspond to the properties of each branch. The variables are the voltage at every node
and the current in each branch. In the context of blood flowing in an arterial network, pressure plays
the role of voltage and flow rate the role of current. During a cardiac cycle, a 2 elements Windkessel
model takes into account the effect of arterial compliance and total peripheral resistance. In the electrical
analogy, the arterial compliance (C in cm3/mmHg ) is represented as a capacitor with electric charge
storage properties. Peripheral resistance of the systemic arterial system (R in mmHg s/cm3) is represented
as an energy dissipating resistor. The flow of blood in the heart (I(t) in cm3/s) is analogous to that of
current flowing in the circuit and the blood pressure (Pd(t) in mmHg) is modeled as a time-varying
electric potential. Figure 4 gives a schematic view of the circuit. The theoretical modeling as seen in the
electrical analogy is given by the equation:

I(t) =
Pd(t)

R
+C

dPd(t)
dt

Thus, and as proved in [6], the operators M and H are defined so that the boxed terms introduced in
the previous section are defined as follows, where Pd(t) is a solution to the electrical equation above:

∫
Γout

v.Mm(u, p).−→n ds

=−
∫

Γout

v.−→n (R
∫

Γout

u.−→n ds+
∫ t

0

e−(t−t1)/δ

C

∫
Γout

u(t1).nds.dt1 +−→n .τ.−→n ) ds

+
∫

Γout

v.τ.−→n ds

(9)
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Fig. 4 Windkessel electrical analogy.

∫
Γout

v.Hm(u, p).−→n ds

=−
∫

Γout

v.−→n ((P(0)−R
∫

Γout

u(0).−→n dΓ −Pd(0))e−t/δ +Pd(t)) ds

(10)

where δ = RC, R = 0.95 and C = 1.06. After the resolution of our problem using a finite element
method under FreeFem++, we obtain the numerical results presented in the next section.

2.5 Fractional flow reserve (FFR)

The fractional flow reserve is crucial to quantify the hemodynamic severity of the stenosis in the case of
intermediate lesions, where the degree of stenosis varies between 40% and 70%, see [10]. From a clinical
standpoint, this measure indicates the degree of implication of stenosis in ischemia, that is a deficient
supply of oxygen to the myocardium.

To measure the fractional flow reserve (FFR) during the invasive test, the operator crosses the coro-
nary lesion with an FFR-specific guide wire. This guide wire is designed to record the coronary arterial
pressure beyond the lesion (figure 5 left). Once the transducer is distal to the lesion (approximately 20
mm), a hyperemic stimulus is administered by injection through the guiding catheter. The maximal hyper-
emia should be reached to avoid underestimating the value of FFR, see [9]. The mean arterial pressures
from the pressure wire transducer Paortic and from the guide sensor Pdistal are then used to calculate FFR
ratio: FFR = Pdistal

Paortic
(figure 5 right). The aortic pressure Paortic is the central blood pressure at the root of

the aorta, while the distal pressure Pdistal corresponds to the pressure at the surface of the sensor (pressure
wire in figure 5 left). Both pressures given by the FFR instrument are calculated as a temporal mean, over
the cardiac cycle, of pressures ps(t) captured at each frequency drop, see [13]. These pressures can be
written as follows:

P =
1
Tc

∫ Tc

0
ps(t)dt (11)

An FFR value lower than 0.75 indicates a hemodynamically significant lesion. An FFR value higher
than 0.8 indicates a lesion that is not hemodynamically significant. Values between 0.75 and 0.80 are
critical. In this case, the FFR is not a reliable element in clinical decision-making.
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Fig. 5 Left, schema of the invasive FFR technique. Right, a typical example of FFR measurement. Automated calculation of FFR
(yellow) corresponds to the ratio of mean distal coronary pressure (green) to mean aortic pressure (red) during maximal hyperemia.

Fig. 6 FFR calculation. The mutli-stenotic coronary tree contains two lesions: 56% stenosis and 68% stenosis.

Our objective is to give an estimation of the FFR for both lesions in the diseased coronary tree using
the pressure distributions obtained in the tree domain. We aim at the study of the effect of the flow model
and the outlet boundary conditions on the FFR value. For this reason, we consider two different flow
models: Navier Stokes versus the generalized flow model (presented in the previous section), and three
options for outlets boundary conditions: Windkessel, free outlets and mixed boundary conditions given
in detail in the next section. We assume that the 2D geometry for FFR measurements corresponds to a
maximal vasodilation. In fact, a clinically certified FFR value (compared to real FFR measurements) is
not our ultimate goal in this paper. We implement an algorithm to comput a virtual FFR following the
same calculation strategy as used by the clinical FFR device, like in [13]. At each time step, the aortic
pressure Pa is calculated by the mean pressure of the points at 1 cm from the inlet of the coronary tree,
in order to avoid all the transient effects at the entrance.

