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Abstract: Burst-Buffers are high throughput and small size storage which are being used as an
intermediate storage between the Parallel File System (Parallel File System) and the computational
nodes of modern HPC systems. They can allow to hinder to contention to the Parallel File System,
a shared resource whose read and write performance increase slower than processing power in HPC
systems. A second usage is to accelerate data transfers and to hide the latency to the Parallel File
System. In this paper, we concentrate on the first usage. We propose a model for Burst-Buffers
and application transfers.
We consider the problem of dimensioning and sharing the Burst-Buffers between several applica-
tions. This dimensioning can be done either dynamically or statically. The dynamic allocation
considers that any application can use any available portion of the Burst-Buffers. The static al-
location considers that when a new application enters the system, it is assigned some portion of
the Burst-Buffers which cannot be used by the other applications until that application leaves the
system and its data is purged from it. We show that the general sharing problem to guarantee
fair performance for all applications is an NP-Complete problem. We give a polynomial time al-
gorithms for the special case of finding the optimal buffer size such that no application is slowed
down due to Parallel File System contention, both in the static and dynamic cases. Finally, we
provide evaluations of our algorithms in realistic settings. We use those to discuss how to minimize
the overhead of the static allocation of buffers compared to the dynamic allocation.
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∗ Inria & Labri, Univ. Bordeaux



Dimensionnement de Burst-Buffers pour réduire la
contention Entrées-Sorties

Résumé : Nous nous intéressons à l’utilisation de Burst-Buffers en temps qu’espace de stockage
intermédiaire entre les nœuds de calcul et le Système de Fichiers Parallèles (PFS).

Ce dimensionnement peut être statique (à l’arrivée d’une application dans le système), ou
dynamique (en fonction des demandes Entrées-Sorties).

Nous montrons que le problème général de partager équitablement les buffers entre applica-
tions est NP-complet. Nous montrons que dans le cas particulier où l’on cherche à minimiser
la taille totale du buffer pour qu’aucune application ne soit ralentie est résolvable en temps
polynomial. Pour résoudre ce problème nous proposons un programme linéaire.

Finalement nous proposons des évaluations à taille de buffer fixé pour montrer la performance
de certains algorithmes naifs communs.

Mots-clés : ordonnancement, IO, PFS, Burst-Buffers
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1 Introduction

The I/O bottleneck is becoming a major issue in current HPC systems. This is especially striking
when considering their recent evolution. For instance, when Los Alamos National Laboratory
moved from Cielo to Trinity, the peak performance moved from 1.4 Petaflops to 40 Petaflops
(×28) while the I/O bandwidth moved to 160 GB/s to 1.45TB/s (only ×9) [2]. The same kind
of results can be observed at Argonne National Laboratory when moving from Intrepid (0.6
PF, 88 GB/s) and to Mira (10PF, 240 GB/s) and to Aurora (expected 180PF and 1TB/s) [1].
The main storage technology is still based on hard drives, that have shown a better capacity
to scale up in terms of storage capacity than speed. On the other hand, the major issue is
still on handling I/O peaks, and the overall average usage is still relatively low. For instance,
taking the former supercomputer Intrepid at Argonne National Laboratory as an example, the
aggregate I/O throughput is lower than one-third of the peak I/O bandwidth for 99% of the
time [11, 12]. Nevertheless, applications running regularly perform I/Os, to read their initial
data, to write intermediate and final results on reliable storage and to enforce reliability using
checkpoint restart techniques. In typical HPC systems, very few applications (usually one) are
enough to saturate the bandwidth to the Parallel File System, so that delays are experienced if
the transfers are not coordinated. Mechanisms such as Clarisse [21] have thus been introduced
to reorganize transfers to the Parallel File System at system level.

On the other hand, the usage of HPC systems makes I/O more and more crucial and complex.
First, in the framework on the convergence between HPC and BigData [26], HPC systems are now
also used to run BigData applications. One main characteristic of BigData workload is that they
are dominated by read operations. Second, the MTBF (Mean Time Between Failures) of HPC
systems is decreasing [10, 8] and Checkpoint/Restart (C/R) strategies are necessary to enforce
reliable computations in a failure prone system. C/R strategies mostly induce write operations.
Third, HPC applications themselves consume a lot of I/O bandwidth (see Section 3.2) and they
alternate read, compute and write phase to the Parallel File System, that cannot be overlapped.
We consider in the present paper both read and write accesses to the Parallel File System.

When running several such applications, even if the overall bandwidth is enough to cope in the
long term with the required data transfers, the bursty nature of both read and write operations
and the lack of synchronization between applications induces I/O peaks, that in turn degrade
the aggregated bandwidth, as noted in [28]. In this context, in order to cope with the limited
I/O bandwidth of HPC system, Burst-Buffers have emerged as promising solution [16, 19, 15].

Burst-Buffers are first used to accelerate transfers and to hide the latency and the limited
bandwidth to the Parallel File System, by acting as a cache between the computational nodes
and the Parallel File System. In practice, this use is arguable since on the technological side, the
use of NVRAM or SSDs makes it possible to achieve much higher bandwidth than hard disks,
but at the price of a limited lifetime [18]. Another potential use of Burst-Buffers is to enable
to delay and better schedule the I/O operations to the Parallel File System, by acting as an
intermediate storage used to delay write operations and to prefetch read operations, in order to
avoid access conflicts and to hide contentions to the user by dealing smoothly with I/O peaks.

There is still no clear consensus on Burst-Buffers architecture (see Section 2.1). In this paper,
we consider the simplest model where the Burst-Buffers are not distributed and acts as a potential
intermediate centralized layer, with a higher I/O bandwidth but a smaller capacity than the hard
disk storage system. It can however be partitioned between the different applications, ensuring
that each application has a dedicated allocation.

In the present paper, we therefore consider a set of applications running independently on
different computational nodes belonging to the same machine, where the allocation of nodes has
been done a priori using a batch scheduler such as SLURM [29]. In order to deal with BigData,
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4 Aupy, Beaumont and Eyraud-Dubois

Checkpoint/Restart and HPC applications, we consider that the pattern of I/O and processing
phases is known in advance, typically through monitoring and historical data [5]. Our goal is
both to dimension the Burst-Buffers and to partition it between the different applications in
order to limit the application slowdown experienced due to the limited I/O bandwidth to the
Parallel File System.

The main contributions of this work are the following:

• A precise and complete model of the platform and applications. We propose several uses
of Burst-Buffers (static allocation and dynamic allocation).

• The intractability of the problem in the general case: for a given buffer size, find an
allocation that ensures that all applications are treated fairly.

• An optimal algorithm for the problem of minimizing the Burst-Buffers size to ensure that no
application is delayed because of inter-application competition to the Parallel File System
bandwidth (optimal stretch).

• Finally we provide several evaluations with bounded buffer size to compare the performance
of the static and dynamic buffer allocations. We discuss these strategies.

Compared to our previous work [4], we consider other types of usage of the Burst-Buffers. On
the system side, we consider the possibility of partitioning the Burst-Buffer either statically (give
a fixed share of Burst-Buffer to each application) or dynamically (the share of an application can
vary with time). We consider a precise application model, where the different phases (in terms
of I/O and computation volumes) are known in advance, whereas [4] relied on random transfer
patterns, where only the probability of being involved in a transfer at any point in time was
known. This allows us to provide a more precise estimation of the required Burst-Buffer size, by
considering actual events when the buffers are emptied and when the I/O operations between
applications interfere.

