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Preface

The six preceding editions of the FCA4AI Workshop showed that many researchers work-
ing in Artificial Intelligence are deeply interested by a well-founded method for classification
and mining such as Formal Concept Analysis (see http://www.fca4ai.hse.ru/). FCA4AI
was co-located with ECAI 2012 (Montpellier), IJCAI 2013 (Beijing), ECAI 2014 (Prague),
IJCAI 2015 (Buenos Aires), ECAI 2016 (The Hague), and finally with IJCAI/ECAI 2018
(Stockholm). All the proceedings of the preceding editions are published as CEUR Proceed-
ings (http://ceur-ws.org/Vol-939/, http://ceur-ws.org/Vol-1058/, http://ceur-ws.
org/Vol-1257/, and http://ceur-ws.org/Vol-1430/, http://ceur-ws.org/Vol-1703/,
and http://ceur-ws.org/Vol-2149/). This year, the workshop has again attracted re-
searchers working on actual and important topics related to FCA, showing the diversity and
the richness of the relations between FCA and AI.

Formal Concept Analysis (FCA) is a mathematically well-founded theory aimed at data
analysis and classification. FCA allows one to build a concept lattice and a system of depen-
dencies (implications) which can be used for many Artificial Intelligence needs, e.g. knowledge
discovery, learning, knowledge representation, reasoning, ontology engineering, as well as in-
formation retrieval and text processing. Recent years have been witnessing increased scientific
activity around FCA, in particular a strand of work emerged that is aimed at extending the
possibilities of FCA w.r.t. knowledge processing, such as work on pattern structures and
relational context analysis. These extensions are aimed at allowing FCA to deal with more
complex data, both from the data analysis and knowledge discovery points of view. Then
these investigations provide new possibilities for AI practitioners in the framework of FCA.
Accordingly, we are interested and discuss the following issues at FCA4AI:

• How can FCA support AI activities such as knowledge processing (knowledge discov-
ery, knowledge representation and reasoning), learning (clustering, pattern and data
mining), natural language processing, and information retrieval.

• How can FCA be extended in order to help Artificial Intelligence researchers to solve
new and complex problems in their domains.

In addition, the 3rd workshop on “Formal Concept Analysis for Knowledge Discovery”
(FCA4KD 2019) was held at the Faculty of Computer Science of National Research University
Higher School of Economics (NRU HSE, Moscow, Russia) on June 7, 2019. FCA4KD is an
event which is close to FCA4AI, as the goal of the FCA4KD is to attract researchers applying
FCA-based methods of knowledge discovery in various subject domains. There was an invited
talk by Andrey Rodin on the problem of justification of knowledge discovery. In addition,
there were 6 regular contributions, three of which were selected for the current volume.
Sergei O. Kuznetsov would like to acknowledge the support of the NRU HSE University
Basic Research Program funded by the Russian Academic Excellence Project 5-100.
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Enabling natural language analytics over
relational data using Formal Concept Analysis

C. Anantaram, Mouli Rastogi, Mrinal Rawat, and Pratik Saini

TCS Research, Tata Consultancy Services Ltd, Gwal Pahari, Gurgaon, India
(c.anantaram; mouli.r; rawat.mrinal; pratik.saini) @tcs.com

Abstract. Analysts like to pose a variety of questions over large rela-
tional databases containing data on the domain that they are analyzing.
Enabling natural language question answering over such data for ana-
lysts requires mechanisms to extract exceptions in data, find steps to
transform data, detect implications in the data, and apply classifications
on the data. Motivated by this problem, we propose a semantically en-
riched deep learning pipeline that supports natural language question
answering over relational databases and uses Formal Concept Analysis
to find exceptions, classification and transformation steps. Our frame-
work is based on a set of deep learning sequence tagging networks which
extracts information from the NL sentence and constructs an equivalent
intermediate sketch, and then maps it into the actual tables and columns
of the database. The output data of the query is converted into a lattice
structure which results into the (extent,intent) tuples. These tuples are
then analyzed to find the exceptions, classification and transformation
steps.

