
HAL Id: hal-02427489
https://hal.archives-ouvertes.fr/hal-02427489

Submitted on 7 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

NUTS: Network Updates in Real Time Systems
Saif Un Noor Prottoy, Damien Saucez, Walid Dabbous

To cite this version:
Saif Un Noor Prottoy, Damien Saucez, Walid Dabbous. NUTS: Network Updates in Real Time
Systems. ACM SOSR 2019 - Symposium on SDN Research, Apr 2019, San Jose, United States.
�hal-02427489�

https://hal.archives-ouvertes.fr/hal-02427489
https://hal.archives-ouvertes.fr


NUTS: Network Updates in Real Time Systems
Saif UN Noor Prottoy
Université Côte d’Azur, Inria,

France

Damien Saucez
Université Côte d’Azur, Inria,

France

Walid Dabbous
Université Côte d’Azur, Inria,

France
ABSTRACT
Factories need to adapt their communication networks to
versatile customer-driven markets. Software defined net-
working enables a programmatic approach that provides
modularity, flexibility and paves the road for behavior cer-
tification. Previous works proposed rigorous programming
languages and abstractions offering safety properties and
verification in best-effort environments. In this work, we pro-
pose an approach to provide live update of network elements
behavior while respecting real-time constraints. During the
network updates, the traffic can be deviated to devices not in-
volved in the desired upgrade ensuring that communication
invariant and software requirements are always taken into
account. We leverage Temporal NetKAT to write network
wide programs and P4 annotations to give indications on
the impact of the implementation on deterministic real-time
communications passing through network appliances.

KEYWORDS
Network updates, real-time, SDN

1 IN A NUTSHELL
Software Define Networking (SDN) is a key enabler for the
so-called Industry 4.0 because it provides flexibility and the
possibility to formally reason on networks. However, even
though substantial efforts have been provided to offer rig-
orous programming abstractions [1–3] or safety and ver-
ification properties [1, 4, 8] little has been done so far to
understand how to support deterministic real-time commu-
nications when a network is dynamically programmable. The
reason is that SDN is mostly used with best effort services
in mind while the industry focuses on certified equipment
and guaranteed services.
The problem Bringing the SDN concept to industrial net-
works is a vast problem. However, we have identified that a

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).
SOSR ’19, April 3–4, 2019, San Jose, CA, USA
© 2019 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-6710-3/19/04.
https://doi.org/10.1145/3314148.3318051

critical point to address is how to support safe network updates
of deterministic real-time communication SDN networks.1
The challenge Substantial work has been accomplished to
offer safe network updates (see Vissicchio et al. [8]) but the
community has focused on updating policies and forwarding
states and let aside the problem of software updates and de-
vice compatibility even though incremental deployment has
been considered [6]. Two points that have not been studied
are (i) the impact of software updates in the network implied
by the network updates and (ii) the problem of always re-
specting real-time constraints. Usually, network devices in
industrial networks implement the minimum set of features
required for their tasks. As a consequence, each network
update might result in software updates or even firmware
upgrades. Orthogonally, in deterministic real-time communi-
cations systems the focus is on delivering data packets with
respect to sequences, deadlines, and performance metrics
(e.g., jitter). Hence, network updates in industrial systems is a
multi-dimensional problem because of network and software
updates intertwining.
The approach Re-purposing network elements because of
network updates often means changing their software. Our
approach is to consider the network as a whole instead of
considering the part of the network that has to be updated:
upon network updates, we can temporarily deviate traffic
to other appliances. That is, with our approach during a
network update, devices and communications that are not
explicitly involved in the desired update can be updated as
well. This freedom is necessary to always respect communi-
cation invariant.The drawback of this approach is that the
number of transitions to move from an initial state to a fi-
nal one can be large and can take considerable time (e.g.,
minutes).

2 THE CONSTITUTING ELEMENTS
An advantage of industrial systems over the internet/enterprise
ones is that the expected behaviour of the communicat-
ing elements is known and is rather well formalized. How-
ever, by construction the constituting communication sys-
tems are segregated and interactions are impossible. If we
move to a shared network substrate, the true segregation
hypothesis is invalidated. We then (i) need a declarative

1This work was inspired by [8].

https://doi.org/10.1145/3314148.3318051


SOSR ’19, April 3–4, 2019, San Jose, CA, USA Saif UN Noor Prottoy, Damien Saucez, and Walid Dabbous

programming language to express global determinis-
tic real-time communication policies. For that purpose,
we leverage Temporal NetKAT [2]. Temporal NetKAT is pro-
gramming language to define network wide programs. Tem-
poral NetKAT has not been designed with real-time con-
siderations in mind but the fact that it provides support for
linear temporal logic makes it compatible with our objectives
of formally defining deterministic real-time communication
schemes, as long as all buffers in the network are bounded [7].