The rest of this paper is organized as follows. In Section 2, we present the related work
on Burst-Buffers architecture, bandwidth allocation and HPC applications models. Then, we
detail in Section 3 the application model described above and the architecture of the Burst-
Buffers. In Section 4, we prove that the problem of partitioning the Burst-Buffers between several
applications is NP-Complete in the strong sense. Despite this result, we prove in Section 6 that a
special case can be solved in polynomial time, where the goal is to find both the optimal size of the
Burst-Buffers and its optimal partitioning between applications so that the completion time of
all the applications is exactly the same as what it would be if each application was running alone
with a full access to the Parallel File System. We then compare static and dynamic settings
through simulation results in Section 7, and discuss the performance of a classic greedy fair
sharing strategy. At last, we discuss the current limitations of our model and possible extensions
of the present work and provide concluding remarks in Section 8.

Note that all our results are validated through thorough evaluation. The source code and
scripts for those evaluations are available at https://gitlab.inria.fr/ordo-bdx/parted-buffers.

2 Related Work

2.1 Burst-Buffer Architectures and models

There are many implementations of Burst-Buffers. The two most studied characteristics are the
location of the buffers and whether the buffers are shared between multiple applications.

Inria
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Sizing and Partitioning Strategies for Burst-Buffers 5

A typical architecture consists in locating the Burst-Buffers between the compute nodes and
the Parallel File System (PFS). This is the case of DDN IME [16, 27] and Cray DataWarp [19,
25, 14]. In this pseudo-centralized architecture, the Burst-Buffers are often colocated with the
I/O nodes. Several management strategies have been proposed. Mubarak et al. [25] study the
case where the buffers are shared between the different applications on the platform and used to
accelerate transfers and to prevent I/O congestion. On the contrary, in Schenck et al. [27] and
Daley et al. [14], applications decide the size of the buffer that should be dedicated to them.

Another solution is a distributed version of Burst-Buffers where the buffers are allocated closer
to the compute nodes [22, 7]. A solution consists in allocating the distributed buffers to the ap-
plications using the compute nodes close to buffers [9]. However, other strategies focus on how
to share them between the different applications [22, 7]. In [25], the interaction between the
placement of Burst-Buffers and high-radix interconnect topologies is studied. In the context of
fault-tolerance, using a buffer on a different node can allow the implementation of hierarchical
checkpointing strategies that provide more resilience than in-node buffer strategies [7]. Further-
more, in the case where, because of their costs, the number of buffers in the machine has to be
limited, one must choose on which node they should be deployed and between which subset of
applications they should be shared.

In [28], the authors consider the use of Burst-Buffers to serve the I/O bursts of HPC applica-
tions. They prove that a basic reactive draining strategy that empties the Burst-Buffer as soon
as possible can lead to a severe degradation of the aggregate I/O throughput. On the other hand,
they advocate for a proactive draining strategy, where data is divided into draining segments
which are dispersed evenly over the I/O interval, and the burst buffer draining throughput is con-
trolled through adjusting the number of I/O requests issued each time. Contrarily to our present
work, [28] does not consider the dimensioning nor the optimal partitioning of the Burst-Buffer,
but concentrates on dynamic strategies to actually perform transfers.

2.2 Algorithms to deal with Burst-Buffers

When it comes to using Burst-Buffers, several solutions have been proposed. We present and
discuss the most common ones.

A natural idea is to use Burst-Buffers as a cache to improve the I/O-performance of appli-
cations [27]. For instance, DDN [16] announces bandwidth performance 10-fold that of PFS
using their Burst-Buffers. The idea is to move the I/O to the Burst-Buffer as a temporary stage
between compute nodes and the Parallel File System (whether the data is incoming or outgoing).
Thanks to the higher bandwidth of the Burst-Buffers, this has the advantage of improving the
I/O transfer time while pipelining the (slowest) phase of sending/receiving data from the PFS
with the compute phase of the application. However, as was noted by Han et al. [18], this idea is
not viable, (i) Burst-Buffers are based on technologies that are extremely expensive with respect
to hard drives, (ii) they are currently based on SSD technology, that is known to have a limited
rewrite lifespan [18]. Thus, the large number of I/O operations in HPC applications would de-
crease their lifespan too fast. In the solution we propose, not all data transfers go through the
Burst-Buffer but only those necessary to avoid I/O congestion.

The second natural idea proposed in the literature is indeed to use Burst-Buffers to prevent
I/O congestion [24, 20] while maintaining their lifespan. To achieve this goal, the applications
use the direct link to the PFS (see Figure 1) when its bandwidth B is not exceeded. When the
bandwidth is exceeded by the set of transfers, then the higher bandwidth of the Burst-Buffer is
used to complement the bandwidth of the PFS. This is one of the solutions advocated by DDN
in [16]. The intuition behind this strategy is that the average use of PFS bandwidth is usually
small enough, but that Burst-Buffers are crucial to deal with applications’ (simultaneous) bursts.
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6 Aupy, Beaumont and Eyraud-Dubois

Parallel File System
(PFS)

IO Nodes
Burst Buffers

(size S)

Compute Nodes

B

BBB

Figure 1: Modeling of the pseudo-centralized platform.

This corresponds to the model depicted in Figure 1 that will be used throughout this paper.
Finally, a large part of the literature on Burst-Buffers shows how to use them with a specific

application workflow [14, 27]. Specifically, they consider systems where applications have dedi-
cated and pre-allocated Burst-Buffers, and where the application can explicitly control its data
transfers and the use of the Burst-Buffer. This must be done for each application and is very
platform dependent. In practice, only few applications have the human-power to implement this.
By opposition, our work is only architecture dependent and does not require any additional work
from application developers. However, we believe our results can also be used by applications
developers if they want to estimate the size of Burst-Buffers that they would need based on their
application characteristics. In [14] and [13], the authors analyze workflows used in HPC system
(CAMP and SWarp in [14], CyberShake in [13]) in order to model their accesses to the storage
system and to identify opportunities to leverage the capabilities of the Burst Buffer of NERSC’s
Cori system based on Cray DataWarp [19].

3 Models

In this section we present the models used in this work.

3.1 Machine model

We assume that we have a parallel platform made up of N identical unit-speed nodes, composed
of the same number of identical processors. We model the long-term storage system (Parallel
File System or PFS) as a single file server with input bandwidth B (in a system with several
file servers, B would represent their aggregate bandwidth). In addition to this file server, the
platform is equipped with Burst-Buffers of input bandwidth BBB and size S. Figure 1 provides
a schematic view of this model.

In this work, we assume that the Burst-Buffers can be partitioned either statically or dynam-
ically between applications. In the case of static partitioning, once a new application enters the
system, the scheduler decides on the share of the buffer allocated to this application. It cannot
be modified as long as the application has not left the system. In the dynamic model, the share
of each application can change at runtime.

Formally, we write these two strategies:

1. Static: when an application Ak enters the system, it is allocated a volume Sk of the Burst-
Buffers. Sk remains constant throughout its execution, and must respect the following
constraint: at any time, if {Ak}k≤n are running on the system, then

∑n
k=1 Sk ≤ S.

