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A problematic issue in the Walton-Marshall method for some neutral
delay systems

Le Ha Vy Nguyen1, Catherine Bonnet1, Islam Boussaada2, and Marianne Souaiby1

Abstract— This paper considers delay systems with charac-
teristic equation being a quasi-polynomial with one delay and
polynomials of degree one. It is shown that for a subclass of
systems which have a chain of poles clustering the imaginary
axis by the left, the procedure of Walton and Marshall fails:
we prove the existence, for an infinitesimally small delay, of a
positive real pole at infinity. This real pole is then proved to be
the unique pole of the system in the closed right half-plane for
all values of the delay. Some numerical examples illustrate the
results.

I. INTRODUCTION
The stability properties of linear delay systems have been

widely studied since the sixties. A crucial step in this context
is the determination of the location of the poles of the system
(that is the zeros of a quasi-polynomial) in the complex
plane. After the seminal work of Bellman and Cooke locating
the chain of poles appearing as soon as a delay is present in
the state (or derived state), many studies have been devoted to
the characterization, via sufficient or necessary and sufficient
conditions, of the different types of stability (asymptotic,
exponential or H∞) of a system as well as the development
of practical methods to help verify these conditions and
indeed decide on the stability of a given system. One of such
practical methods has been given by Walton and Marshall
in [1], and is referred as a direct method in comparison
with methods requiring a substitution (e.g. the well-known
Rekasius substitution), see [2], [3] for example.

Relying on the well-known continuity property of the
roots of a quasi-polynomial with respect to a strictly positive
delay, the Walton-Marshall method relies on three steps : (1)
determine the location of the roots of the quasi-polynomial
when the delay is equal to zero, (2) locate where in the
complex plane the infinite number of roots appear when the
delay becomes infinitesimally small, (3) find the crossings
on the imaginary axis when the delay varies.

Step 2 is of particular importance: in the case of neutral
systems, it may happen that an infinite number of poles
appear in the closed right half-plane or near the imaginary
axis (clustering the imaginary axis). Such neutral systems
are difficult to analyze and most practical methods deal with
systems for which it is guaranteed that the infinite number
of poles appear in {s ∈ R : �s < −a, a > 0}.
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In their step 2, Walton and Marshall claim that they can
determine if the infinite number of poles appear in the left
or right half-plane. Although they capture most of the poles,
they miss in some cases a real positive pole at infinity.

In this paper we consider delay systems with character-
istic equation being a quasi-polynomial with one delay and
polynomials of degree one.

Our aim is to characterize systems for which there exists a
positive real pole at infinity in step 2 and prove that this pole
is the unique pole appearing in the closed right-half plane
for an infinitesimally small delay.

The paper is organized as follows. Section II gives some
preliminaries on the location of poles of neutral systems.
Section III considers neutral delay systems which have a
chain of poles in the open left half-plane and determines
a subclass of systems which admit a real positive pole at
infinity in step 2 of Walton-Marshall method. In Section IV
we prove that this pole is unique in the closed right half-
plane. Some examples illustrate those results in Section V.

II. PRELIMINARIES

We consider the quasi-polynomial

f(s) := p(s) + q(s)e−sh, (1)

where p(s) = s + b and q(s) = cs + d with b, c, d, h ∈ R,
c �= 0.

As in [Bellman1963], invoking Rouché’s Theorem on
small circles of radius 1/h around the points 1
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Hence, these roots are asymptotic to the vertical line
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If c = ±1, this vertical line is the imaginary axis.
According to [4, Theorem 2.1], we develop p(s)

q(s) as |s| →
∞ as follows

p(s)
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s
+

γ

s2
+O(s−3), (2)



and with c = ±1 the asymptotic roots can be further
approximated as follows

sn =
λn

h
− β

αλn
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If β2

2 − γ
α > 0, then the asymptotic roots are on the left of

the imaginary axis. If β2

2 − γ
α < 0, then they are on the right.

III. EXISTENCE OF A POSITIVE ROOT

We are interested in quasi-polynomials of the form (1)
whose chain of roots is in the open left half-plane. Hence,
we restrict our attention to 0 < |c| ≤ 1 which implies that
the asymptotic axis is either in the open left half-plane or is
the imaginary axis.