1 Introduction

Data analysts have to deal with a large number of complex and nested queries to
dig out hidden insights from the relational datasets, spread over multiple files.
Extraction of the relevant result corresponding to a given query can be easily
done through a deep learnt NLQA framework, but to detect further explanations,
facts, analysis and visualizations from queried output is a challenging problem.
This kind of data analysis over query’s result can be handled by Formal Concept
Analysis, a mathematical tool that results in a concept hierarchy, makes seman-
tical relations during the queries, and also can find the implications as well as
asociations in the given dataset, can unify data and knowledge and is capable
of information engineering as well as data mining. So for enabling NL analytics
over such datasets for analysts, we present in this paper, a semantically enriched
deep learning pipeline that a) enables natural language question answering over
relational databases using a set of deep learnt sequence tagging networks, and
b) carries out regularity analysis over the query results using Formal Concept
Analysis to interactively explore, discover and analyze the hidden structure in
the selected data [12] [11]. The deep learnt sequence tagging pipeline extracts
information from the NL sentence and constructs an equivalent intermediate
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sketch, and then uses that sketch to formulate the actual database query on the
relevant tables and columns. Query results are used in Formal Concept Analysis
to create a lattice structure of the objects and attributes. The obtained lattice
structure is then used to find exceptions in the data, classification of a new ob-
ject and also to find the set of steps to transform the data from one structure to
another structure.

2 Formal Concept Analysis

Formal Concept Analysis provides a theoretical framework for learning hierar-
chies of knowledge clusters called formal concepts. A basic notion in FCA is the
formal context. Given a set G of objects and a set M of attributes (also called
properties), a formal context consists of a triple (G, M, I) where I specifies
(Boolean) relationships between objects of G and attributes of M , i.e., I ⊆ G ×
M .Usually, formal contexts are given under the form of a table that formalizes
these relationships. A table entry indicates whether an object has the attribute,
or not. Let I(g) = {m ∈ M ; (g,m) ∈ I} be the set of attributes satisfied by
object g , and let I(m) = {g ∈ G; (g,m) ∈ I} be the set of objects that satisfy
the attribute m . Given a formal context (G, M, I) . Two operators ()′ define
a Galois connection between the powersets (P(G),⊆) and (P(M),⊆), with A⊆G
and B⊆M:

A′ = {m ∈M |∀g ∈ A : gIm}
and

B′ = {g ∈ G|∀m ∈ B : gIm}
.
That is to say, A′ is the set of all attributes which is satisfied all objects in A ,
whereas B′ is the set of all objects which satisfies all attributes in B . A formal
concept of (G,M,I) is defined as a pair (A,B) with A∈G , B∈ M , A′=B and
B′=A. A is called the extent of the formal concept (A,B), whereas B is called the
intent.The set of all formal concepts of (G, M, I) equipped with a subconcept-
superconcept partial order ≤ is the concept lattice denoted by L. The and is
defined as:
For A1,A2⊆ G and B1,B2⊆ M

(A1, B1) ≤ (A2, B2) ⇐⇒ A1 ⊆ A2(equivalenttoB2 ⊆ B1)

In this case, the concept (A1, B1) is called sub-concept and the concept (A2, B2)
is called super-concept.

2.1 Association and Implication Rules

Given a formal context (G,M,I) there are extracted exact rules and approxi-
mate rules (rules with statistical values, for example, support and confidence).
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These rules express in an alternative way the underlying knowledge. These rules
are significant as they expresses the underlying knowledge of interaction among
attributes.The exact rules are classified as implication rules while the approxi-
mation rules are classified as association rules.
Definition Given a formal context whose attributes set is M. An implication is
an expression S =⇒ T, where S,T ⊆ M. An implication S =⇒ T, extracted from
a formal context, or respective concept lattice, have to be such that S′ ⊆ T′. In
other words: every object which has the attributes of S, also have the attributes
of T. If X is a set of attributes, then X respects an implication S =⇒ T iff S 6⊆
X or T 6⊆ X. An implication S =⇒ T holds in a set {X1, ..., Xn} ⊆ M iff each
Xi respects S =⇒ T.
Definition Given a threshold minsupp ∈ [0, 1], where the support

supp(X) :=
card(X ′)
card(G)