Inria



Sizing and Partitioning Strategies for Burst-Buffers 7

2. Dynamic: at any time t, if Ak is running on the system it can use a volume Sk(t) of the
Burst-Buffers. The same constraint on the total buffer used holds: at all time, if {Ak}k≤n
are running on the system, then

∑n
k=1 Sk(t) ≤ S.

Note that part of this model has been verified experimentally to be consistent with the behav-
ior of Intrepid and Mira, super-computers at Argonne [17] and Jupiter, a machine at Mellanox [5].
In order to be compliant with the strategies described in [3], we introduce (see Section 6 for de-
tails) the possibility of progressively providig Burst-Buffer resources to an application before it
starts (to prefetch its input data) and to progressively remove Burst-Buffer resources from an
application after it ends (to release processing resources as soon as possible).

3.2 Application Model

We consider scientific applications running simultaneously on a parallel platform. In the present
study, there is no interaction with the batch scheduler and we assume that the set of processing
resources provided to the application is given. With respect to I/Os, applications consist in a
sequence of three consecutive (and possibly nil) actions:

1. Data fetching from disks (read);

2. computations (compute); and

3. data uploading on disks (write).

Formally, the application Ak is released at time rk and consists of nk iterations. Iteration
i ≤ nk of Ak consists of three consecutive non-overlapping phases: a read phase, where Rk,i
denotes the volume of data read, at read bandwidth brk; a compute phase, where lk,i denotes
the compute time; and a write phase, where Wk,i denotes the volume of data to be written at
write bandwidth bwk . We assume that the phases can not be overlapped for a given application:
reading must be finished before the computation can start, and similarly the computation must
be finished before starting to write. This constraint is representative of many applications,
whose memory requirements prevent to fetch data for the next phase in advance if the data for
the previous phase still occupies the memory. We however assume that the input data of the
reading phases can be prefetched in a burst buffer if its size allows it: this data does not depend
on the results of the previous computations. A more generic model taking data dependencies
into account is out of the scope of this paper.

In practice, brk and bwk depend on the resources allocated by the batch scheduler and are given
for Ak. Hence, an application can be written as:

Ak = (rk, b
r
k, b

w
k ,Π

nk
i=1 (Rk,i, lk,i,Wk,i)) . (1)

We also denote by

Cmin
k = rk +

nk∑
i=1

Rk,i
brk

+ lk,i +
Wk,i

bwk
(2)

the earliest an application could finish given its parameters and assuming that the system is not
slowing it down. In practice this bound is hard to achieve on a machine: while the computations
are done independently because each application uses its own nodes, the applications compete
for sending and receiving data during their I/O phase on a dedicated I/O network, what results
in congestions and delays between I/O nodes of the platform and the Parallel File System. We
discuss the conditions necessary to reach this lower bound in Section 5.2.

RR n° 9213



8 Aupy, Beaumont and Eyraud-Dubois

Ak

BBs

PFS
(fw

k + owk ) ≤ bwk

fwk

owk ork

fwk + ork

Ak

BBs

PFS
(fr

k + irk) ≤ b
r
k

frk

irk iwk

frk + iwk

Figure 2: Schematics of the bandwidth used for output (top) and input (bottom).

Execution Model In the execution of a schedule, there are notable events. Specifically, for
each phase (Rk,i, lk,i,Wk,i) of application Ak we can define three events:

1. The beginning of the read to the application that coincides with the end of the previous
write from the application denoted trk,i (with trk,1 = rk).

2. The beginning of the compute of the application that coincides with the end of the read to
the application denoted tck,i.

3. The beginning of the write from the application that coincides with the end of the compu-
tation phase denoted twk,i.

We consider that above phases coincide without loss of generality, since the amount of I/O
resources can vary with time and can be zero at the beginning and the end to encompass for
delays. Finally, we denote by Ck the end of the last write phase (coinciding with the end of the
execution of Ak). For each application Ak, the following set of functions (defined at each instant
t) describe data movements (see Figure 2):

• Part of its output (write) data is sent to the PFS at rate fwk , and the rest to the Burst-
buffers at rate owk . This is a part of the Wk,i phase.

• Part of its input (read) data is collected from the PFS at rate frk , and the rest from the
Burst-buffers at rate irk. This is a part of the Rk,i phase.

By definition, the following properties on irk + frk (resp. owk + fwk ) hold:

1. It is only non zero on the intervals [trk,i, t
c
k,i] (resp. [twk,i, t

r
k,i+1]);

2. It is bounded by brk (resp. bwk ); and

3.
∫ tck,i

trk,i
frk (t)dt = Rk,i (resp.

∫ trk,i+1

twk,i
fwk (t)dt = Wk,i).

Independently of the current phase of the application, the buffer itself can prefetch or write
data from/to the PFS. We denote by iwk and ork the function of time expressing the rate at which
this is done.

Inria



Sizing and Partitioning Strategies for Burst-Buffers 9

3.3 Optimization problem

We are now interested by the performance model of our applications. Let us consider application
Ak = (rk, b

r
k, b

w
k ,Π

nk
i=1 (Rk,i, lk,i,Wk,i)) and let us first assume that it is running alone on the

machine. In order to perform the I/O operations (Rk,i,Wk,i), several strategies can be used:

• Without burst-buffers, the I/O operations take a time of

Rk,i
min(B, brk)

and
Wk,i

min(B, bwk )

• With Burst-Buffers (and no size constraints), to execute Rk,i, the buffer can prefetch the
data at rate B while Ak is performing its previous iterations. When Ak is done with
Wk,i−1, the data can be obtained in Rk,i/b

r
k units of time. Similarly, to execute Wk,i, the

application sends the data on the buffer at rate bwk , then the buffer sends it on the PFS
at rate B. With capacity constraints on Burst-Buffers, Ak follows a mix of above two
behaviors, depending on how much data can be stored into the buffers.

Finally, let us define the stretch of Ak (s(Ak)) in a schedule. Given Ck, the end of the
execution of Ak in the schedule, and given Cmin

k , the earliest date when Ak may finish (as
defined by Eq.(2)), the stretch of Ak is given by

s(Ak) =
Ck
Cmin
k

. (3)

For both strategies X ∈ {Static,Dynamic}, we consider two different problems:

Definition 1 (X-Buffer-Size(ρ)). Find a schedule that minimizes the total size S of the
Burst-Buffers with strategy X, for a maximum stretch of ρ (∀k, s(Ak) ≤ ρ).

Definition 2 (X-Stretch(S)). Find a schedule that minimizes the maximum stretch (maxk s(Ak))
with strategy X, where the total buffer size is bounded by S.

3.4 Dominant Schedules

A schedule is defined by the list of functions (fwk , f
r
k , i

w
k , i

r
k, o

w
k , o

r
k),∀k which describe the rates of

data transfers. In general, the description of these functions over time is not polynomial in the
size of the input problem. In this section, we prove that we can focus on strategies where each of
these functions is constant between the different events of the schedule (as defined above). We
call such schedules: Dominant Schedules. Hence, a schedule can be fully described by the set of
events (trk,i, t

c
k,i, t

w
k,i)k,i, and the values of functions (fwk , f

r
k , i

w
k , i

r
k, o

w
k , o

r
k),∀k at these events, what

provides a polynomial size description whose correctness (with respect to resource limitations)
can be checked in polynomial time.

