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Abstract

Location-scale Dirichlet process mixtures of Gaussians (DPM-G) have proved ex-

tremely useful in dealing with density estimation and clustering problems in a wide

range of domains. Motivated by an astronomical application, in this work we address

the robustness of DPM-G models to affine transformations of the data, a natural re-

quirement for any sensible statistical method for density estimation. First, we devise

a coherent prior specification of the model which makes posterior inference invariant

with respect to affine transformation of the data. Second, we formalise the notion of

asymptotic robustness under data transformation and show that mild assumptions on

the true data generating process are sufficient to ensure that DPM-G models feature

such a property. Our investigation is supported by an extensive simulation study and

illustrated by the analysis of an astronomical dataset consisting of physical measure-

ments of stars in the field of the globular cluster NGC 2419.

Keyword Affine data transformations; Asymptotic robustness; Dirichlet process mixture

models; Clustering; Multivariate density estimation.
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1 Introduction

A natural requirement for statistical methods for density estimation and clustering is for

them to be robust under affine transformations of the data. Such a desideratum is exac-

erbated in multivariate problems where data components are incommensurable, that is not

measured in the same physical unit, and for which, thus, the definition of a metric on the

sample space requires the specification of constants relating units along different axes. As an

illustrative example, consider astronomical data consisting of position and velocity of stars,

thus living in the so-called phase-space: a metric on such a space can be defined by setting a

dimensional constant to relate positions and velocities. In this setting, any sensible statistical

procedure should be robust with respect to the specification of such a constant (Ascasibar

and Binney, 2005; Maciejewski et al., 2009). This is specially important considering that

often scarce to no a priori guidance about dimensional constants might be available, thus

making the model calibration a daunting task. The motivating example of this work comes

indeed from astronomy, the dataset we consider consisting of measurements on a set of 139

stars, possibly belonging to a globular cluster called NGC 2419 (Ibata et al., 2011). Globular

clusters are sets of stars orbiting some galactic center. The NGC 2419, showed in Figure 1,

is one of the furthest known globular clusters in the Milky Way. For each star we observe a

four-dimensional vector (Y1, Y2, V, [Fe/H]), where (Y1, Y2) is a two-dimensional projection on

the plane of the sky of the position of the star, V is its line of sight velocity and [Fe/H] its

metallicity, a measure of the abundance of iron relative to hydrogen. Out of these four com-

ponents, only Y1 and Y2 are measured in the same physical unit, while dimensional constants

need to be specified in order to relate position, velocity and metallicity. A key question

arising with these data consists in identifying the stars that, among the 139 observed, can

be rightfully considered as belonging to NGC 2419: a correct classification would be pivotal

in the study of the globular cluster dynamics. Astronomers expect the large majority of the

observed stars to belong to the cluster: the remaining ones, called field stars or contami-

nants, are Milky Way stars, unrelated to the cluster, that happen to appear projected in the
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Figure 1: An image of the remote Milky Way globular cluster NGC 2419 (about 300 000
light years away from the solar system). Picture by Bob Franke, with permission (www.bf-
astro.com).

same region of the plane of the sky. In general the contaminants have different kinematic

and chemical properties with respect to the cluster members. Considering the nature of the

problem, this research question can be formalised as an unsupervised classification problem,

the goal being the identification of the stars which belong to the largest cluster, which can

be interpreted as the NGC 2419 globular cluster. Admittedly, the terms of such a classifica-

tion problem are not limited to the considered dataset but, on the contrary, are ubiquitous

in astronomy and, more in general, might arise in any field where data components are

incommensurable.

Bayesian nonparametric methods for density estimation and clustering have been suc-

cessfully applied in a wide range of fields, including genetics (Huelsenbeck and Andolfatto,

2007), bioinformatics (Medvedovic and Sivaganesan, 2002), clinical trials (Xu et al., 2017),

econometrics (Otranto and Gallo, 2002), to cite but a few. In this work we focus on the
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Dirichlet process mixture (DPM) model introduced by Lo (1984), arguably the most pop-

ular Bayesian nonparametric model. Although its properties have been thoroughly studied

(see, e.g., Hjort et al., 2010), little attention has been dedicated to its robustness under data

transformations (see Arbel and Nipoti, 2013). To the best of our knowledge, only Bean et al.

(2016) and Shi et al. (2018) study the effect of data transformation under a DPM model.

The goal of Bean et al. (2016) is to transform the sample so to facilitate the estimation of

univariate densities on a new scale and thus to improve the performance of the methodology;

Shi et al. (2018), instead, study the consistency of DPM models under affine data transfor-

mation, when investigating the properties of the so-called low information omnibus prior for

DPM models they introduce.

In this paper we investigate the effect of affine transformations of the data on location-

scale DPM of multivariate Gaussians (DPM-G) (Müller et al., 1996), which will be introduced

in Section 2. This is a very commonly used class of DPM models whose asymptotic prop-

erties have been studied by Wu and Ghosal (2010) and Canale and De Blasi (2017), among

others. While rescaling the data, often for numerical convenience, is a common practice, the

robustness of multivariate DPM-G models under such transformations remains essentially

unaddressed to date. We fill this gap by formally studying robustness properties for a flexible

specification of DPM-G models, under affine transformations of the data. Specifically, our

contribution is two-fold: first, we formalise the intuitive idea that a location-scale DPM-G

model on a given dataset induces a location-scale DPM-G model on rescaled data and we

provide the parameters mapping for the transformed DPM-G model; second, we introduce

the notion of asymptotic robustness under affine transformations of the data and show that,

under mild assumptions on the true data generating process, DPM-G models feature such

robustness property. As a by-product, we show that the original assumptions of Wu and

Ghosal (2010) and Canale and De Blasi (2017) for ensuring posterior consistency of Dirichlet

process mixtures can be simplified by removing a redundant assumption regarding the finite

entropy of the model. This result, proven in Lemma 1, can be of independent interest.
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Our theoretical results are supported by an extensive simulation study, focusing on both

density and clustering estimation. These findings make the DPM-G model a suitable can-

didate to deal with problems where an informed choice of the relative scale of different

dimensions seems prohibitive. We thus fit a DPM-G model to the NGC 2419 dataset and

show that it provides interesting insight on the classification problem motivating this work.

The rest of the paper is organised as follows. In Section 2 we describe the modelling

framework and introduce the notation used throughout the paper. Section 3 presents the

main results of the work, with two-fold focus on finite sample properties on the one hand,

and large sample asymptotics on the other. A thorough simulation study is presented in

Section 4 while Section 5 is dedicated to the analysis of the NGC 2419 dataset. Conclusions

are discussed in Section 6. Proofs of all the results are postponed to Appendix A.