(withX ′ := g ∈ G|∀m ∈ X : (g,m) ∈ I),

association rules are determined by mining all pairs X =⇒ Y of subsets of M
such that

supp(X =⇒ Y ) := supp(X)

is above the threshold minsupp, and the confidence

conf(X =⇒ Y ) :=
supp(X ∪ Y )

supp(X)

is above a given threshold minconf ∈ [0, 1].

3 Methodology

We present a novel approach where a natural language sentence is converted
into the sketch (Listing 1.1) which uses deep learning models and then further
using the sketch to construct the database query (SQL) and fetch the output.
This output is then taken to derive some explanations or interesting facts, find
outliers or exceptions and rationalize the queried data if required (fig:1).
In order to generate the query sketch, we have a pipeline of multiple sequence
tagging deep neural networks: Predicate Finder Model (Select Clause), Entity
Finder Model (Values in Where Clause), Meta Type Model, Operators and Ag-
gregation Model (all using bi-directional LSTM network along with a CRF (con-
ditional random field) output layer), where the natural language sentence is pro-
cessed as a sequence tagging problem.
The architecture uses an ELMO embedding that are computed on top of two-
layer bidirectional language models with character convolutions as a linear func-
tion of the internal network states [16]. Also the character-level embedding is
used as it has been found helpful for specific tasks and to handle the out-of-
vocabulary problem. The character-level representation is then concatenated
with a word-level representation and feed into the bi-directional LSTM as input.
In the next step, a CRF Layer yielding the final predictions for every word is
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used [8]. We have Z = (z1; z2; ...; zn) as the input sentence and P to be the scores
output by Bi-LSTM network. Qi,j is the score of a transition from tag i to tag
j for the sequence of predictions Y = (y1; y2; ...; yn). Finally the score is defined
as :

s(Z;Y ) =
n∑

i=0

Qyi,yi+1
+

n∑

i=1

Pi,yi

Models details
To generate the query sketch we use four different models using the same ar-
chitecture (BiLSTM-CRF) [17] explained above, where the natural language
sentence is processed as a sequence tagging problem. The neural network then
predicts the tag for each word using which predicates, entities, and values in the
sentence are identified, and an intermediate Sketch (independent of underlying
database) is created. The Sketch is then mapped into the columns of the tables
with conditions to construct the actual SQL query. In the sketch generation pro-
cess the order of the models matters as the input of the next model depends on
the output of previous model. To train the models, we had to create the annota-
tions. In the cases where predicate/entities present in the sentence got the direct
match with columns or values present in the actual database, we extracted them
using a script and in the rest of the cases we have manually annotated the data.

– Predicate Finder Model(Select Clause): This model identifies the tar-
get concepts (predicates) from the NL sentence. In case of database query
language, predicate refers to the SELECT part of the query. Once predi-
cates are identified, it becomes easier to extract entities from the remaining
sentence.

– Entity Finder Model(Values in Where Clause): This model identifies
the relations(values/entities) in the query. In some cases the model misses/-
capture some words. To tackle this issue predicted value in the Apache-Solr
is searched. The structured data for the domain is assumed to be present in
Lucene. After the search we picked the entity from the database which has
the highest similarity score.

– Meta Type Model: This model identifies the type of concepts (predicates
and values) at the node or table level. If a concept is present in more than one
table, type information helps in the process of disambiguation. This helps in
making the overall framework domain agnostic.

– Aggregations and Operators Model: In this model, aggregations and op-
erators are predicted for predicates and entities respectively. Our framework
currently supports following set of aggregation functions: count, groupby,
min, max, sum, asc sort, desc sort. Similarly, following set of operators are
also supported: =;>;<;<>;≥;≤;like.