Theorem 1. Given a schedule S = (fwk , f
r
k , i

w
k , i

r
k, o

w
k , o

r
k)k, there exists a (dominant) schedule

S̃ = (f̃wk , f̃
r
k , ĩ

w
k , ĩ

r
k, õ

w
k , õ

r
k)k such that:

• all applications have the same stretch as S;

• the total buffer size used is the same as S;

• between any two events(trk,i, t
c
k,it

w
k,i)i,k of S̃, all functions f ∈ ˜sched, are constant.

RR n° 9213



10 Aupy, Beaumont and Eyraud-Dubois

Proof. Let us denote by e0 < · · · < en the list of events of S. For f ∈ S, let us define f̃ ∈ S̃ by:

∀i, f̃ : x ∈ [ei, ei+1] 7→
∫ ei+1
ei

f(t)dt

ei+1−ei . This transformation satisfies the following constraints:

• Application-specific constraints:

– All the data transfer necessary for a read/write phase is performed during those phases;

– The maximum application bandwidths of S̃ are never larger than brk and bwk ;

• PFS-specific constraint:

– The total PFS bandwidth is never larger than B;

• Buffer-specific constraints:

– The total buffer peak is never larger than S (X = Dynamic);

– The sum of individual buffer peaks is never larger than S (X = Static).

– The data leaving the buffer is not larger than the data entering the buffer.

Let us first note that ∀f ∈ S, ∀j:

max
[ej ,ej+1]

f̃ ≤ max
[ej ,ej+1]

f. (4)

since f̃ is the average of f on those intervals.

Application-specific constraints To check that the solution is valid, we need to check that
for all Rk,i, all necessary data for the read phase is actually read:∫ tck,i

trk,i

(
f̃rk (t) + ĩrk(t)

)
dt = Rk,i.

Denote j0 and j1 s.t. ej0 = trk,i and ej1 = tck,i.∫ ej1

ej0

(
f̃rk (t) + ĩrk(t)

)
dt =

j1−1∑
i=j0

∫ ei+1

ei

f̃rk (t) + ĩrk(t)dt

=

j1−1∑
i=j0

∫ ei+1

ei

∫ ei+1

ei
frk (x) + irk(x)dx

ei+1 − ei
dt

=

j1−1∑
i=j0

∫ ei+1

ei

frk (x) + irk(x)dx

= Rk,i

The last equality comes from the fact that S is a valid solution. Similarly we obtain that for

Wk,i we need
∫ tri+1

twk,i
f̃wk (t) + õwk (t)dt = Wk,i.

In addition, from Eq. (4) and because S is a valid schedule, one can check that for all j:

max
[ej ,ej+1]

f̃rk + ĩrk ≤ max
[ej ,ej+1]

frk + irk ≤ brk

max
[ej ,ej+1]

f̃wk + õwk ≤ max
[ej ,ej+1]

fwk + owk ≤ bwk

Inria
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PFS-specific constraint From Eq. (4), and because S is a valid schedule, one can verify that
for all j:

max
[ej ,ej+1]

∑
k

f̃rk+ ĩwk +f̃wk +õrk≤ max
[ej ,ej+1]

∑
k

frk+iwk +fwk +ork

≤ B

Buffer-specific constraint The occupation of the buffer at time x ≥ e0 due to data from Ak
is given by ∫ x

e0

((
õwk (t)− õrk(t)

)
+
(
ĩwk (t)− ĩrk(t)

))
dt

For any j, let us define by S
(j)
k the volume of data in the buffer of Ak at time ej :

S
(j)
k =

∫ ej

e0

(owk (t)− ork(t)) + (iwk (t)− irk(t)) dt.

Let x ∈ [ej0 , ej0+1]:∫ x

e0

((
õwk (t)− õrk(t)

)
+
(
ĩwk (t)− ĩrk(t)

))
dt

=

j0−1∑
j=0

∫ ej+1

ej

((
õwk (t)− õrk(t)

)
+
(
ĩwk (t)− ĩrk(t)

))
dt+

∫ x

ej0

((
õwk (t)− õrk(t)

)
+
(
ĩwk (t)− ĩrk(t)

))
dt

=

j0−1∑
j=0

∫ ej+1

ej

((owk (t)− ork(t)) + (iwk (t)− irk(t))) dt+ (x− ej0)

∫ ej0+1

ej0
((owk (t)− ork(t)) + (iwk (t)− irk(t))) dt

ej0+1 − ej0

= S
(j0)
k +

x− ej0
ej0+1 − ej0

(
S
(j0+1)
k − S(j0)

k

)
.

In the Dynamic case, one can check that ∀x ∈ [ej , ej+1],∑
k

∫ x

e0

((
õwk (t)− õrk(t)

)
+
(
ĩwk (t)− ĩrk(t)

))
dt =

∑
k

(
S
(j)
k +

x− ej
ej+1 − ej

(
S
(j+1)
k − S(j)

k

))

≤ max

(∑
k

S
(j)
k ,
∑
k

S
(j+1)
k

)
≤ B.

Similarly, in the Static case, for any application k, ∀x ∈ [ej , ej+1]:∫ x

e0

((
õwk (t)− õrk(t)

)
+
(
ĩwk (t)− ĩrk(t)

))
dt ≤ max

(
S
(j)
k , S

(j+1)
k

)
≤ Sk.

With the same reasoning, one can also check that ∀x ≥ e0:∫ x

e0

(
õwk (t)− õrk(t)

)
dt ≥ 0∫ x

e0

(
ĩwk (t)− ĩrk(t)

)
dt ≥ 0
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BW used

B

timen n

d

Figure 3: Communication schedule obtained from a positive 3-Part instance

ensuring that in the new schedule, the data does not leave the buffer before it enters it.
This concludes the proof that the solution S̃ is valid, and that its performance is identical to

S (same time events, same buffer sizes).

In the future, we therefore restrict the search to Dominant Schedules.

4 Complexity Results

In this Section, we provide a NP-hardness proof for X-Stretch and X-Buffer-Size, using a
reduction from the well-known 3-Partition problem (3-Part).

Theorem 2. X-Stretch(0) and X-Buffer-Size(ρ) for any fixed ρ such that 1 < ρ ≤ 2 are
NP-complete.

The reduction we consider is adapted from [17] where it is applied to a the problem of
scheduling periodic applications.

Proof. We consider the associated decision problem: given a set of K applications Ak and a
platform, does there exist a schedule of stretch at most ρ without using any buffer?

We have shown that by considering Dominant Schedules, the problem belongs to NP. We
use a reduction from 3-Part. Consider an arbitrary instance I1 of 3-Part: given an integer B
and 3n integers a1, . . . , a3n, s.t.

∑3n
i=1 ai = nB, can we partition the 3n integers into n triplets

I1, · · · , In, each of sum B?
We build the following instance I2 of X-Stretch(0) and X-Buffer-Size(ρ): the maximum

bandwidth of the I/O system is B, there are 3n applications released simultaneously (rk = 0)
with one phase each (nk = 1), Rk,1 = Wk,1 = ak, lk,1 = d, where d = n+1−2ρ

ρ−1 . The maximum
bandwidth of application Ak is brk = bwk = ak, so that for each application, its communication
phase takes time at least 1. Note that Cmin

k = d+ 2. We study whether there exists a solution of
buffer size S = 0 and with a stretch not greater than ρ (by definition of d, we have ρ = d+n+1

d+2 ),
or equivalently, is there a schedule such that all applications finish before time d+ n+ 1. Note
that the definition of d also ensures that d ≥ n− 1 as long as ρ ≤ 2n

n+1 (which holds if n is large
enough).