Proposition 3.1: The quasi-polynomial (1) with 0 < |c| ≤
1 has a large positive root for a small delay h if and only if
c = −1 and b+ d < 0. The root is then approximated by

s ≈
√

−b+ d

h
. (3)

Proof: For a large positive root of f(s), we have

e−sh = − s+ b

cs+ d
(4)

with sign(− s+b
cs+d) = sign −1

c . Since e−sh > 0, necessarily
c < 0.

From (4) we get

−sh = Ln

(
1− (c+ 1)s+ b+ d

cs+ d

)
.

If c = −1 we have −sh = Ln
(
1 + b+d

s−d

)
and a solution s

will exist if and only if b+ d < 0.
Otherwise −sh = Ln

(
1− c+1

c (1 +O(1s ))
)

which does
not admit when −1 < c < 0.

IV. UNIQUENESS OF THE POSITIVE ROOT

From the previous section, we see that among systems
whose asymptotic axis is in the closed right half-plane, only
systems which satisfy c = −1, thus having a chain of roots
clustering the imaginary axis, may have a large positive root
appearing for h = 0+. Among those, systems of interest
are those which have no positive root when h = 0 and no
right chain of roots. The following lemma characterizes such
systems.

Lemma 4.1: The quasi-polynomial f(s) given as in (1)
with c = −1 satisfies the following statements:

1) f(s) has no root in the closed right half-plane for h =
0 if and only if b+ d �= 0.

2) If b2 − d2 > 0, then f(s) has infinitely many roots
approaching the imaginary axis from the left.

Proof:
1) When h = 0, f(s) becomes

b+ d = 0,

which has no root in the closed right half-plane if and
only if

b+ d �= 0.

2) To consider the existence of a left chain of roots when
h > 0, we develop p(s)

q(s) as |s| → ∞ as in (2) and
obtain α = −1, β = −(b + d), and γ = −d(b +
d). From [4, Theorem 2.1], f(s) has roots of large
modulus approaching the imaginary axis from the left
if

γ

α
<

β2

2
,

which is equivalent to

b2 − d2 > 0.

According to Walton and Marshall [1, p. 25], quasi-
polynomials satisfying the two conditions in Lemma 4.1
should not have roots in the closed right half-plane for small
delay h. However, Proposition 3.1 has shown that a subset
of these quasi-polynomials have a large positive root for
h = 0+. More precisely, this class is f(s) with b + d < 0
and |b| > |d|.

Now, for such a quasi-polynomial, the question is whether
there are other roots (they would be of large modulus) ap-
pearing in the closed right half-plane. In the next proposition,
we prove the uniqueness of its large positive root.

Proposition 4.2: The quasi-polynomial f(s) given as in
(1) with c = −1, |b| > |d|, and b+ d < 0 has a unique root
in the closed right half-plane for all h > 0.

Proof: Recall that for c = −1, the roots of large
modulus are approximated by

sn = j
2πn

h
+ j

β

α2πn
− h

4π2n2

(
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2
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)
+ o
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1
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,

where n ∈ Z, n large enough.
Let R > 0 and R1 = (2πn1 − 1)/h < R, n1 ∈ Z+.
We consider the contour C which is a slightly modified

right semicircle of radius R centered at the origin in the
following way: On the upper half of the imaginary axis, from
jR1 onward, the contour goes about the points j2πn/h by a
right semicircle of radius 1/h (in the right half-plane). The
same behavior is applied for the lower half of the imaginary
axis. Figure 1 illustrates the contour C.

We can choose R1 large enough to fulfill two conditions:

• For |s| ≥ R1 the roots of f(s) are asymptotic to those
of the equation e−sh = 1.
Note that, under conditions on the coefficients c, b and
d, these roots are on the left of the imaginary axis.
Therefore, within the semicircles of radius 1/h, there is
no root.

• 	f(s) > 0 for s on the contour C satisfying 	s ≥ R1

(see Lemma 6.1).
By abuse of notation, we denote f(C) the image curve of

C under the mapping f(s).
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Fig. 1. The contour C

By the Argument Principle [5, p. 123] we have: 2jπNf =
winding number around the origin of f(C) when R tends to
infinity, where Nf is the number of zeros of f .