The models are trained independently and do not share any internal represen-
tations. However, the input of one model depends on the previous. For example,
once predicates are identified we replace the predicate part in the NL sentence
with some token before passing it to the next model. We capture this informa-
tion from the NL sentence and create an intermediate representation (Sketch)
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which is further passed to the query generator(neo4j knowledge graphs), to con-
struct the SQL or another database query and yields results. Result table of the
query is then converted into its equivalent formal context, which is a triplet of
objects, attributes and incidence relation between them. This formal context is
used to extract the implication and association rules [10] and create a concept
lattice which derives all possible formal concepts from the context and orders
them according to a subconcept-superconcept relationship [15]. This conceptual
hierarchy of the queried output is further used for knowledge discovery that is
implicitly present in it. Here we are focusing on three types of analysis over
queried data from a relational database.

Listing 1.1: Sketch

{
” s e l e c t ” :
[
{
” pred h in t ” : model
} ,
{
” pred h in t ” : horsepower ,
” aggregat i on ” : d e s c s o r t ,
} ]
” c o n d i t i o n s ” :
{
” pred h in t ” : c y l i n d e r s ,
” va lue ” : 4 ,
” operator ” : =
}
}

3.1 Outliers Analysis

This is first type of analysis that could be perform in the queried output. Outliers
are defined as rules that contradict common beliefs. These kind of rules can play
an important role in the process of understanding the underlying data as well
as in making critical decisions. Outliers Analysis is to uncover the exceptions
hidden in the given query output. To perform this over the queried output,
we firstly created a preliminary formal context from the given raw data. Then
by using Conexp tool [13], implication and association rules are generated for
complete dataset. These rules shows the correlation among different attributes.
After the query is posed, concept lattice of the queried data is created and formal
concepts in the form of (extent, intent) tuple are extracted from it. Intents of
these formal concepts are then compared with the implication and association
rules. If an intent of the queried output is violating any of the implication and
association rules, then it is considered as an outlier for that query.
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• Entity Extraction 
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• Meta-types 
Identification 
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• Operator & 
Aggregation 
Model

Sketch S : {
 select : [{}],    
conditions:[{}}
}

Knowledge Graph

Query Generator

Word2Vec

DB Query:

MATCH _____
WHERE _____
RETURN ____

1 <instances> attr1,..,,,attrn ==> <== v ;
2 <instances> attr1,..,,,attrn ==> <== v ;
3 <instances> attr1,..,,,attrn ==> <== v ;
-------
-------
k <instances> attr1,..,,,attrn ==> <== v ;

Implication and 
association Rules

Formal Context

Explanantions

Transformation

Classification

Outliers

Concept Lattice

Fig. 1: High Level Architecture of the Process

3.2 Transformation Analysis

This is the second type of analysis that we introduced in our framework. Trans-
formation analysis is used to measure two queries results, where tasks such as
conversion of the underlying lattice structure of one set of query results into
the lattice structure of another set of query results are required. This kind of
analysis is performed by finding the difference between the intents of the for-
mal concepts of both lattices. In our framework when two semantically enriched
queries are posed, lattice structures of their respective outputs are generated.
To find the possible transformation requirements, we match the intents of both
concept lattices and put down the differences between them. This gives us the
disparity in the kind of objects contained in both the lattices which will help in
transforming one lattice to another.

3.3 Classification analysis

Classification analysis in our framework is done to predict the category of new
objects. This is carried out by defining a target attribute t in the dataset, gen-
erating concept lattices Ci for each value vi where i ∈ N of the target attribute
and then comparing new object’s attributes with the intents of each Ci. In this
analysis, a query asking for object details is posed. Lattice structures Ci corre-
sponding to each vi is stored in the memory. At the run time, matching of new
object’s attributes set is done with intents of each Ci. If the intent of new object
is contained in any one of the lattice Cj for some j ∈ range(i), then the new
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object is classified under the corresponding vj category otherwise if more than
one concept lattices contains the new object’s intent then our framework cannot
determine its category.