We now prove that I1 has a solution if and only if I2 does.

Assume first that I1 has a solution. Let us call I1, · · · , In the n triplets of I1. By definition
we have

∑
i∈It ai = B.

We construct the followint solution for instance I2: if k ∈ It, then Rk,1 is scheduled from
time t−1 to time t at maximum rate ak. Then Wk,1 is scheduled from time t+d to time t+d+1
at maximum rate ak (see Figure 3).

Inria



Sizing and Partitioning Strategies for Burst-Buffers 13

It is a valid solution for Ak with respect to the read, compute and write constraints. The
stretch of Ak is t+ d+ 1/d+ 2 ≤ ρ. Furthermore, since for all t

∑
i∈It ai = B, it is also a valid

solution with respect to the IO bandwidth constraint.

Assume now that I2 has a solution. By definition of the stretch, the latest an application
can terminate is at time d+ n+ 1.

There cannot be any I/O movement between time n and d+ 1:

• Write data are not ready yet: the minimum time needed is d + 1 units of time for any
application;

• Read data should be over: the minimum time needed once data is read is d+ 1.

Since the total I/O volume is
∑
k Rk,1 +Wk,1 = 2nB, then the I/O bandwidth must be used

at full capacity from time 0 to time n, and from time d+ 1 to time n+ d+ 1.

Lemma 1. In a solution to instance I2 of length d + n + 1, if an application reads some data
between time t and time t+ 1, then its read phase finishes at time t+ 1.

Proof. All read phases finish at time t ≤ n since it takes a minimum time of d+ 1 to do the rest
of the computation.

We show the result by contradiction. Let us assume that the claim is not true. Let t be the
first time such that an I/O transfer occured between time t and t + 1 but did not complete by
time t+ 1.

Let V > 0 be the volume of this transfer from time t to t+ 1. Since the total volume of I/O
transferred from time 0 to t + 1 is at most B(t + 1), the amount of finished read phases is at
most B(t+ 1)− V .

Because of the structure of I2, the amount of write data available before time d + t + 2 is
at most B(t + 1) − V . This contradicts the fact that the I/O bandwidth has been used at full
capacity from time d+ 1 to time d+ t+ 2, hence showing the result.

Let us consider any time interval [i, i + 1] for i ≤ n − 1, then the communication link must
be fully used, and communications must take time 1. This implies that the read phase of Ak
is performed at maximum rate ak. Therefore, partitioning the applications according to the
interval in which their read phase happens provides a valid solution to the 3-Part problem.

Theorem 3. For any S ≥ 0, Static-Stretch(S) is NP-complete.

Proof. We can extend the previous reduction from 3-Part with an additional application. With
the same notations as above, we introduce another application An+1, with release time n, a
single write phase of size S + Bρ, and a bandwidth brk = S + Bρ. Furthermore, we ensure that
d ≥ n+ 1, which holds as long as ρ ≥ 2n+2

n+3 .

The minimum execution time of An+1 is Cmin
n+1 = 1. To achieve stretch at most ρ, this

application must therefore complete within time n + ρ. Since d ≥ n + 1, this happens between
the read and the write phases of the other applications. However, during this time, only an
amount Bρ of data can be sent to the PFS ; the rest of the write phase of An+1 needs to be sent
to the burst buffer. Thus in a solution of stretch ρ and burst buffer size S, all the buffer size
needs to be allocated to An+1. In the Static model, this implies that no buffer remains available
for the other applications, and the proof of the previous theorem allows to conclude.
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5 Burst-Buffer Lower Bounds for the Execution of a Single
Application

In Section 3, we have provided a lower bound on the execution time of a single application given
its characteristics:

Cmin
k = rk +

nk∑
i=1

Rk,i
brk

+ lk,i +
Wk,i

bwk
.

In general this lower bound is not reachable. Indeed, to be able to reach it, Ak needs to read
and write at maximum bandwidth during its read and write phases. This is not typically doable
for example if brk > Br or bwk > Bw.

As noted in [3], Burst-Buffers are expected to accelerate applications by (i) accelerating the
transfers to and from the Parallel File System by using the Burst-Buffers as a cache for writing
(buffering) and reading (pre-fetching) data and (ii) enabling to reorganize the communications
to the Parallel File System in order to avoid contention when accessing it. In this section, we
focus on a single application running on the platform, and show how to optimally dimension the
Burst-Buffers to minimize its runtime.

5.1 Description of a solution achieving optimal makespan

Let us consider applicationAk. Let Cmin
k be the lower bound of Ck, the makespan ofAk as defined

in Eq (2). We study a solution that achieves the optimal makespan Cmin
k = rk +

∑nk

i=1
Rk,i

brk
+

lk,i +
Wk,i

bwk
.

time

Read

Figure 4: Data read by Ak (when running in isolation) from the Parallel File System when
assuming B = +∞ (solid line) and when using a Burst-Buffer (dashed line)

Let us consider the case where there are no constraints on the bandwidth to the Parallel
File System, i.e. B = Br = Bw = +∞. The minimal time for the read, compute and write
phases are respectively Rk,i/b

r
k, lk,i and Wk,i/b

w
k . Since these phases cannot overlap, then for

each iteration i:

1. trk,i = rk +
∑i−1
j=1

Rk,j

brk
+ lk,j +

Wk,j

bwk
. The read phase must take exactly Rk,i/b

r
k units of

time, hence it is performed at bandwidth brk. This situation is depicted on the solid line in
Fig. 4 and in what follows, we denote by R∞k (t) the value of the solid line at time t. The
slope of R∞k (t) is therefore either 0 (during compute and write phases) or brk during read
phases.
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time

Written

tw1 tw2 tw3

Figure 5: Data written by Ak (when running in isolation) onto the Parallel File System when
assuming B = +∞ (solid line) and when using a Burst-Buffer (dashed line)

2. tck,i = rk +
∑i−1
j=1

Rk,j

brk
+ lk,j +

Wk,j

bwk
+

Rk,i

brk
. The compute phase lasts lk,i units of time.

3. twk,i = rk +
∑i−1
j=1

Rk,j

brk
+ lk,j +

Wk,j

bwk
+

Rk,i

brk
+ lk,i. This situation is similar to the read phase.

We denote by W∞k (t) the value of the solid line at instant t (Fig. 5). The slope of W∞k (t)
is therefore either 0 (during read and compute phases) or bwk during write phases.

5.2 Burst-Buffer size necessary to Ak to achieve Cmin
k in isolation.

In the case where both bwk ≤ Bw and brk ≤ Br and if Ak is running alone on the platform, then
the solution that performs transfers as soon as possible and at maximal rate trivially achieves
Cmin
k and Burst-Buffer are only needed if several applications are running simultaneously, what

will be considered in Section 6).