The distal pressure Pd is obtained at a distance of 1 cm beyond each lesion on the sensor contour
assimilated to a disk with constant diameter. The ratio between the sensor diameter and the reference
diameter of the branch is: Dsensor

Dre f
= 1

10 , based on the common magnitude of the sensor diameter that is
0.014′′ = 0.35 mm. It should be noticed that the 2D disk is not virtuel and is considered as an obstacle to
the flow, in contrast to the virtual box for Pa calculation. The diagram in figure 6 describes the approach.
At each cardiac cycle - and during five consecutive cardiac cycles - a temporal mean pressure of Pa and
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Fig. 7 Plot of the two meshes used for simulations: 14240 nodes vs 55353 nodes.

Pd is performed. The ratio of these two pressures gives an FFR value at each cardiac cycle. In order to
increase the precision of the computed FFR, we used two different finite element meshes given in figure
7.

3 Results

3.1 Numerical results

Simulations are performed using the finite element solver Freefem++, based on an explicit time dis-
cretization scheme. Fluid velocity and pressure are calculated at each time step. The time step used is
δ t = 5.10−3 s and the duration of a cardiac cycle is Tc = 0.8 s. Five consecutive cardiac cycles were
simulated to reach a periodic regime of the flow. As for the spatial discretization, two different sizes of
mesh were considered: the first mesh file contains 14240 elements, and a second mesh which contains
55353 elements is obtained by using a split command. The global layout of the solution was not mod-
ified, but the values for the velocity and pressure in each element were slightly different. That explains
the variation in the FFR values given in table 1 (last section). This is mainly due to the curved aspect of
the 2D domain and to the fact that the common finite element method is not well-adapted in our case,
see [12]. Moreover, it is recognized that the numerical resolution of the Non Newtonian Navier Stokes
equation is sensitive to the mesh size and to mesh modification.
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Fig. 8 From top to bottom: Velocity and pressure fields at t = 0.59s (peak diastole) using Windkessel model, free pressure outlet
boundary conditions and mixed outlet boundary conditions (as defined in the paragraph above) respectively.

The results in figure 8 give the flow (magnitude of velocity) and pressure patterns into the stenotic
coronary artery at the peak diastole of the first cardiac cycle. The same flow model - Non Newtonian
Navier Stokes - is used for all simulations. As for the inlet, the same boundary condition that is introduced
in the first section is adopted, see figure 3. However, three different outlet boundary conditions were
considered: firstly, we considered that the whole coronary tree corresponds to a 2 elements Windkessel
model. Secondly, we used a free pressure boundary condition for all the outlets. Finally, we introduced
mixed outlet boundary conditions where the longest stenotic branch of the tree is considered as a free
outlet, and the remaining three branches corresponds to a 2 elements Windkessel model.

3.2 Fractional flow reserve (FFR) computation

The lesions of interest have a degree of stenosis equal to 56% and 68%, which makes them both in the
intermediate value range. That justifies the necessity of the fractional flow reserve in taking a clinical
decision. Table 1 gives the FFR values for these two lesions using Navier Stokes and the generalized flow
model and considering three different options for the outlet boundary conditions: Windkessel model, free
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Mesh size Coarse mesh
Flow model Navier Stokes Generalized flow
Outflow BC Wind-

kessel
Free

Outlet
Mixed

BC
Wind-
kessel

Free
Outlet

Mixed
BC

FFR 1 0.760 0.119 0.885 0.7478 0.106 0.8567
FFR 2 0.917 0.710 0.717 0.908 0.698 0.722
Mesh size Fine mesh
Flow model Navier Stokes Generalized flow
Outflow BC Wind-

kessel
Free

Outlet
Mixed

BC
Wind-
kessel

Free
Outlet

Mixed
BC

FFR 1 0.8205 0.2459 0.9891 0.8039 0.2082 0.9791
FFR 2 0.9515 0.8704 0.7172 0.9404 0.8096 0.7229

Table 1 FFR values for both lesions correponding to the two flow models and the different outlet boundary conditions. The two
mesh files presented in figure 7 were used for these calculations.

outlets and mixed outlet boundary conditions where only the longest branch is considered free while the
other branches are assimilated to a 2 elements Windkessel model. The FFR result in table 1 corresponds
to the mean FFR during five cardiac cycles in each different case of study. As mentioned in the previous
section, our model and thus the algorithm of FFR estimation are sensitive to the mesh discretization. In
this view, we consider that the finer mesh provides a better estimation of the FFR as it better approximates
the 2D curved domain. Consequently, the analysis of the different results in table 1 is based on the finer
mesh simulations.