4 Experiments and Results

Census Income dataset taken from UCI machine learning repository [14] is used.
This relational database contains 906 observations and 14 features of people like
age, occupation, education, salary, workclass, native country etc. We construct
the Neo4j knowledge graph from the csv ad also generated the implication and
association rules. In this dataset we considered people names as the set of objects
and applied conceptual scaling over the multivalued features mentioned above to
generate the set of attributes where the objects and the attributes has a binary
relation in between them.

Snapshot of the dataset is:

Implication and association rules extracted from data are:
S.No. rule no. of instances

1 11th =⇒ ≤50K 118

2 State-gov, 5th-6th =⇒ ≤50K 45

3 Private, 10th =⇒ ≤50K 63

4 Doctorate, State-gov =⇒ >50K 17

5 Federal-gov, Masters =⇒ >50K 41

6 Local-gov, 12th =⇒ ≤50K 86

7 Bachelors =⇒ >50K 178

1. Outliers Analysis

Query: List people working more than 60 hours per week and having excep-
tions in salary with respect to education.
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Rules extracted from lattice are:
S.No. rule

1 Gerrard↔[≤50K,Private,France,Prof-school]⇔Gerrard

2 Arbella↔[>50K,Private,Greece,10th]⇔Arbella⇔Greece

3 Amine↔[≤50K,Self-emp-not-inc,Vietnam,Bachelors]⇔Amine⇔Vietnam

4 Arieyonna↔[>50K,State-gov,India,Prof-school]⇔Arieyonna⇔State-
gov,India

5 Adarsh↔[≤50K,Private,Mexico,Bachelors]⇔Adarsh⇔ Mexico

6 Aadhav↔[>50K,Private,United-States,Some-college]⇔Aadhav

Outliers
S.No. rule

1 Arbella↔[>50K,Private,Greece,10th]⇔Arbella⇔Greece

2 Adarsh↔[≤50K,Private,Mexico,Bachelors]⇔Adarsh⇔ Mexico

Analysis
– Adarsh works >60 hours per week with salary ≤ $ 50 K and Bachelors Degree.
– Arbella works >60 hours per week with salary >$ 50 K and is only 10th grade.

2. Transformation Analysis
Query: What needs to be done to transform workclass, education and salary of
men in Cuba to be like men in England?

Fig. 2: England
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Fig. 3: Cuba

Intents need to be removed are:
a) (≤50K, Self-emp-inc, 5th-6th); b) (Private, >50K, Masters); c) (≤50K, Pri-
vate, 11th); d) (≤50K, Private, 12th); e)(Private, ≤50K, 7th-8th); and f) (≤50K,
Private, 1st-4th)
Intents need to be introduced are:
a) (>50K, Masters, Private); b) (Self-emp-inc, Bachelors, >50K); c) (>50K,
Private, HS-grad); d) (Self-emp-not-inc, ≤50K, HS-grad); e) (Private, ≤50K,
Masters); f) (Bachelors, >50K, Private); g) (>50K, Masters, Federal-gov); and
h) (≤50K, Doctorate, Private)

It shows: Need of higher Education, Need of Self-Employment.

3. Classification Analysis
Query: Predict that whether Aarav has diabetes or not from his blood pressure,
body mass index and age.

Person details Input from user

enter name Aarav

enter age 25

enter Blood Pressure 66

enter Body mass index 23.2

Based on the features of Aarav, it is predicted that he don’t have diabetes.

5 Conclusion

We have described a framework wherein the NL sentence is semantically mapped
into an intermediate logical form (Sketch) using the framework of multiple se-
quence tagging networks. This approach of semantic enrichment abstracts the
low level semantic information from sentence and helps in generalising into var-
ious database queries (e.g. SQL, CQL). Answer of these queries are then further
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interpreted using FCA to find out outliers, facts and explanations, classifications
and transformations. Experimental results shows that how NLQA and FCA can
help an analyst in discovering regularities in a complex data.
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Abstract. Recently many machine learning based AI systems have been de-
signed as black boxes. These are the systems that hide the internal logic from
the users. Lack of transparency in decision making limits their use in various real
world applications. In this paper, we propose a framework that utilizes formal
concept analysis to explain AI models. We use classification analysis to study
abnormalities in the data which is further used to explain the outcome of ma-
chine learning model. The ML method used to demonstrate the ideas is two class
classification problem. We validate the proposed framework using a real world
machine learning task: diabetes prediction. Our results show that using a formal
concept analysis approach can result in better explanations.