This is not the case if the application can write (resp. read) at speed bwk > Bw (resp. brk > Br)
on the Burst-Buffer. In this case, in order to achieve Cmin

k , Ak must use Burst-Buffer resources,
and our goal is this section is to find the minimal Burst-Buffer size, denoted as Pk, so as to
achieve such an exectution time. As it is generally the case in practice, we assume that Ak read
operations do not depend on previous write operations and can be stored from the Parallel File
System to the Burst-Buffer in advance.

Let us first concentrate on the write operations onto the Parallel File System of an isolated
application, in presence of a limited bandwidth Bw to the PFS. The dashed line in Figure 5
depicts the volume of data written to the Parallel File System. Writing the data of the first
writing phase to the PFS cannot start before time step rk + lk,1 + Rk,1/b

r
k and must last at

least Wk,1/Bw since Bw is an upper bound on the achievable bandwidth to the PFS. In order to
achieve makespan Cmin

k , the second read phase must start at time rk + lk,1 +Rk,1/b
r
k +Wk,1/b

w
k .

At that date, given the limited bandwidth Bw to write data onto the Parallel File System, the
Burst-Buffer is used to store the data that could be written to the Burst-Buffer (at rate bwk )
but not on the Parallel File System (at rate Bw). At any time step, the solid lie represents the
overall volume of data sent by Ak (either to the Burst-Buffer or the Parallel File System) and the
difference between the solid and dashed plots represent the minimal volume of data that must be
stored onto the Burst-Buffer. After time rk + lk,1 +Rk,1/b

r
k +Wk,1/b

w
k , the Burst-Buffer is being

emptied onto the Parallel File System, at rate Bw following the model described in Section 3.
This transfer stops either when the Burst-Buffer is empty (i.e. solid and dashed plots cross) or
at time rk + lk,1 + Rk,1/b

r
k + Wk,1/b

w
k + Rk,2 + lk,2 (when a new write operation must start).
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From then, and until time rk + lk,1 + Rk,1/b
r
k +Wk,1/b

w
k + Rk,2 + lk,2 +Wk,2/b

w
k , the solid and

dashed plots diverge again, meaning that the minimal amount of Burst-Buffer storage increases
during this time interval at rate bwk − Bw. Therefore, following this algorithm, it is possible to
determine the minimal volume of Burst-Buffer for write operations that enables to process Ak
within the deadline Cmin

k , and that corresponds to the maximal difference between the solid and
dashed plots.

The situation for read operations is symmetric and is depicted in Figure 4, where the solid
plot depicts the volume of data that must be read by the nodes running Ak and the dashed plot
depicts the volume of data that must be read from the Parallel File System (and sent either to
Ak nodes or prefetched on the Burst-Buffer). The algorithm to build the dashed plot is very
similar to the algorithm described above in the case of Figure 5, and the necessary Burst-Buffer
size for read operations to run Ak in isolation with minimal makespan is given by the maximal
difference between the plots on Figure 4.

In these derivations, we have considered that it is possible to fully use bandwidth Bw (resp.
Br) when writing on (resp. reading from) the Parallel File System. Let us now consider the case
where we add an additional constraint stating that the overall bandwidth (the aggregation of
incoming and outgoing bandwidth) is bounded by B. Although this problem is more complicated,
it can be solved in polynomial time by solving a Linear Program in rational numbers. Let us
denote by ekl the ordered set of events (see Section 3 for a formal definition), i.e. instants where
a read I/O phase, a processing phase or a write I/O phase starts (plus time ek0 = rk). According
to Theorem 1, we only need to specify the amount of data transferred to and from the PFS at
each of these events. Let us thus denote by wPFS

k (ekl ) (resp. rPFSk (ekl )) the overall volume of data
written by the application to the Parallel File System (resp. read from the Parallel File System
either to the Burst-Buffer or the application) before time ekl . Let us also denote by Peakk the
size of the Burst-Buffer necessary to handle both write and read operations to the Burst-Buffer.

Then, our goal is to minimize Peakk under the following constraints:

∀l wPFS
k (ekl ) ≤Wk(ekl )

∀l rPFSk (ekl ) ≥ Rk(ekl )
∀l rPFSk (ekl+1)− rPFSk (ekl ) ≤ Br · (ekl+1 − ekl )
∀l wPFS

k (ekl+1)− wPFS
k (ekl ) ≤ Bw · (ekl+1 − ekl )

∀l wPFS
k (ekl+1)− wPFS

k (ekl ) + rPFSk (ekl+1)− rPFSk (ekl )
≤ B · (ekl+1 − ekl )

∀l Wk(ekl )− wPFS
k (ekl ) + rPFSk (ekl )−Rk(ekl ) ≤ Peakk

The first two constraints ensure that the amount of data written (resp. read) from the PFS
is smaller (resp. larger) than the maximal (resp minimal) volume to achieve Cmin

k . The following
three constraints enforce that neither the read, nor the write and the overall bandwidths are
exceeded. At last, the last constraint states that the Burst-Buffer size Peakk is enough to store
both the amount of data written to the Burst-Buffer but not yet to the Parallel File System
and the amount of data read from from the Parallel File System but not yet transmitted to the
computation nodes.

6 Burst-Buffer Size to compensate for contention between
multiple applications

We have seen in Section 4 that X-Buffer-Size(ρ) is NP-complete for 1 < ρ ≤ 2. In this
section, we provide a polynomial-time algorithm to solve X-Buffer-Size(1), both in the Static
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and Dynamic cases. It is computed via a Linear Program whose constraints are detailled in
Section 6.2.

6.1 Data transfers from and to the Parallel File System in presence of
a Burst-Buffer

Let us now compute the minimal Burst-Buffer size S∗ necessary to achieve completion time
Cmin
k ,∀k, even if all applications compete for the bandwidth to the Parallel File System. In

this case, the Burst-Buffer will also be used to avoid contentions to the Parallel File System,
by prefetching (before later reading) or storing (before later sending) data eventually to be read
from or written to the Parallel File System.

The solid plot in Figure 6 is analogous to the solid plot in Figure 5 and depicts the evolution
with time of the data volume that must be written by Ak, either to the Parallel File System or
to the Burst-Buffer, and is denoted by W∞k (t). On the other hand, the dashed plot in Figure 5
depicts the evolution of the data actually written to the Parallel File System in presence of a
Burst-Buffer of size Swk , and is denoted by WSk

k (t). Indeed, let us now consider the evolution
with time of the minimal volume of data that can be sent to the Parallel File System in presence
of a Burst-Buffer of size Swk , when achieving the same makespan Cmin

k . At time Cmin
k , all data

produced by Ak to be written on the Parallel File System must have been transferred either to
the Burst-Buffer or to the Parallel File System, since the nodes allocated to Ak must be released.
Therefore, at least

∑
Wk,i − Swk must have been written to the PFS, since the Burst-Buffer can

hold at most Swk volume. The same holds at all the instants between Cmin
k −W k

lk
/bwk and Cmin

k

and the volume transferred to the Parallel File System between instants Cmin
k −W k

lk
/bwk −Rklk/b

r
k

is at least
∑lk−1Wk,i − Swk .