Before analyzing f(s) on several parts of the contour C,
note that f(s) is symmetric with respect to the real axis since
C is symmetric with respect to the real axis and f(s̄) = f(s).

Let us consider the variation or argument of f(s) along
Cj , the straight segment of C which goes from jR1 to −jR1.
Since f(jR1) is in the upper half-plane and f(Cj) only cuts
the negative axis (see Lemma 6.2), the argument of f(s)
increases by 2(π −Arg f(jR1)) along Cj .

Let us consider the small semicircles about j2πn/h and
the straight segments on the imaginary axis that connect these
semicircles. For n > 0, Lemma 6.1 shows that 	f(s) > 0.
Hence, on both the upper and lower parts, the argument of
f(s) changes by 2(Arg f(jR1)−Arg f(s0)) in total, where
s0 is the intersection between a small semicircle or a segment
and the upper part of the large semicircle of radius R (see
Figure 1).

On the large semicircle, denoted CR, we have

f(Rejθ) = (Rejθ + b) + (−Rejθ + d)e−Rejθh

= (R cos θ + b+ jR sin θ) + (−R cos θ + d

− jR sin θ)e−Rh cos θ(cos(Rh sin θ)

− j sin(Rh sin θ))

= [R cos θ + b + d cos(Rh sin θ)e−Rh cos θ

−R cos(θ −Rh sin θ)e−Rh cos θ]

+ j[R sin θ − d sin(Rh sin θ)e−Rh cos θ

−R sin(θ −Rh sin θ)e−Rh cos θ].

Consider the upper part of CR, that is θ ∈ [0, π/2]. We can
choose R large enough such that:

a) �f(Rejθ) ≈ R cos θ > 0 for θ ∈ [
0, π8

]
,

b) 	f(Rejθ) ≈ R sin θ > 0 for θ ∈ (
π
8 ,

3π
8

]
, and

c) 	f(s) > 0 for s going from Rej3π/8 to s0 according
to Lemma 6.1.

For c) to be true, we choose R large enough to satisfy
R sin

(
3π
8

)
> R1 and Arg(s0) > 3π

8 . As implied by a),
b), c), f(s) evolves in the upper half-plane. Therefore, the
argument of f(s) increases by 2Arg f(s0) along CR.

Hence, the argument of f(s) increases by 2π along C and
thus f(s) has one root in the open region defined by C. Since
there is no root within the right semicircles around j2πn/h,
there is one root within the right semicircle with radius R
centered at the origin.

Therefore, with R → ∞, we conclude that f(s) has one
root in the open right half-plane.

Note that the uniqueness result is not restricted to h = 0+

but is valid for h > 0. This can be explained by the fact
that the condition to have a left chain of roots implies no
root crossing the imaginary axis for h > 0 (see Lemma 6.3)
and thus the number of roots in the closed right half-plane
is conserved for all h > 0.

V. NUMERICAL EXAMPLES

f(s) = (s− 2) + (−s+ 1/2)e−sh

Even though this system satisfies all three conditions in
Walton-Marshall method (see Lemmas 4.1 and 6.3), it still
has a positive real root (see Figures 2, 3, and 4). Furthermore,
the location of this root satisfies (3), i.e. for h = 0.01,
0.001, and 0.0001, the approximated values of the positive
root are 12, 37, and 122 respectively. A negative root with
approximately the same magnitude is also shown in the
figures.
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Fig. 2. Roots of f(s) for h = 0.01

From Proposition 4.2, the positive real root is the unique
root in the closed right half-plane. We illustrate several points
of the proof of the proposition by examining the contours C
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Fig. 3. Roots of f(s) for h = 0.001
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Fig. 4. Roots of f(s) for h = 0.0001

and f(C) in the case h = 0.01 showed in Figure 5. Note
that, the positive root is inside the contour C, which has
R ≈ 2500.

Figure 6, which is a zoom near the origin, shows that
f(Cj) cuts the real axis several times at two points −2.5
and −1.5 which conform with Lemma 6.2. Considering the
segments on the imaginary axis with small semicircles that
is above the origin (see Figure 5), its image curve under
the mapping f(s) is shown to be in the upper half-plane
conforming with Lemma 6.1. Hence, f(C) circles counter-
clockwise once around the origin and thus the positive root
is the unique one inside C.