2 Modelling framework

Let X(n) := (X1, . . . ,Xn) be a sample of d-dimensional observations Xi := (Xi,1, . . . , Xi,d)
ᵀ

defined on some probability space (Ω,A ,P) and taking values in Rd. Consider an invertible

affine transformation g : Rd −→ Rd, that is g(x) = Cx + b where C is an invertible matrix

of dimension d× d and b a d-dimensional column vector. The nature of the transformation

g is such that, if applied to a random vector X with probability density function f , it gives

rise to a new random vector g(X) with probability density function fg = | det(C)|−1f ◦ g−1.

Henceforth we denote by F the space of all density functions with support on Rd. The

DPM model (Lo, 1984) defines a random density taking values in F as

f̃(x) =

∫
Θ

k(x;θ)dP̃ (θ) (1)

where k(x;θ) is a kernel on Rd parameterized by θ ∈ Θ, P̃ is a Dirichlet process (DP) with

parameters α (precision parameter) and P0 := E[P̃ ] (base measure), a distribution defined

on Θ (Ferguson, 1973). The almost sure discreteness of P̃ allows the random density f̃ to
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be rewritten as

f̃(x) =
∞∑
i=1

wik(x;θi), (2)

where the random atoms θi are i.i.d. from P0, and the random jumps wi, independent of the

atoms, admit the following stick-breaking representation (Sethuraman, 1994): given a set of

random weights vi
iid∼ Beta(1, α) (independent of the atoms θi), then w1 = v1 and, for j ≥ 2,

wj = vj
∏j−1

i=1 (1 − vi). While several kernels k(x;θ) have been considered in the literature,

including e.g. skew-normal (Canale and Scarpa, 2016), Weibull (Kottas, 2006), Poisson

(Krnjajić et al., 2008), here we focus on the convenient and commonly adopted Gaussian

specification of Escobar and West (1995) and Müller et al. (1996). In the latter case, k(x;θ)

represents a d-dimensional Gaussian kernel φd(x;µ,Σ), provided that θ = (µ,Σ), where the

column vector µ and the matrix Σ represent, respectively, mean vector and covariance matrix

of the Gaussian kernel. This specification defines the model referred to as d-dimensional

location-scale Dirichlet process mixture of Gaussians (DPM-G), which can be represented in

hierarchical form as

Xi | θi = (µi,Σi)
ind∼ φd(xi;µi,Σi),

θi | P̃
iid∼ P̃ , (3)

P̃ ∼ DP (α, P0).

The almost sure discreteness of P̃ implies that the vector θ(n) := (θ1, . . . ,θn) might show

ties with positive probability, thus leading to a partition of θ(n) into Kn ≤ n distinct values.

This, in turn, leads to a partition of the set of observations X(n), obtained by grouping

two observations Xi1 and Xi2 together if and only if θi1 = θi2 . This observation implies

that the posterior distribution of the random density f̃ carries useful information on the

clustering structure of the data, thus making DPM-G models convenient tools for density

and clustering estimation problems.

Although other specifications for the base measure can be considered (see, e.g., Görür
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and Rasmussen, 2010), we choose to work within the framework set forth by Müller et al.

(1996) where P0 is defined as the product of two independent distributions for the location

parameter µ and the scale parameter Σ, namely a multivariate normal and an inverse-

Wishart distribution, that is

P0(dµ, dΣ;π) = Nd(dµ; m0,B0)× IW (dΣ; ν0,S0). (4)

For the sake of compactness, we use the notation π := (m0,B0, ν0,S0) to denote the vector of

hyperparameters characterising the base measure P0. We denote by Π the prior distribution

induced on F by the DPM-G model (3) with base measure (4).

3 Theoretical results

3.1 DPM-G model and affine transformations of the data

Let f̃π be a DPM-G model defined as in (3), with base measure (4) and hyperparameters π.

The next result shows that, for any invertible affine transformation g(x) = Cx + b, there

exists a specification πg := (m
(g)
0 ,B

(g)
0 , ν

(g)
0 ,S

(g)
0 ) of the hyperparameters characterising the

base measure in (4), such that the deterministic relation f̃πg = | det(C)|−1f̃π ◦ g−1 holds.

That is, for every ω ∈ Ω and given a random vector X distributed according to f̃π(ω), we

have that f̃πg(ω) is the density of the transformed random vector g(X).

Proposition 1. Let f̃π be a location-scale DPM-G model defined as in (3), with base measure

(4) and hyperparameters π = (m0,B0, ν0,S0). For any invertible affine transformation

g(x) = Cx + b, we have the deterministic relation

f̃πg = | det(C)|−1f̃π ◦ g−1,

where πg := (Cm0 + b,CB0C
ᵀ, ν0,CS0C

ᵀ).

7



While Proposition 1 can be derived from general properties of the Dirichlet process (see

Lijoi and Prünster, 2009), a direct proof is provided in Appendix A.1. This result implies

that, for any invertible affine transformation g, modelling the set of observations X(n) with a

DPM-G model (3), with base measure (4) and hyperparameters π, is equivalent with assum-

ing the same model with transformed hyperparameters πg, for the transformed observations

g(X)(n) := (g(X1), . . . , g(Xn)). As a by-product, the same posterior inference can be drawn

conditionally on both the original and the transformed set of observations, as the conditional

distribution of the random density f̃πg , given g(X)(n), coincides with the conditional distribu-

tion of | det(C)|−1f̃π ◦ g−1, given X(n). Proposition 1 thus provides a formal justification for

the procedure of transforming data, e.g. via standardisation or normalisation, often adopted

to achieve numerical efficiency: as long as the prior specification of the hyperparameters of

a DPM-G model respects the condition of Proposition 1, transforming the data does not

affect posterior inference.

The elicitation of an honest prior, thus independent of the data, for the hyperparameters

π of the base measure (4) of a DPM model is in general a difficult task. A popular practice,

therefore, consists in setting the hyperparameters equal to some empirical estimates π̂(X(n)),

by applying the so-called empirical Bayes approach (see, e.g., Lehmann and Casella, 2006).

Recent investigations (Petrone et al., 2014; Donnet et al., 2018) provide a theoretical justi-

fication of this hybrid procedure by shedding light on its asymptotic properties. The next

example shows that this procedure satisfies the assumptions of Proposition 1 and, thus, guar-

antees that posterior Bayesian inference, under an empirical Bayes approach, is not affected

by affine transformations to the data.