Network wide programs should be written independently
of their actual implementation in the network, hence the
choice of the declarative paradigm. However, the network
technology impacts temporal performances of the element
and thus the ability to respect real-time constraints. We thus
(ii) need to determine the temporal behavior for each
network elements and software. Because of their techni-
cal and operational constraints industrial network appliances
seldom resort to operating systems and we can abstract them
as programmable data planes. Under this assumption, we can
leverage the annotation of the P4 language2 provide formal
ways to give indications on the impact of the implementation
on deterministic real-time communications passing through
them (e.g., queues, scheduler, processing latency).3
The description of the communications and the network

elements behaviour is not sufficient to achieve our goal of
making network updates in real time systems. In addition to
them we (iii) need to assess if an update is valid accord-
ing to the different constraints (e.g., safety, liveness,
real-time. . . ) imposed by the network and its usage. To
determine whether an update is valid, we extract the re-
quirements and constraints from the communication scheme
with (i) and from the actual behaviour of network elements
with (ii). This information is combined and we use network
calculus [5] and invariant verification to determine if all
constraints are respected before, during, and after an update.

To decide if a network update is valid, we (iv)must deter-
mine and select the potential network updates. To that
aim, we can modify the generic network update algorithms
proposed by Vissicchio et al. [8] to support our constraints.
Finally, when update sequences are determined, we (v)

need to deploy the changes in the network. This part
is out of the scope of this work but we don’t foresee any
particular conceptual difficulties.

3 SPROUTING UP
We are still at the early stage of bringing the SDN concept
in deterministic real-time communication systems but we
can already say that it will be adopted only if we can provide
correct and efficient network updates. This requires to be

2https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html#sec-annotations
3It doesn’t mean that the element itself must support P4.

able to precisely define the network workload and how it
is expected to be treated. It also calls for new techniques
to update network device software on-the-fly in absence of
operating systems. Our proposition with NUTS is to define a
provable Network Updates mechanism for real-Time Systems.
With it, we consider the network as a whole and authorize
any network element to be reprogrammed to temporarily
take care of traffic while other elements are being updated,
inasmuch as real-time constraints are not violated.
In this infinite realm, we will focus on how to provide a

practical (i.e., fast, provable, and certifiable) method to be
able to safely update networks. On the one hand, we will
define a level of programming abstraction that allows one to
indicate the temporal impact of their implementations on net-
works. On the other hand, we will develop a polynomial-time
algorithm to determine an appropriate sequence of network
updates, given the real-time constraints of the system.

ACKNOWLEDGMENTS
This work was partially supported by the ANR DET4ALL
Project (ANR-18-CE10-0002).

REFERENCES
[1] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin,

Dexter Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT:
Semantic Foundations for Networks. In Proceedings of the 41st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages
(POPL ’14). ACM, 113–126. https://doi.org/10.1145/2535838.2535862

[2] Ryan Beckett, Michael Greenberg, and David Walker. 2016. Tempo-
ral NetKAT. In Proceedings of the 37th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI ’16). ACM,
386–401. https://doi.org/10.1145/2908080.2908108

[3] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto,
Jennifer Rexford, Alec Story, and David Walker. 2011. Frenetic: A Net-
work Programming Language. In Proceedings of the 16th ACM SIGPLAN
International Conference on Functional Programming (ICFP ’11). ACM,
279–291. https://doi.org/10.1145/2034773.2034812

[4] Arjun Guha, Mark Reitblatt, and Nate Foster. 2013. Machine-verified
Network Controllers. In Proceedings of the 34th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation (PLDI ’13).
ACM, 483–494. https://doi.org/10.1145/2491956.2462178

[5] Jean-Yves Le Boudec and Patrick Thiran. 2001. Network calculus: a theory
of deterministic queuing systems for the internet. Vol. 2050. Springer
Science & Business Media.

[6] Dan Levin, Marco Canini, Stefan Schmid, Fabian Schaffert, and Anja
Feldmann. 2014. Panopticon: Reaping the Benefits of Incremental
SDN Deployment in Enterprise Networks. In 2014 USENIX Annual
Technical Conference (USENIX ATC 14). USENIX Association, 333–
345. https://www.usenix.org/conference/atc14/technical-sessions/
presentation/levin

[7] A Prasad Sistla, Edmund M Clarke, Nissim Francez, and Albert R Meyer.
1984. Can message buffers be axiomatized in linear temporal logic?
Information and Control 63, 1-2 (1984), 88–112.

[8] S. Vissicchio, L. Vanbever, L. Cittadini, G. G. Xie, and O. Bonaventure.
2017. Safe Update of Hybrid SDN Networks. IEEE/ACM Transactions
on Networking 25, 3 (June 2017), 1649–1662. https://doi.org/10.1109/
TNET.2016.2642586

https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html##sec-annotations
https://doi.org/10.1145/2535838.2535862
https://doi.org/10.1145/2908080.2908108
https://doi.org/10.1145/2034773.2034812
https://doi.org/10.1145/2491956.2462178
https://www.usenix.org/conference/atc14/technical-sessions/presentation/levin
https://www.usenix.org/conference/atc14/technical-sessions/presentation/levin
https://doi.org/10.1109/TNET.2016.2642586
https://doi.org/10.1109/TNET.2016.2642586

	Abstract
	1 In a nutshell
	2 The constituting elements
	3 Sprouting up
	References