VI. CONCLUSIONS

In this paper we have presented a counterexample to the
second step in Walton-Marshall method, that is for quasi-
polynomials of neutral type with one delay, when the delay
appears, roots appear far from the real axis. We have proved
the existence of a positive root for infinitesimally small delay
for a class of quasi-polynomials with polynomials of degree
one: the chain of roots clustering the imaginary axis and the
degree of the delay-free polynomial decreases. Furthermore,
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Fig. 5. The contour C and f(C) for h = 0.01. The color intensity of C
and f(C) decreases when s varies starting from s0.
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Fig. 6. Zoom on the contour f(C) for h = 0.01

for those whose chain of roots asymptotic to the imaginary
axis from the left, the positive root has been proved to be
unique in the closed right half-plane using the Argument
principle. Note that stability criteria based on the Argument
principle have been proposed both for retarded systems and
neutral systems which do not have poles clustering the
imaginary axis [6], [7], [8] but to the best of our knowledge
never for neutral systems with poles clustering the imaginary
axis.

Our ongoing work considers quasi-polynomials with poly-
nomials of higher degree and with several delays.

APPENDIX

The next lemma examines f(s) given as in (1) on a
horizontal band far from the real axis.

Lemma 6.1: Let f(s) be given by (1) with c = −1.
Consider sh = j2πn + x + jy with n > 0, x ≥ 0,
|y| ≤ π,

√
x2 + y2 ≥ δ where δ is a constant in [1, π].

Then 	f(s) > 0 for n large enough.
Proof: We have

e−sh = e−x−jy = e−xe−jy,



and thus

	f(s) = 2πn+ y

h

(
1− e−x cos y

)− de−x sin y. (5)

Consider the first term in (5). We have e−x ≤ 1 with
equality at x = 0 and cos y ≤ 1 with equality at y =
0. Because of the assumption

√
x2 + y2 ≥ δ, we have

max e−x cos y = α < 1, where α depends on δ. Hence,
1−e−x cos y ≥ 1−α > 0 and thus the first term is positive.

Since the second term in (5) is bounded, we can choose
n large enough such that 	f(s) > 0.

Lemma 6.2: Let f(s) be given in Proposition 4.2 and
Cj = {jX : X ∈ [−R,R]} with R > 0. Then f(Cj) does
not intersect the positive real axis.

Proof: For s ∈ Cj , we have

f(jX) = (jX + b) + (−jX + d)e−jXh

= [b−X sin(Xh) + d cos(Xh)] + j[X −X cos(Xh)

− d sin(Xh)].

When f(Cj) cuts the real axis, we have

	f(jX) = 0

⇐⇒ X(1− cos(Xh))− d sin(Xh) = 0

⇐⇒ 2X sin2
Xh

2
− 2d sin

Xh

2
cos

Xh

2
= 0

⇐⇒ 2 sin
Xh

2

(
X sin

Xh

2
− d cos

Xh

2

)
= 0,

which is equivalent to

sin
Xh

2
= 0 (6)

or
X sin

Xh

2
− d cos

Xh

2
= 0. (7)

We can rewrite the real part of f(jX) as follows

�f(jX) = b− 2X sin
Xh

2
cos

Xh

2
+ d

(
cos2

Xh

2

− sin2
Xh

2

)
.

Hence, in the case (6) �f(jX) = b + d and in the case (7)
�f(jX) = b−d. By assumption, b2−d2 > 0 and b+d < 0.
Hence b−d < 0. Therefore f(Cj) only cuts the negative axis.

Lemma 6.3: f(s) given as in (1) with c = −1 has no
root crossing the imaginary axis for h > 0 if and only if
b2 − d2 �= 0.

Proof: For h > 0, no crossing means W (ω) :=
|p(jω)|2 − |q(jω)|2 �= 0 ∀ω > 0. We have

W (ω) = b2 − d2.

Then W (ω) �= 0 ∀ω > 0 if and only if

b2 − d2 �= 0.
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