Example 1 (Empirical Bayes approach). A commonly used empirical Bayes approach for

specifying the hyperparameters π of a DPM-G model, defined as in (3) and (4), consists in

setting

m0 = X, B0 =
1

γ1

S2
X, S0 =

ν0 − d− 1

γ2

S2
X, (5)
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where X =
∑n

i=1 Xi/n and S2
X =

∑n
i=1(Xi−X)(Xi−X)ᵀ/(n−1) are the sample mean vector

and the sample covariance matrix, respectively, and γ1, γ2 > 0, ν0 > d+1. This specification

for the hyperparameters π has a straightforward interpretation. Namely, the parameter m0,

mean of the prior guess distribution of µ, can be interpreted as the overall mean value and,

in absence of available prior information, set equal to the observed sample mean. Similarly,

the parameter B0, covariance matrix of the prior guess distribution of µ, is set equal to a

penalised version of the sample covariance matrix S2
X, where γ1 takes on the interpretation

of the size of the ideal prior sample upon which the prior guess on the distribution of µ is

based. Similarly, the hyperparameter S0 is set equal to a penalised version of the sample

covariance matrix S2
X, choice that corresponds to the prior guess that the covariance matrix

of each component of the mixture coincides with a rescaled version of the sample covariance

matrix. Specifically, S0 = S2
X(ν0− d− 1)/γ2 follows by setting E[Σ] = S2

X/γ2 and observing

that, by standard properties of the inverse-Wishart distribution, E[Σ] = S0/(ν0 − d − 1).

Finally the parameter ν0 takes on the interpretation of the size of an ideal prior sample upon

which the prior guess S0 is based. Next we focus on the setting of the hyperparameters πg,

given the transformed observations g(X)(n). The same empirical Bayes procedure adopted

in (5) leads to

m
(g)
0 = g(X) = Cm0 + b, B

(g)
0 =

1

γ1

S2
g(X), S

(g)
0 =

ν0 − d− 1

γ2

S2
g(X).

Observing that S2
g(X) = CS2

XCᵀ and setting ν
(g)
0 = ν0 shows that the described empirical

Bayes procedure corresponds to πg = (Cm0 + b,CB0C
ᵀ, ν0,CS0C

ᵀ) and, thus, by Propo-

sition 1, f̃πg = | det(C)|−1f̃π ◦ g−1.

3.2 Large n asymptotic robustness

We investigate the effect of affine transformations of the data on DPM-G models by studying

the asymptotic behaviour of the resulting posterior distribution in the large sample size
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regime. To this end, we fit the same DPM-G model f̃π, defined in (3) and (4), to two

versions of the data, that is X(n) and g(X)(n), by using the exact same specification for

the hyperparameters π. Under this setting, the assumptions of Proposition 1 are not met

and the posterior distributions obtained by conditioning on the two sets of observations are

different random distributions which, thus, might lead to different statistical conclusions.

The main result of this section shows that, under mild conditions on the true generating

distribution of the observations, the posterior distributions obtained by conditioning f̃π on

the two sets of observations X(n) and g(X)(n), become more and more similar, up to an affine

reparametrisation, as the sample size n grows. More specifically we show that the probability

mass of the joint distribution of these two conditional random densities concentrates in a

neighbourhood of {(f1, f2) ∈ F×F s.t. f1 = | det(C)|f2◦g} as n goes to infinity. Henceforth

we will say that the DPM-G model (3) with base measure (4) is asymptotically robust to

affine transformation of the data. The rest of the section formalises and discusses this result.

We consider a metric ρ on F which can be equivalently defined as the Hellinger distance

ρ(f1, f2) = {
∫

(
√
f1(x)−

√
f2(x))2dx}1/2 or the L1 distance ρ(f1, f2) =

∫
|f1(x)− f2(x))|dx

between densities f1 and f2 in F , and we denote by ‖·‖ the Euclidean norm on Rd. Moreover,

we adopt here the usual frequentist validation approach in the large n regime, working ‘as

if’ the observations X(n) were generated from a true and fixed data generating process (see

for instance Rousseau, 2016). We also assume that this data generating process admits a

density function with respect to the Lebesgue measure, denoted by f ∗. In the setting we

consider, the same model f̃π defined in (3) and (4) is fitted to X(n) and g(X)(n), thus leading

to two distinct posterior random densities, with distributions on F denoted by Π( · | X(n))

and Π( · | g(X)(n)), respectively. We use the notation Π2(· | X(n)) to refer to their joint

posterior distribution on F ×F .

Theorem 1. Let f ∗ ∈ F , true generating density of X(n), satisfy the conditions

A1. 0 < f ∗(x) < M , for some constant M and for all x ∈ Rd,

10



A2. for some η > 0,
∫
‖x‖2(1+η)f ∗(x)dx <∞,

A3. x 7→ f ∗(x) log2(ϕδ(x)) is bounded on Rd, where ϕδ(x) = inf{t : ‖t−x‖<δ} f
∗(t).

Let g : Rd −→ Rd be an invertible affine transformation and f̃π be the random density

induced by a DPM-G as (3) with base measure (4) where ν0 > (d + 1)(2d − 3). Then, for

any ε > 0,

Π2((f1, f2) : ρ(f1, | det(C)|f2 ◦ g) < ε | X(n)) −→ 1

as n→∞.

The assumptions of Theorem 1 refer to the true generating distribution f ∗ of X(n). As-

sumption A1 requires f ∗ to be bounded and fully supported on Rd. Assumption A2 requires

the tails of f ∗ to be thin enough for some moment of order strictly larger than two to exist.

Such an assumption is not met, for example, by a Student’s t-distribution with two degrees

of freedom, case which will be considered in the simulation study of Section 4. Finally,

assumption A3 is a weak condition ensuring local regularity of the entropy of f ∗.

The proof of Theorem 1 is based on previous results proved by Wu and Ghosal (2008)

and Canale and De Blasi (2017) in order to derive the so-called Kullback–Leibler property at

f ∗ for some mixtures of Gaussians models. Importantly, in Lemma 1 (see Appendix 1), we

improve upon their results by showing that the set of assumptions required by Wu and Ghosal

(2008) and Canale and De Blasi (2017) can be reduced to the simpler set of assumptions A1,

A2 and A3 of Theorem 1 by removing a redundant assumption. More specifically, we prove

that A1, A2 and A3 imply that f ∗ has finite entropy and regular local entropy, conditions

required in the aforementioned works.