4 Discussions

Results in figure 8 show that the velocity and pressure fields have approximately the same layout with
Windkessel and free outlets boundary conditions even if the isovalues are different. This is due to the fact
that in both these cases no one of the outlets is advantageous comparing to the others (resistive effect or
free exit in all of them). In contrary, with mixed boundary conditions, the longuest branch is free while
the rest corresponds to a 2 element Windkessel model. As a result, we observe lower values of pressure
in this branch and eventually higher values of velocity which is completely intuitive.

The flow model considered for simulations is only slightly influencing the FFR value. For example,
considering the possible options for outlets boundary conditions, the difference in the FFR between the
Navier Stokes model and the non-Newtonian flow model does not exceed 2% where the outlets are not
all free. In the case of free outlets, the decrease in the FFR value for the first lesion is quite surprising
(cells in gray in the table): up to 79% and 75% with the generalized fluid and the Navier Stokes models
respectively. In fact, there is a huge pressure drop in the Pd value since the distal sensor for this lesion is
not far enough from the free exit. In the contrary, we do not have this problem with the second lesion as
the branch is long enough beyond the sensor. That shows that this type of boundary conditions are not ap-
propriate and not realistic to perform a such calculation in the coronary arteries, though their widespread
use, see [14]. Now, comparing between Windkessel and mixed boundary conditions, we can see that the
first lesion conserves the same FFR classification - hemodynamically non-significant - while the second
lesion moves from the non- significant stenosis class to the significant one. These same classifications are
conserverd with both flow models.

Considering the fact that the first lesion has an important degree of stenosis (68%) while the second
one is a 56% lesion, this result confirms that the FFR value is not only depending on the degree of stenosis,
which renders a physical severity of the lesion, but also on the haemodynamical flow inside the connected
tree, strongly impacted by the flow model and the nature of boundary conditions (inlets and especially
outlets boundary conditions).
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5 Conclusions

In recent decades, much progress has been made in research coupling medical imaging and computational
fluid dynamics to study cardiovascular hemodynamics, see [11]. The developed methods could provide
clinicians with powerful new tools, rivaling and even surpassing experimental fluid mechanics methods
to investigate the mechanisms of disease and to design medical devices and therapeutic interventions.
The obtention of clinically useful numerical results is not possible without the combination of different
elements. On one hand, realistic models, suitable boundary conditions, and realistic domains for simula-
tion. On the other hand, the interaction between clinicians and mathematicians is compulsory in terms of
assessment and definition of new problematics.

In this work we calculated the fractional flow reserve (FFR) corresponding to a multi-stenotic patient
specific coronary tree. The two lesions of interest were not present in the original angiography, but were
incorporated artificially into the tree in the same way a lesion appears in the X-ray angiography. Thus,
the used geometry is enough realistic to represent important features of the flow in a real diseased coro-
nary tree. The two intermediate lesions of interest have degrees of stenosis of 68% and 56%. The FFR
classification for these two lesions was not sensitive to the flow model adopted for the simulation even
if the FFR value were slightly different between the Navier Stokes and the non-Newtonian flow model.
However, according to the chosen option for outlets boundary conditions we could have a different lesion
classification. Based on the finer mesh simulations, the second lesion moved from the insignificant to the
significant value range stenosis. Based on the simulation results, we summarize following conclusions:

– There is a good agreement between Navier Stokes and the generalized flow model in simulating coro-
nary blood flow and thus in classifying coronary lesions provided fluid parameters are appropriate,
see [17].

– Free outlet boundary conditions are not realistic to consider for FFR computation, since they are
sensitive to the FFR sensor position. Moreover, they do not reproduce the resistant effect of the coro-
nary downstream bed. In contrary to the Windkessel model even if the parameters R and C are taken
constant.

– The study confirms the fact that the degree of stenosis is not enough to quantify the severity of a
lesion, see [16]. In our case, the two considered lesions had different classifications in each time
outlet boundary conditions were modified.

Our aim was to place emphasis on the sensitivity of the FFR calculations and flow features in coronary
arteries to the physical model, the boundary conditions and the space discretization as well, keeping out of
scope the important purpose of validating virtual FFR against clinical data. Indeed, the FFR value issued
from a 2D simulation can not be directly compared to the real invasive FFR, since a 2D angiography
based reconstruction of the coronary tree is not the best representation of the physiological domain. This
is principally due to branch torsion and to transient movements induced by the respiratory system during
image recording. As a result, one perspective to this work is the reproduction of the coronary blood flow
into a 3D geometry, see [11].
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