Using a trivial induction, we can prove that before instant Cmin
k , the minimal volume sent

to the Parallel File System is given by the dashed plot in Figure 6 and in what follows, we

will denote by W
Sw
k

k (t) the value of the dashed plot at instant t. After time Cmin
k , the data to

be written to the Parallel File System that still reside in the Burst-Buffer must eventually be
transferred to the Parallel File System to release space on the Burst-Buffer. The corresponding
amount of Burst-Buffer storage is progressively released by Ak during this transfer, and can be
used by other applications. As previously stated, we search for a solution such that all tasks
complete within time Ckmin but note that in our model, the Burst-Buffer is considered as a
safe storage and may therefore hold data that should be eventually written to the Parallel File
System. This emptying strategy is very similar to the ultimate draining strategy described in [3].

On the other hand, let us now consider any increasing function Wk(t) whose plot remains

between W
Sw
k

k (t) and W∞k (t) (i.e. the solid and dashed plots on Figure 6) and whose slope is
always at most min(bwk , Bw). Then, Wk(t) represents the volume of data written to the Parallel
File System in a valid strategy that makes use of a Burst-Buffer of size at most Swk . Indeed,
let us denote by WBB

k (t) the volume written on the Burst-Buffer at time t, i.e. WBB
k (t) =

W∞k (t)−Wk(t). Then, since Wk(t) is increasing and the slope of W∞k (t) is at most bwk , then the
slope of WBB

k (t) is no more than bwk , that corresponds to the maximal bandwidth to the Burst-
Buffer. Then, at any any instant the sum of the slopes of WBB

k (that may be either positive,
when the Burst-Buffer is filled, or negative, when the Burst-Buffer is emptied to the Parallel File
System) and Wk(t) is equal to the slope of W∞k (t), so that at any instant, the strategy is valid
and transfers exactly the same volume of data from Ak as for W∞k (t).

Let us now consider the read phases of application Ak. The situation without Burst-Buffer is
depicted in the solid plot in Figure 7 (identical to the solid plot in Figure 4) and we will denote
by R∞k (t) the corresponding value, that represents the minimal amount of data that must be read

RR n° 9213



18 Aupy, Beaumont and Eyraud-Dubois

time

Written

Swk

Figure 6: Data transfer to the Parallel File System (solid line without contention, dashed line
with a burst buffer).

from the Parallel File System in order to achieve optimal makespan when there is no constraint
on the bandwidth to the Parallel File System (Br = +∞). Then, the dashed plot, denoted

as R
Sr
k

k (t) in what follows, represents the maximal amount of data that can be read from the
PFS if Ak benefits from a Burst-Buffer of size Srk. Then, as for write operations, any increasing

function RBBk (t) such that R∞k (t) ≤ RBBk (t) ≤ R
Sr
k

k (t) and whose slope is at most min(brk, Br)
can be associated to a valid reading strategy and at any time, RBBk (t) − R∞k (t) represents the
amount of data that will eventually by transferred to computing nodes and that resides in the
Burst-Buffer at time t.

time

Read

Srk

Figure 7: Data transfer from the Parallel File System (solid line without contention, dashed line
with a burst buffer).

6.2 Linear Program to Compute the Optimal Burst-Buffer size (Static
Case)

As already noted, we can consider two different settings for the partitioning of the Burst-Buffer.
In the Static case, a buffer of size Sk is allocated to Ak during all its lifetime, whereas in the
Dynamic case, the amount of Burst-Buffer allocated to Ak can vary over time. In both cases,
we assume that at any given time step, the volume Sk of the Burst-Buffer allocated to Ak can
be shared between prefetch (size Srk) and intermediate storage (size Swk ) usages. In what follows,
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we will therefore rather consider a Burst-Buffer for Ak of size Sk that can be arbitrarily split
between read and write operations. In the static case, we assume that the buffer allocated to Ak
is progressively released from time 0 (size 0) to time rk (size Sk) and is progressively removed
from time Ck (size Sk) to the end of the schedule, to be compliant with the model of [3].

Let us denote (see Section 3 for a formal definition) the set of points in Figures 6 and 7 at
which the slope of any function R∞k (t) or W∞k (t) can change. Let us first remark that all these
events, and thus their relative ordering, do do not depend on the values of Srk and Swk , ∀k. As
previously, we will denote by el the time of the l-th event, i.e. el ≤ el+1. In what follows, we
define a set of linear constraints that must be satisfied by functions R∞k (t) and W∞k (t) when
t ∈ {el} and we rely on Theorem 1 to rebuild a valid strategy for R∞k (t) and W∞k (t), ∀t by using
linear interpolation for all functions between the instants t ∈ {el}.

Therefore, the following set of linear constraints SStatic describes the set of valid solutions:

∀k, l R∞k (el) ≤ RBBk (el) ≤ R
Sr
k

k (el)

∀k, l W∞k (el) ≥WBB
k (el) ≥W

Sr
k

k (el)
∀k, l 0 ≤ RBBk (el) ≤ RBBk (el+1)
∀k, l 0 ≤WBB

k (el) ≤WBB
k (el+1)

∀l,
∑
k(RBBk (el+1)−RBBk (el)) ≤ Br(el+1 − el)

∀l,
∑
k(WBB

k (el+1)−WBB
k (el)) ≤ Bw(el+1 − el)

∀k, l, WBB
k (el) ≥W∞k (el)− Swk (el),

∀k, l, RBBk (el) ≤ R∞k (el) + Srk(el),
∀k, l, Swk (el) + Srk(el) = Slk,
∀k, l ∈ Zk, Slk ≤ Sk,
∀l,

∑
k S

l
k ≤ S

In the last constraints of SStatic, Zk denotes all the events in the interval [rk, C
min
k ], i.e. when

processing nodes are actually allocated to Ak. During this interval the amount of Burst-Buffer
allocated to Ak is exactly Sk. On the other hand, as previously stated, the Burst-Buffer is
progressively allocated to Ak before rk and progressively released from Ak after Cmin

k .
We can use SStatic to optimize FindOptimalSizeStatic: Minimize S under the constraints

SStatic.

6.3 Linear Program to Compute the Optimal Burst-Buffer Size (Dy-
namic Case)

The linear program to compute the optimal Burst-Buffer size in the Dynamic case is very
similar. We obtain SDynamic by removing from SStatic the constraint ∀k, l ∈ Zk, Slk ≤ Sk, that
states that the size of the Burst-Buffer allocated to Ak cannot change and remains equal to Sk
when nodes are actually allocated to Ak (i.e. ∀l ∈ Zk). This leads to optimization problems
FindOptimalSizeDynamic: Minimize S under the constraints SDynamic.

7 Simulation Results

In this Section, we report extensive simulations to evaluate our linear programming formulations,
and compare them with a classic fair sharing approach. In order to do so we instantiate our
evaluation based on characteristics of the Intrepid platform, and based on a set of applications
as described in our previous work [4].
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Workflow EAP LAP Silverton VPIC
Frequency 65 21 8 6

Number of cores (thousands) 16 4 32 30
Checkpoint size (GB) 3,200 2,000 44,800 3,750

Typical Walltime (hours) 16 4 32 30

Table 1: Characteristics of the applications in APEX data set.