4 Simulation study

We ran an extensive simulation study with a two-fold goal: 1) providing empirical support

to our result on the large n asymptotic robustness of a DPM-G model, under affine transfor-
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mations of the data; 2) investigating whether an analogous robustness property holds when

DPM-G models are adopted to make inference on the clustering structure of the data. To

this end, we considered two distinct data-generating distributions, which allowed us to high-

light different facets of DPM-G models. In the first case, data are generated from a mixture

of bivariate Gaussians, distribution which satisfies the conditions of Theorem 1. This study

complements our asymptotic result with a numerical investigation of the finite n behaviour of

DPM-G models, when data undergo an affine transformation. Moreover, the same data are

used to perform a numerical study on the effect of data transformation and sample size on

the estimated number of clusters. The second scenario we considered does not satisfy the set

of assumptions of Theorem 1, as data are generated from univariate Student’s t-distribution

with two degrees of freedom, thus breaking assumption A2. Our study, in this case, aims at

assessing the robustness of DPM-G models when the sufficient conditions of Theorem 1 are

not met.

4.1 Data from mixture of Gaussians

The first part of the simulation study focuses on 15 different simulation scenarios. Specifi-

cally, we considered three different sample sizes, namely n = 100, n = 300 and n = 1 000,

and, for each value of n, we generated a sample X(n) from a mixture of two Gaussian com-

ponents, one being highly correlated and the other uncorrelated, that is

X(n) iid∼ 1

2
N2


−2

−2

 ,
 1 0.85

0.85 1


+

1

2
N2


2

2

 ,
1 0

0 1


 . (6)

In order to test the robustness of the model under affine transformations of the data,

we compressed or stretched the generated datasets by using five different constants, namely

c = 1/5, c = 1/2, c = 1, c = 2 and c = 5. For each constant, we multiplied the simulated

data by c, thus obtaining a transformed dataset X
(n)
c := cX(n). For each simulation scenario,

namely c ∈ {1/5, 1/2, 1, 2, 5}, n ∈ {100, 300, 1 000}, we generated 100 replicates. We then
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fitted a DPM-G model, specified as in (3) and (4), to each one of the 1 500 simulated datasets.

In order to enhance the flexibility of the model, we completed its specification by setting

a normal/inverse-Wishart prior distribution for the hyperparameters (m0,B0) of the base

measure (4). Namely, we set B0 ∼ IW (4, diag(15)) and m0 | B0 ∼ N(0,B0), specification

chosen so that E[µ] = 0 and to guarantee a prior guess on the location component µ flat

enough to cover the support of the non-transformed data. As for the scale component of the

base measure (4), we set (ν0,S0) = (4, diag(1)). Finally, the precision parameter α of the

Dirichlet process was set equal to 1.

Realisations of the mean of the posterior distribution were obtained by means of a Gibbs

sampler relying on a Blackwell–McQueen Pólya urn scheme (see Müller et al., 1996), imple-

mented in the AFFINEpack R package1. For each replicate, posterior inference was drawn

based on 5 000 iterations, obtained after discarding the first 2 500. Convergence of the chains

was assessed by visually investigating the traceplots of some randomly selected replicates,

which did not provide indication against it.

Figure 2 shows, for every n ∈ {100, 300, 1 000} and c ∈ {1/5, 1/2, 1, 2, 5}, a contour

plot of the estimated posterior densities. The difference between estimated densities, across

different values of c, is apparent when n = 100, with the two extreme cases, namely c = 1/5

and c = 5, displaying very different contour lines and possibly suggesting a different number

of modes in the estimated density. For larger sample sizes, this difference is less evident and,

when n = 1 000, the contour plots are hardly distinguishable. These qualitative observations

are in agreement with the large n asymptotic results of Theorem 1. The plots of Figure 2 refer

to a single realisation of the samples X(100), X(300) and X(1 000) considered in the simulation

study, although qualitatively similar results can be found in almost any replicate.

The findings drawn from a visual inspection of Figure 2 were confirmed by assessing the

distance between estimated posterior densities. Specifically, for any considered sample size n

and for any pair of values c1 and c2 taken by the constant c, we approximately evaluated the

1The package is available at https://github.com/rcorradin/AFFINEpack and can be installed via devtools.
For reproducibility, the code is available at https://github.com/rcorradin/Affine.
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Figure 2: Simulation study, data generated from a mixture of Gaussians. Based on a single
replicate of the samples X(100), X(300) and X(1 000), scatter plots of the data (grey dots),
contour plots of the estimated densities based on a DPM-G model (red curves) and contour
plots for the expected prior density (blue filled curves). Left to right: rescaling constant
c = 1/5, c = 1/2, c = 1, c = 2, c = 5. Top to bottom: sample size n = 100, n = 300,
n = 1 000.

L1 distance between the suitably rescaled estimated posterior densities obtained conditionally

on X
(n)
c1 and on X

(n)
c2 . The results of such analysis are shown in Figure 3 and indicate that

as the sample size grows, the difference in terms of L1 distance strictly decreases.

The posterior distribution of the random density induced by a DPM-G model provides

interesting insight also on the clustering structure of the data. The second goal of the

simulation study, thus, consisted in investigating the impact of the scaling factor c on the

estimated number of groups in the partition induced on the data. To this end, for each

considered n and c, we estimated K̂
(VI)
n , the number of groups in the optimal partition

estimated using a procedure introduced by Wade and Ghahramani (2018) and based on

the variation of information loss function. The average values for this quantity, over 100

replicates, are reported in Table 1. There appears to be a clear trend suggesting that a
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Figure 3: Simulation study, data generated from a mixture of Gaussians. Normalised L1 dis-
tances (all distances are divided by the largest observed distance) between suitably rescaled
estimated densities, conditionally on data rescaled by means of different constants c1 (X
axis) and c2 (Y axis), averaged over 100 replications. Left to right: sample size n = 100,
sample size n = 300, sample size n = 1 000.

c = 1/5 c = 1/2 c = 1 c = 2 c = 5
n = 100 1.81 2.04 2.84 5.96 10.52
n = 300 2.00 2.03 2.20 2.82 5.18
n = 1 000 2.00 2.00 2.04 2.05 2.12

Table 1: Simulation study, data generated from a mixture of Gaussians. Averages over 100
replicates for K̂

(VI)
n , the number of clusters of the optimal partition estimated by means of

Wade and Ghahramani (2018)’s variation of information method. Left to right: rescaling
constant c = 1/5, c = 1/2, c = 1, c = 2, c = 5. Top to bottom: sample size n = 100,
n = 300, n = 1 000.

larger scaling constant c leads to a larger K̂
(VI)
n : this finding is consistent with the fact that,

if the data are stretched while the prior specification is kept unchanged, then we expect

the estimated posterior density to need a larger number of Gaussian components to cover

the support of the sample. For the purpose of this simulation study the main quantity of

interest is the ratio between the estimated number of groups under any two distinct values

c1 and c2 for the scaling constant c, that is K̂
(VI)
n,c1 /K̂

(VI)
n,c2 . The results presented in Table 1

clearly indicate that, as the sample size n becomes large, such ratios tend to approach 1.