1 Introduction

Deep learning techniques have improved the state of the art results in various areas
such as natural language processing, computer vision, image processing etc. The area is
growing at such a fast pace that everyday a new model is being discovered that improves
the state of art rapidly. One of the area that is still under studied is related to the use
of these models in real-world such that the outcome can be explained effectively. For
instance, if a critical AI (Artificial Intelligence) system such as medical diagnosis only
tells whether a patient has a certain disease or not without providing explicit reasons,
the users can hardly be convinced of the judgment. Therefore, the ability to explain the
decision is an important aspect of any AI system particular natural language processing
(NLP) based system.

Recently, lots of works have been done to solve natural language processing re-
search problems such as text classification, sentiment analysis, question answering etc.
However, there are very few attempts to explore explainability of such applications.
Relational data is usually described by objects and their attributes. Particularly, struc-
ture of data is defined by dependencies between the attributes. Explanation consists of
performing an exception and transformation analysis to validate the outcome of a ML
model. In this paper, our approach to explanation generation is via using formal con-
cept analysis, a conceptually different perspective from existing approaches. A central
goal of this research is to build a general purpose or domain-independent framework
for interpreting classification outcome of deep learning models, rather than just a sin-
gle problem in a particular domain. In summary, our contributions in this work are as
follows:
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– We propose a formal concept analysis based approach in order to generate expla-
nations for the outcomes.

– Furthermore, we show the effectiveness of our method on a real world data set i.e.
diabetes prediction.

2 Framework

In this paper, we approach the explanation generation problem from a different per-
spective – one based on formal concept analysis (FCA). We propose a general concept
lattice theory based framework for explanation generation, where given an outcome O
of a deep learning model and a domain ontology, the goal is to identify an explana-
tion that can point the user to the prominent feature set f for a certain outcome. We
use diabetes classification as an example to evaluate the framework where we model
two situations: One where outcome of deep learning black box model and outcome of
FCA based classification directly matches and one where it does not match. Further, we
present an algorithm, implemented for FCA, that computes such similarities and eval-
uate its performance experimentally. In addition to providing an alternative approach
to solve the explanation generation problem, our approach has the merit of being more
generalizable to other problems beyond classification problems as long as they can be
modeled using a FCA based concept lattice.

c1 c2 c3 c4

f1

f2

f3

f4

Domain 
Ontology

Machine Learning 
Classifier (As Black Box) 

Output

Formal Context: Objects with Binary Attributes

Concept 1 {f1,f2,f3,f4}, {c4}

Concept 2 {f1,f2,f3}, {c1,c4}

Concept 3 {f1,f2}, {c1,c3,c4}

Concept n

Lattice of Concepts: 
Extension and Intention

Training Data
(Input to ML Model)

Classification 
Analysis

Semantic 
Enrichment of 
concepts

Fig. 1: Overview of the Proposed Framework
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Algorithm 1 Explanation of Black Box ML model
1: Input: M , c0, c1, sample set s . M : ML Model; c0: lattice of class zero; c1: lattice of

class one
2: Output: E . Explanations
3: procedure PREDICT FCA(c0, c1, si)
4: P ← ∅ . Prediction
5: class0 lattice← c0.lattice
6: class1 lattice← c1.lattice
7: si lattice←LOAD FCA(s)
8: for extent, intent ej , ij ∈ si lattice do
9: for extent, intent ek, ik ∈ class0 lattice do