7.1 Setup

We consider a set of 4 applications described in the APEX report [23] which represent the
majority of the load at the LANL. The characteristics of these applications are provided in
Table 1. We simulate the execution of these applications on a platform similar to the Intrepid
Blue Gene/P supercomputer, used by the Argonne National Laboratory between 2008 and 2014,
which was ranked number 3 on the June 2008 Top 500 list. This platform has 96,000 cores, the
bandwidth to the file system is B = 160GB/s, and the bandwidth per core is b = 0.02GB/s. We
assume that most of the I/Os of these applications come from periodic checkpoints. We estimate

the checkpointing period using the checkpoint optimal period given by P =
√

2 ∗ C ∗ µ
# cores ,

following [6]. In this formula, C denotes the checkpointing duration and µ denotes the MTBF
(Mean Time Between Failure) of the individual nodes of the platform. In the simulations, we
consider different possible values for the MTBF, ranging from 5 years to 50 years.

To build the actual workload trace, we select a set of 30 applications, where each application
is picked from the four application models described in Table 1, with a probability proportional
to its usage ratio as reported in [23] (Frequency in Table 1). These applications are scheduled in
FIFO order on the cores, what provides starting and ending times for each application. In order
to compare results, we consider several target values for the IO load of the applications (namely
20%, 50% and 80%), defined in the following way. Let us first remark that an application with
checkpoint size s and period P induces an average bandwidth load of s

P over the course of its
execution. Then, when an application starts or ends, the total required bandwidth is updated,
and the maximum value over time (normalized by B) provides the IO need induced by running
applications. Once this IO need is computed, the checkpoint sizes of all the applications are
multiplied by a constant factor (and the checkpointing periods are adequately recomputed) so
as to obtain the targeted IO load. To number of cores needed by each application can be read in
Table 1 and it can be used to determine the maximal bandwidth bk at which a given application
can communicate with the Burst-Buffer and the Parallel File System (see Section 3). To model
the processing time between two checkpoints, we add to the checkpointing period an additional
15% variability.

Therefore, using the values from the APEX data set [23] and summarized in Table 1 and
the description of the Intrepid platform, we are able to instantiate all platform and application
characteristics needed by the linear programs of Section 6. By changing the MTBF (from 5 years
to 50 years) and by scaling checkpoint sizes, we are moreover able to study different hardware
characteristics and different system loads, while keeping realistic application characteristics. In
turn, the linear programs of Section 6 compute an optimal buffer size SOPT (both in static and
dynamic cases) and its partitioning among applications (in the static case) to process all the
applications with a maximum stretch of 1, i.e. as if the bandwidth to the Parallel File System
was enough to cope with all transfers at any time.

In order to evaluate the influence of the size of the Burst-Buffer, in what follows, we consider
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Load 5 y 10 y 25 y 50 y
20% 1.32 1.31 1.42 1.67
50% 1.33 1.28 1.26 1.47
80% 1.23 1.26 1.25 1.35

Table 2: Ratio of static to dynamic buffer sizes, for different MTBF and load values.

several Burst-Buffer sizes, ranging from 0 × SOPT to 3 × SOPT. To compare the results of the
optimal solutions computed in Section 6 to what could be achieved using a dynamic system level
strategy, we introduce a greedy strategy, , that shares the bandwidth to the Parallel File System
in the following way: an application is write-active if it is in a write phase or it has output data
in its buffer, and the write bandwidth is shared equally between all write-active applications (in
the limit of their own output rate). A similar policy is used for sharing the read bandwidth.
Additionally, we assume that the Burst-Buffer (of size 0 ≤ S ≤ SOPT) is partitioned between
applications proportionally to their respective share in the optimal solution computed by the
LP. We then compute the maximum and average stretch for the applications, to evaluate the
slowdown incurred by the non-optimal bandwidth sharing and sub-optimal Burst-Buffer size.

7.2 Results

The performance of the above greedy system level approach, that shares equally the bandwidth
to the Parallel File System in case of conflicts to the resource access but partitions the Burst-
Buffer as in the solution of the LP, is depicted in Figure 8 for both the Max Stretch and Average
Stretch metrics, for different MTBF values (as noticed before, a larger MTBF induces rarer and
larger checkpoints) and different system loads (either 20%, 50% or 80%). All points in Figure 8
corresponds to 10 executions with different sets of applications, where the length of the processing
phases between checkpoints vary from an execution to another (with a 15% maximal variation),
and the darker area shows the typical variability of the results. As expected, the stretch decreases
when the Burst-Buffer increases, but only up to a certain size. If a size of 1×SOPT is enough to
achieve a solution with stretch 1 for all applications when using the solution of the LP proposed
in Section 6, a size of 1.5 × SOPT is in general required to achieve the lowest stretch using the
greedy strategy. Moreover, in particular for large MTBF (thus larger and rarer checkpoints) and
load values, the limit value for the stretch is larger than 1, up to 1.15 for the maximum stretch
when the load is 80% and the MTBF is 50 years. Nevertheless, even for high loads, the greedy
strategy (with the optimal partitioning computed by the LP) is able to achieve close to optimal
results when the MTBF is smaller than 10 years, what is in general considered as a reasonable
assumption. At last, since the stretch is much higher than 1 for any buffer size below 1× SOPT,
these plots show that the value SOPT returned by the LP is crucial in order to set the size of
the Burst-Buffer to a value that does not induce large stretch values while limiting the hardware
cost.

The cost induced by opting for a static partitioning is analyzed in Table 2, that displays
the ratio between the Burst-Buffer size required when using a static partitioning and the Burst-
Buffer size required when using a dynamic partitioning, for different values of the MTBF (from
5 to 50 years) and for different load levels (from 20 to 80%). These results show that a static
partitioning of the Burst-Buffer induces an overhead in size of 25 to 40% for most settings. This
overhead is to be compared to the increased simplicity of deployment, in particular with respect
to security and dynamic management issues.
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Figure 8: Maximum stretch results (top) and average stretch results (bottom) of fair sharing
when buffer size varies, for different MTBF and load values.
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8 Conclusion

We consider the problem of sizing and partitioning Burst-Buffers in the context of HPC and Data
Science applications running on a supercomputer and competing for the access to the Parallel
File System. In this context, our goal is to minimize the stretch experienced by the applications.
Given the characteristics of the platform and of the application, we first prove a negative result
stating that the problem of minimizing the stretch given a Burst-Buffer size is in general NP-
Complete. Nevertheless, we also prove that the special case, of clear practical interest, where the
goal is to find the minimal Burst-Buffer size and its partitioning between applications that are
able to compensate both the limited bandwidth to the Parallel File System and the contention
in the access to it, can be solved in polynomial time. At last, we prove that it is possible to
derive from this optimal solution a simple dynamic strategy, that can be easily implemented at
runtime, and that is able to achieve low stretches for most settings. Our study also enables to
precisely assess the cost of partitioning the Burst-Buffer between applications as opposed to using
it as non-dedicated resource shared between all applications. This work opens several important
perspectives. First, if the behavior is well understood when the Burst-Buffer is large enough, the
problem of finding efficient strategies when the Burst-Buffer is too small to achieve an optimal
stretch is still open. Along the same direction, it would be of great practical importance to
be able to assess the good behavior of the dynamic strategy based on the optimal solution of
optimal stretch, both in theory and through a larger set of experiments. Other research directions
include extending the model for a more precise data management: taking into account data reuse
throughout the execution, and/or considering temporary checkpoint data that could remain on
the burst buffer until the next checkpoint if space allows it, instead of being written to the PFS.
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