This suggests that the large n robustness property of the DPM-G model nicely translates to

an equivalent notion of robustness in terms of the estimated number of groups K̂
(VI)
n in the

data.
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4.2 Data from Student’s t-distribution

The second part of the simulation study deals with the same 15 scenarios (n ∈ {100, 300, 1 000}

and c = {1/5, 1/2, 1, 2, 5}) considered in Section 4.1, with the difference that data are gen-

erated from a Student’s t-distribution with two degrees of freedom. It is important to stress

that such a distribution does not have finite variance and therefore does not meet assump-

tion A2 of Theorem 1. Also in this case we considered 100 replicates for each considered

simulation scenario. We analysed each dataset with a univariate version of the DPM-G

model specified in (3) and (4). That is, we considered a univariate Gaussian kernel and a

base measure defined as the product of two independent distributions, a univariate normal

distribution for the location parameter µ ∼ N(m0, s
2
0) and an inverse-gamma distribution for

the scale parameter σ2 ∼ IG(a0, b0). The model specification is completed by setting a0 = 2

and b0 = 1, so that E[σ2] = 1, and by considering a normal/inverse-gamma distribution for

the hyperparameters (m0, s
2
0), specifically s2

0 ∼ IG(2, 1) and m0 | s2
0 ∼ N(0, s2

0). Finally,

the precision parameter α of the Dirichlet process was set equal to 1. Realisations of the

mean of the posterior distribution were obtained by means of a Gibbs sampler relying on a

Blackwell–McQueen Pólya urn scheme2. Posterior inference was drawn based on 5 000 iter-

ations, after a burn-in period of 2 500 iterations. We assessed the convergence of the chains

by visually investigating traceplots, which did not provide indication against it.

Also for these data, for any considered sample size n and for any pair of values c1 and c2

taken by the constant c, we approximately evaluated the L1 distance between the suitably

rescaled estimated posterior densities obtained conditionally on X
(n)
c1 and on X

(n)
c2 . The results

of such analysis are displayed in Figure 4 and indicate that, as the sample size grows, the L1

distance decreases. This qualitative findings suggest that asymptotic robustness might hold

also for data generated from a distribution not meeting the assumptions of Theorem 1.

2See footnote 1.
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Figure 4: Simulation study, data generated from a Student’s t-distribution. Normalised
L1 distances (all distances are divided by the largest observed distance) between suitably
rescaled estimated densities, conditionally on data rescaled by means of different constants c1

(X axis) and c2 (Y axis), averaged over 100 replications. Left to right: sample size n = 100,
sample size n = 300, sample size n = 1 000.

5 Astronomical data

The large n asymptotic robustness to affine transformation of the DPM-G model makes it a

suitable candidate also for analysing data whose components are not commensurable and for

which an informed choice of the relative scale of different dimensions seems prohibitive. We

fitted the DPM-G model, specified as in (3) and with base measure (4), to the NGC 2419

dataset described in Section 1. The ultimate goal of our analysis consists in classifying

stars as belonging to the NGC 2419 globular cluster or as being contaminants: an accurate

classification is crucial for the astronomers to study the dynamics of the globular cluster.

Since the large majority of the stars in the dataset is expected to belong to the globular

cluster, with only a few of them being contaminants, we will identify the globular cluster as

the largest group in the estimated partition of the dataset.

Prior to any analysis, data were standardised component by component, the legitimacy of

such procedure following from the robustness results of Theorem 1. Hyperprior distributions

were specified for the location parameter of the base measure (4) and on the DP precision

parameter α. Specifically, B0 ∼ IW (6, diag(15)) and m0 | B0 ∼ N(0,B0), specification

chosen to guarantee a prior guess on the location component µ flat enough to cover the
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support of the data and centered at 0. In addition, α was given a gamma prior distribution

with unit shape parameter and rate parameter equal to 5.26, so to reflect the prior opinion of

astronomers who would expect two distinct groups of stars in the dataset. Finally, as far as

the scale component of the base measure (4) is concerned, we set (ν0,S0) = (26, diag(21)),

where the number of degrees of freedom ν0 = 26 of the inverse-Wishart distribution was

chosen so that to satisfy the conditions of Theorem 1 and, in turn, the scale matrix S0 =

diag(21) so that E[Σ] = diag(1). Realisations of the mean of the posterior distribution were

obtained by means of a Gibbs sampler relying on a Blackwell–McQueen Pólya urn scheme3.

In turn, posterior inference was drawn based on 20 000 iterations, after a burn-in period of

5 000 iterations. Convergence of the chains was assessed by visually investigating traceplots,

which did not provide indication against it.

Figure 5 displays contour plots for the six two-dimensional projections of the estimated

posterior density, while Figure 6 shows the scatter plots of the dataset with individual

observations coloured according to their membership in the optimal partition estimated

via the variation of information method of Wade and Ghahramani (2018), and labeled as

main group (grey circles) and other groups (coloured triangles). The estimated partition is

composed of five groups. The largest one, identified as the globular cluster, consists of 124

stars. The remaining 15 stars are thus considered contaminants and are further divided into

four groups, one composed by eight stars (group A), one containing five stars (group B) and

two singletons (groups C and D). A visual investigation of Figure 6 suggests that stars in

group A differ from those in the globular cluster in terms of metallicity and position, with

the contaminants characterised by larger values for [Fe/H] and smaller values for Y1 and

Y2. Stars in group B differ from the globular cluster in terms of velocity and metallicity,

with the contaminants showing larger values for V and [Fe/H]. Finally, groups C and D are

singletons, the first one being characterised by a high metallicity and an extremely small

value for the velocity, the second one showing large values for both metallicity and location

3See footnote 1.
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Figure 5: NGC 2419 data. Contour plots of the bivariate marginal densities estimated via
DPM-G model.

Y1. Our unsupervised statistical clustering can be compared to the clustering of Ibata et al.

(2011) (described in their Figure 4) obtained by means of ad hoc physical considerations.