10: if ik.issubset(ij) then
11: P ← 0
12: end if
13: end for
14: for extent, intent ek, ik ∈ class1 lattice do
15: if ik.issubset(ij) then
16: P ← 1
17: end if
18: end for
19: end for
20: return P
21: end procedure
22: procedure EXPLANATIONGENERATOR(S, D)
23: PML ← ∅ . ML Predictions
24: PFCA ← ∅ . FCA Predictions
25: E ← ∅
26: for sample si ∈ samples do
27: p←M .predict(si)
28: if p > 0.5 then
29: PML.add(1);
30: else
31: PML.add(0);
32: end if
33: PFCA.add(PREDICT FCA(si))
34: for feature fj ∈ si do
35: fj ←MODIFY(fj)
36: P ← PREDICT FCA(si)
37: if PMLi == PFCAi then
38: if P 6= PMLi then E.add (Feature j may be responsible for Sample i classi-

fication);
39: else E.add (Feature j may not be responsible for Sample i classification);
40: end if
41: else
42: if P 6= PMLi then E.add (Feature j may not be responsible for Sample i

classification);
43: else E.add (Feature j may be responsible for Sample i classification);
44: end if
45: end if
46: end for
47: end for
48: return E
49: end procedure
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2.1 Formal Concept Analysis

The fundamental fact underlying FCA is the representability of complete lattices by
ordered sets of their meet and join irreducibles. Since ordered sets of irreducibles are
naturally represented by binary matrices, this makes it possible to apply certain aspects
of the lattice theory to the analysis of data given by object-attribute matrices.

Formal Concept Analysis starts with a formal context (G, M, I) where G denotes
an ordered set of objects, M a set of attributes, or items, and I ⊆ G × M a binary
relation between G and M [1]. The statement (g, m) ∈ I, or gIm, means: “the object g
has attribute m”. Two operators (·)′ define a Galois connection between the power sets
(P(G),⊆) and (P(M),⊆), with A⊆G and B⊆M: A′ = {m ∈ M |∀g ∈ A : gIm} and
B′ = {g ∈ G|∀m ∈ B : gIm}. A pair (A, B), such that A′ = B and B′ = A, is called
a formal concept, where A is called the extent and B the intent of the concept (A, B).
The set of all formal concepts of (G, M, I) created by a partial order relation ≤ , is a
subconcept-superconcept hierarchy and is called the concept lattice L.

2.2 Implication Rules

Implication rules S =⇒ T, where S,T ⊆ M holds in context (G,M,I) if S′ ⊆ T′ i.e.,
each object having all attributes from S also has all attributes from T. These rules are
significant as they expresses the underlying knowledge of interaction among attributes
and moreover, also contains statistical values like support and confidence.

2.3 Classification Analysis

Classification analysis is done to predict the category of new as well as existing ob-
jects. This is carried out by defining a target attribute in the dataset, generating concept
lattices for each value of the target attribute and then comparing new/existing object’s
attributes with the intents of the concept lattice for each category. In this analysis, a
query asking for object details is posed. Lattice structures corresponding to each target
value is stored in the memory. Moreover, if an intent i of a lattice contains some in-
tent j of another lattice, then intent j is not considered in the analysis. At the run time,
attributes set matching of the new/existing object is done with each of the lattices in
the memory. If there is only one lattice L whose some concept’s intent contains the in-
tent of new/existing object, then the corresponding category is assigned to that object
otherwise the result ”not determine” is declared.

2.4 Semantic Enrichment using Domain Ontology

Ontology is the formal specification of concepts and relationships for a particular do-
main (e.g. in the domain of finance, US-GAAP is widely used ontology). Ontology has
a formal semantic representation that can be used for sharing and reusing knowledge
and data. We have downloaded ontology for diabetes from bioportal.bioontology.org/
ontologies/DIAB. In the next step, these concepts and relationships are subsequently
coded in the Web Ontology Language (OWL) with Protege.
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Table 1: Example of Diabetes Ontology