Specifically, once the best fitting physical model, in the class of either Newtonian or Modified

Newtonian Dynamics models, is detected, they use it in order to compute the average values

of the physical variables describing the stars. Stars are then assigned to the globular cluster

based on a comparison between their velocity and the average model velocity: those lying

close enough are deemed to belong to the cluster, while the others are considered as potential

contaminants. For the latter, the evidence of being contaminants is measured by evaluating

how distant their metallicity is from the average model one. Two classifications are then
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Figure 6: NGC 2419 data. Partition estimated via DPM-G model combined with Wade and
Ghahramani (2018)’s variation of information method. Five groups are detected: the largest
group (grey dots), group A (blue triangles), group B (red triangles), group C (one orange
triangle), group D (one green triangle).

proposed: the first one assigns to the globular cluster only the 118 stars for which the

evidence seems strong, the second and less conservative strategy classifies as belonging to the

globular cluster a total of 130 stars. Following this distinction and for the sake of simplicity,

we summarise the results of Ibata et al. (2011)’s analysis, by devising three groups of stars:

- globular cluster : 118 stars deemed to belong to the globular cluster,

- likely globular cluster : 12 stars assigned to the globular cluster only when the less

conservative procedure is adopted,
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- contaminants : 9 stars with strong evidence of being contaminants.

DPM-G groups

largest A B C D

total 124 8 5 1 1

Ib
at

a
et

al
.

gr
ou

p
s

globular cluster 118 114 4 0 0 0

likely globular cluster 12 10 1 0 0 1

contaminants 9 0 3 5 1 0

Table 2: NGC 2419 data. Comparison between the groups identified by Ibata et al. (2011)
and the groups estimated via DPM-G model.

For the purpose of comparison, we report in Table 2 the confusion matrix of the groups

obtained via the DPG-G model against the groups detected by Ibata et al. All of the 124

stars belonging to the largest group of the partition estimated based on the DPM-G model

belong to the groups identified as globular cluster or likely globular cluster by Ibata et al. At

the same time, out of the nine stars classified as contaminants by Ibata et al., the approach

based on the DPM-G model assigns none to the globular cluster, three to group A, five stars

to group B, which is composed only by stars considered contaminants in Ibata et al., and

the star of group C, which shows an extremely small value for the velocity variable. Finally,

the group D contains only one star, which is not considered a contaminant in Ibata et al.

Further insight on the clustering structure of the data is provided by Figure 7, which

shows the heatmap representation of the posterior similarity matrix obtained from the

MCMC output. In agreement with the partition obtained by applying the approach of

Wade and Ghahramani (2018), one main group, identified with the globular cluster, can be

clearly detected in Figure 7. As for the remaining stars, arguably the contaminants, there

seem to be two well defined groups, A and B, and a few stars whose group membership is

less certain.
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Figure 7: NGC 2419 data. Heatmap representation of the posterior similarity matrix ob-
tained based on DPM-G model.

6 Conclusion

The purpose of this paper was to investigate the behaviour of the multivariate DPM-G model

when affine transformations are applied to the data. To this end we focused on the DPM-G

model with independent normal and inverse-Wishart specification for the base measure. Our

investigation covered both the finite sample size and the asymptotic framework. Specifically,
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in Proposition 1, given any affine transformation g, an explicit model specification, depend-

ing on g, was derived so to ensure coherence between posterior inferences carried out based

on a dataset or its transformation via g. We then considered a different setting where the

specification of the model is assumed independent of the specific transformation g. In this

case, we formalised the notion of asymptotic robustness of a model under transformations of

the data and identified mild conditions on the true data generating distributions which are

sufficient to ensure that the DPM-G model features such a property. Specifically, Theorem 1

shows that the posterior distributions obtained conditionally on a dataset or any affine trans-

formation of it, become more and more similar as the sample size grows to infinity. Inference

on densities and, as suggested by the simulation study, on the clustering structure underly-

ing the data, thus becomes increasingly less dependent on the affine transformation applied

to the data, as the sample size grows. As a special case, Theorem 1 implies that posterior

inference based DPM-G models is asymptotically robust to data transformations commonly

adopted for the sake of numerical efficiency, such as standardisation or normalisation. This

observation is particularly relevant when dealing with the astronomical unsupervised cluster-

ing problem motivating this work. Due to the lack of prior information on the dimensional

constants relating different physical units, we resorted to a standardisation of each compo-

nent of the data and chose an arbitrary model specification. Prior information was available

in the form of the experts’ prior opinion on the expected number of groups in the dataset

and was used to elicit the hyperprior distribution for α, the precision parameter of the DP.
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A Proofs of the results

A.1 Proof of Proposition 1

Proof of Proposition 1. Model f̃π can be written as

f̃π(x) =

∫
(2π)−

d
2 det(Σ)−

1
2 exp

{
−1

2
(x− µ)ᵀΣ−1(x− µ)

}
P̃ (dµ, dΣ;π)

=

∫
(2π)−

d
2 | det(C)| det(CΣCᵀ)−

1
2

× exp

{
−1

2
(Cx + b−Cµ− b)ᵀ(CΣCᵀ)−1(Cx + b−Cµ− b)

}
P̃ (dµ, dΣ;π).

By performing the change of variables S = CΣCᵀ and m = Cµ + b and observing that, by

standard properties of the inverse-Wishart and normal distributions,

1. Σ ∼ IW (ν0,S0) implies S ∼ IW (ν0,CS0C
ᵀ),

2. µ ∼ Nd(m0,B0) implies m ∼ Nd(Cm0 + b,CB0C
ᵀ),

3. X ∼ Nd(µ,Σ) implies CX + b ∼ Nd(m,S),

we obtain

f̃π(x) = | det(C)|
∫

(2π)−
d
2 det(S)−

1
2

× exp

{
−1

2
(Cx + b−m)ᵀS−1(Cx + b−m)

}
P̃ (dm, dS;πg)

= | det(C)|f̃πg(g(x)).

A simple reparametrisation leads to f̃πg = | det(C)|−1f̃π ◦ g−1. All the identities in this

proof are deterministic, that is they hold for every ω ∈ Ω.
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A.2 Proof of Theorem 1

The proof of Theorem 1 relies on results proved by Canale and De Blasi (2017). We start

by deriving a set of simpler conditions implying those of Canale and De Blasi (2017).

Lemma 1. Let f ∗ be a density function on Rd that satisfy the conditions of Theorem 1

A1. 0 < f ∗(x) < M , for some constant M and for all x ∈ Rd,

A2. for some η > 0,
∫
‖x‖2(1+η)f ∗(x)dx <∞,

A3. x 7→ f ∗(x) log2(ϕδ(x)) is bounded on Rd, where ϕδ(x) = inf{t : ‖t−x‖<δ} f
∗(t).

Then f ∗ also satisfies

A4.
∣∣∫ f ∗(x) log f ∗(x)dx

∣∣ <∞,

A5. ∃ δ > 0 such that
∫
f ∗(x) log (f ∗(x)/ϕδ(x)) dx <∞.

Proof. Let us prove A4 by first assuming that f ∗ is univariate. Since the function u 7→

u| log u| is continuous from R+ to R+, the function x 7→ f ∗(x)| log f ∗(x)| is bounded by

assumption A1. Thus, for any a > 0,

∫ a

−a
f ∗(x) |log f ∗(x)| dx <∞.

Then integrating only on the set Ra = (−∞,−a) ∪ (a,+∞) yields:

∣∣∣∣∫ f ∗(x) log f ∗(x)dx

∣∣∣∣ ≤ ∫ f ∗(x) |log f ∗(x)| dx =

∫
x
√
f ∗(x)

√
f ∗(x)

x
|log f ∗(x)| dx

≤
(∫
‖x‖2f ∗(x)dx

∫
‖x‖−2f ∗(x)(log f ∗(x))2dx

)1/2

,

by Cauchy–Schwarz’ inequality. The first integral in the right-hand side above is finite

by assumption A2. For the same reason as above, the function x 7→ f ∗(x)(log f ∗(x))2 is

bounded. Since x 7→ ‖x‖−2 is integrable on Ra, the second integral in the right-hand side
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above is also finite. In dimension d, the same argument holds by applying Cauchy–Schwarz’

inequality several times so as to obtain an integrable power ‖x‖−p, p > d, in the second

integral.

For proving A5, note that

∣∣∣∣∫ f ∗(x) log (f ∗(x)/ϕδ(x)) dx

∣∣∣∣ =

∣∣∣∣∫ f ∗(x) log (f ∗(x)) dx−
∫
f ∗(x) log (ϕδ(x)) dx

∣∣∣∣
≤
∣∣∣∣∫ f ∗(x) log (f ∗(x)) dx

∣∣∣∣+

∫
f ∗(x) |log (ϕδ(x))| dx.

We proved that the first integral in the right-hand side above is finite. The fact that the

second integral is also bounded is proved exactly in the same way by using the assumption

A3.

Let λ(Σ−1) := (λ1(Σ−1), . . . , λd(Σ
−1)) be the vector of eigenvalues, in increasing order,

of Σ−1, the precision matrix of the Gaussian kernel. Henceforth we write f(x) . g(x) to

indicate that the inequality f(x) ≤ cg(x) holds for some constant c and for any x.

Theorem 2. (Theorem 2 in Canale and De Blasi, 2017). Let f ∗ ∈ F , true generating

density of X(n), satisfy the conditions stated as assumptions A1, A2, A4 and A5 in Lemma 1.

Let model X(n) by means of a DPM-G model defined in (3). Suppose that the base measure

P0 has the product form P0(dµ, dΣ) = P0,1(dµ)P0,2(dΣ) and that P0,1 and P0,2 satisfy the

following conditions: for some positive constants c1, c2, c3, r > (d− 1)/2 and κ > d(d− 1),

B1. P0,1(‖µ‖ > x) . x−2(r+1),

B2. P0,2(λd(Σ
−1) > x) . exp {−c1x

c2},

B3. P0,2

(
λ1(Σ−1) < 1

x

)
. x−c3,

B4. P0,2

(
λd(Σ−1)

λ1(Σ−1)
> x

)
. x−κ,

all for any sufficiently large x. Then the posterior distribution Π(·|X(n)) is consistent at f ∗,
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that is, for every ε > 0,

Π
(
f : ρ(f, f ∗) < ε | X(n)

)
−→ 1

as n→∞.

Theorem 2 provides general conditions on the base measure P0 which guarantee consis-

tency of the posterior distribution. The next lemma shows that these conditions are met by

the normal/inverse-Wishart base measure (4).

Lemma 2. Conditions B1–B4 of Theorem 2 are satisfied by the multivariate normal/inverse-

Wishart base measure (4) with ν0 > (d+ 1)(2d− 3).

Although the proof of Lemma 2 can be found in Canale and De Blasi (2017) (their Corol-

lary 1, relying, in turn, on results by Shen et al. (2013)), we provide it in Appendix A.3 for

the sake of completeness and in order to account for the slightly different prior specifica-

tion considered in this work. Next lemma shows that if f ∗ satisfies conditions A1–A3 of

Theorem 1, so does f ∗g := | det(C)|−1f ∗ ◦ g−1, for any invertible affine transformation g.

Lemma 3. If conditions A1–A3 of Theorem 1 are satisfied by f ∗, then for any invertible

affine transformation g(x) = Cx + b, they are also satisfied by f ∗g = | det(C)|−1f ∗ ◦ g−1.

The proof of Lemma 3 is postponed to Appendix A.3. An analogous result is proved by

Shi et al. (2018) (see their Lemma 2), although for a different set of assumptions on the true

data generating density. We are now ready to prove Theorem 1 by combining Theorem 2

with Lemma 1, Lemma 2 and Lemma 3.

Proof of Theorem 1. According to Lemma 1, the set of assumptions A1, A2, A4 and A5

(as appearing in Lemma 1) is implied by assumptions A1, A2 and A3 of Theorem 1. So

under assumptions A1, A2 and A3, Theorem 2 holds. By combining it with Lemma 2 and

Lemma 3, we have that for any ε > 0,

Π
(
f : ρ(f, f ∗) < ε/2 | X(n)

)
−→ 1, (7)
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Π
(
f : ρ(f, f ∗g ) < ε/2 | g(X)(n)

)
−→ 1, (8)

as n → ∞. We notice that the distance ρ is invariant with respect to change of variables

and thus ρ(| det(C)|f2 ◦ g, f ∗) = ρ(f2, f
∗
g ). This, combined with the triangular inequality,

leads to

Π2((f1, f2) : ρ(f1, | det(C)|f2 ◦ g) < ε | X(n))

≥ Π2

(
(f1, f2) : ρ(f1, f

∗) < ε/2, ρ(f2, f
∗
g ) < ε/2 | X(n)

)
≥ Π2

(
(f1, f2) : ρ(f1, f

∗) < ε/2 | X(n)
)

+ Π2

(
(f1, f2) : ρ(f2, f

∗
g ) < ε/2 | X(n)

)
− 1

= Π
(
f1 : ρ(f1, f

∗) < ε/2 | X(n)
)

+ Π
(
f2 : ρ(f2, f

∗
g ) < ε/2 | g(X)(n)

)
− 1

−→ 1 + 1− 1 = 1,

as n→∞. As a result, for n→∞,

Π2((f1, f2) : ρ(f1, | det(C)|f2 ◦ g) < ε | X(n)) −→ 1.

A.3 Proof of additional lemmas

Proof of Lemma 2. We check, point-by-point, that the conditions of Theorem 2 are satisfied.

B1. Since µ ∼ Nd(m0,B0), then ‖µ‖2 ∼ χ2
d(δ) where d is the dimension of µ and δ = ‖m0‖

is the non-centrality parameter of the chi-squared distribution. Then, for sufficiently

large x,

P0,1

(
‖µ‖2 > x

)
≤
(x
d

) d
2

exp

{
d− x

2

}
. x−2(r+1),

which holds for r > (d− 1)/2.

B2. We know that Σ ∼ IW (ν0,S0) and we start by considering the case corresponding

to S0 = Id, where Id denotes the d-dimensional identity matrix. It is known that
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Tr(Σ−1) ∼ χ2
ν0d

. Thus, for sufficiently large x,

P0,2

(
λd(Σ

−1) > x
)
≤ P0,2

(
Tr(Σ−1) > x

)
≤
(
x

ν0d

) ν0d
2

exp

{
ν0d− x

2

}
. exp {−c1x

c2} ,

for some positive constants c1 and c2. This result can be easily generalised to the case

S0 6= Id since IW (dΣ; ν0,S0) = S−1
0 IW (dΣ; ν0, Id).

B3. We know that Σ ∼ IW (ν0,S0) and we start by supposing that S0 = Id. The joint

distribution of the eigenvalues λ
(
Σ−1

)
is known to be equal to

fλ(x1, . . . , xd) = cd,ν0 exp

{
−

d∑
j=1

xj
2

}
d∏
j=1

x
(ν0−d+1)

2
j

∏
j<k

(xk − xj),

for some normalising constant cd,ν0 , if (x1, . . . , xd) ∈ (0,∞)d is such that x1 ≤ · · · ≤ xd,

and equal to 0 otherwise. It is easy to verify that, on the support of fλ,

∏
j<k

(xk − xj) ≤
∏
j<k

xk =
d∏

k=2

xk−1
k .

The density function of λ1(Σ−1) then becomes

fλ1(x1) =

∫
· · ·
∫
fλ(x1, . . . , xd)dx2 · · · dxd

≤ cd,ν0x
ν0−d+1

2
1 e−

x1
2

d∏
k=2

∞∫
0

x
ν0−d+1

2
+k−1

k e−
xk
2 dxk

= c′d,ν0x
ν0−d+1

2
1 exp

{
−x1

2

}
,

for some new normalising constant c′d,ν0 . Then for any x > 0 we have

P0,2

(
λ1(Σ−1) <

1

x

)
≤ c′d,ν0

∫ 1
x

0

x
ν0−d+1

2
1 dx1 . x−c3x
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for some constant c3 and sufficiently large x. Again, this result can be generalised to

the case S0 6= Id since IW (dΣ; ν0,S0) = S−1
0 IW (dΣ; ν0, Id).

B4. We know that Σ ∼ IW (ν0,S0) and we start by considering the case corresponding

to S0 = Id. We define Z(Σ−1) = λd(Σ
−1)/λ1(Σ−1) and the function q(λ(Σ−1)) =

(λ1(Σ−1), . . . , λd−1(Σ−1), Z(Σ−1)). Let Jq−1 denote the Jacobian of the inverse of the

function q, and observe that

fλ1,...,λd−1,Z(x1, . . . , xd−1, z) = |Jq−1|fλ(x1, . . . , xd−1, x1z).

Then, by marginalising with respect to the first d− 1 components, we obtain

fZ(z) =

∫
· · ·
∫
|Jq−1|fλ(x1, . . . , xd−1, x1z)dx1 · · · dxd−1

=

∫
· · ·
∫
cd,ν0 exp

{
−

d−1∑
j=1

xj
2
− x1z

2

}
d−1∏
j=1

x
ν0+1−d

2
j (x1z)

ν0+1−d
2

×
∏

j<k≤d−1

(xk − xj)
d−1∏
j=1

(x1z − xj)x1dx1 · · · dxd−1

≤
∫
· · ·
∫
cd,ν0 exp

{
−

d−1∑
j=1

xj
2
− x1z

2

}
d−1∏
j=1

x
ν0+1−d

2
j (x1z)

ν0+1−d
2

d−1∏
k=2

xk−1
k

d−1∏
j=1

(x1z)x1dx1 · · · dxd−1

= c′d,ν0z
(ν0+d−1)/2

∫
exp

{
−x1

(
z + 1

2

)}
xν0+1

1 dx1

= c′d,ν0(ν0 + 1)!

(
2

z + 1

)ν0+2

z(ν0+d−1)/2

= c′′d,ν0
z(ν0+d−1)/2

(z + 1)ν0+2

≤ c′′d,ν0z
−(ν0−d+5)/2,
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for some constants cd,ν0 , c
′
d,ν0

and c′′d,ν0 . Thus we have

P0,2 (Z > x) =

∫ ∞
x

fZ(z)dz ≤ c′′d,ν0

∫ ∞
x

z−(ν0−d+5)/2dz . x−κ,

for sufficiently large x, where κ = (ν0 − d + 3)/2 > d(d + 1) by the assumption that

ν0 > (d+ 1)(2d− 3).

Proof of Lemma 3. We assume that f ∗ satisfies conditions A1–A3 of Theorem 1 and check

that the same holds for f ∗g .

A1. Assume that 0 < f ∗(x) < M for every x ∈ Rd and some M > 0. Then, for every

x ∈ Rd, we have f ∗g (x) = | det(C)|−1f ∗(g−1(x)) which implies

0 < f ∗g (x) < M ′ = | det(C)|−1M.

A2. Observe that

∫
‖x‖2(1+η)f ∗g (x)dx =

∫
‖g(y)‖2(1+η)f ∗g (g(y))| det(C)|dy

=

∫
‖g(y)‖2(1+η)f ∗(y)dy

≤
∫

22(1+η)−1
(
‖Cy‖2(1+η) + ‖b‖2(1+η)

)
f ∗(y)dy,

where the last inequality follows by combining triangular and Jensen’s inequalities.

Thus we can write

∫
‖x‖2(1+η)f ∗g (x)dx

≤ 22(1+η)−1

(
| det(C)|2(1+η)

∫
‖y‖2(1+η)f ∗(y)dy + ‖b‖2(1+η)

)
<∞,

where the last inequality follows by assumption A2 on f ∗.
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A3. Since function g is a linear invertible transform, the boundedness of x 7→ f ∗(x) log2(ϕδ(x))

carries over to its counterpart defined with the transformed density f ∗g .
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