Subject Predicate Object
type 2 diabetes mellitus has exact synonym type II diabetes mellitus
type 2 diabetes mellitus has exact synonym non-insulin-dependent diabetes mellitus
type 2 diabetes mellitus has exact synonym NIDDM
type 2 diabetes mellitus is subClassOf diabetes mellitus
diastolic blood pressure has low range < 70
diastolic blood pressure has high range > 100
body mass index has normal range < 23

This ontology (stored as a Resource Description Framework graph) stores the con-
cepts of the domain and their relationships with a<subject-predicate-object>
structure for each of the concepts. For instance, Table 1 shows an example of diabetes
ontology. Here, concepts like diabetes etc. are defined along with concept relationships
and synonyms. Additionally, ontology also define the categorical partitioning of dia-
betic attributes based on medical experts opinion. For example, ontology suggests the
normal, low and high ranges for blood pressure. This ontology also assists in deriving
implication rules which assists in classification analysis through FCA.

3 Results

The data for diabetes prediction is taken from www.kaggle.com/uciml/pima-indians-diabetes-database.
The datasets consist of several medical predictor (independent) variables and one target
(dependent) variable, Outcome. Independent variables include the number of pregnan-
cies the patient has had, their BMI, insulin level, age, and so on.

Data pre-processing involves removing missing/invalid values. Thereafter, we en-
rich the data using a domain ontology. This involves defining ranges for the records and
also building concept hierarchy. Thereafter, we build a ML model to classify if a certain
object has diabetes or not. At the same time, we also use FCA approach to classify the
same set of objects. Note that the objective of using FCA based classification was just
to explain the outcome of ML model, which has been used as a black box. Results are
summarized in Table 2.

Table 2: Results using FCA and ML Model
ML Model FCA

Accuracy 70% 73%
Precision 77% 72%
Recall 63% 90%

23



3.1 Classification using ML Approach

We used a LSTM based deep neural network based binary classification to train on
the processed dataset. Number of training samples were 540 and testing samples were
150. We used all 11 features available in the data such as BMI, Blood Pressure, Insulin
etc. The test accuracy of diabetes classification was 70% (See Table 2). Interestingly,
accuracy of FCA approach was better. This can be due to the fact that size of dataset was
not very large. It might be possible that on a larger dataset ML model might perform
better. However, the scope of this work was never to compare the accuracy of two
approaches, but to use FCA based lattice theory to explain the output of black box ML
model. The explanation of the outcomes was generated using FCA model as explained
in the next subsection.

3.2 Classification using FCA Approach

We divided the training data (the same data that was used in ML model) into two classes:
diabetes and no diabetes. Then, we created two separate concept lattices for both classes
as shown in Figure 2 and 3. For each sample in test set, we created its lattice alongwith
extent and intent of each concept in the lattice. Thereafter, we compared the intents
of concept in sample lattice with concept in both lattices (class lattices i.e. lattices of
diabetes and no diabetes). The comparison is based on subset matching between sam-
ple lattice and class lattices. Wherever there is a match between lattices, that class is
assigned as predicted class for the test sample.

3.3 Explaining the ML Model Outcome using FCA

We compared the outcomes of ML model and FCA based classification. We take each
sample in the test set and we try to map to the feature set. The goal of explanation is to
identify the feature which may be prominent to classify a given sample into a particular
class. In order to achieve this, we change the features and observe the outcome with
modified features. If the outcome with modified features change (i.e. changing a feature
fi, leads to change in OutcomeOj), we can assert that fi is responsible for the outcome
(See Algorithm 1 for details).

Table 3 shows the identified feature set for two classes. It shows the relative im-
portance of each feature for identifying a sample into diabetes or no diabetes. In the
scope of current work, we present the results with individual features only. Similar ex-
periments can be performed to compute the feature sets as well. As we observe, Age
is least important feature for an outcome of diabetes class, whereas Blood Pressure is
most important feature. Similarly, for an outcome to be in non-diabetes class BMI is the
most prominent feature.

Outcome (Based on the features and Implication rules): Aarav doesn’t have dia-
betes.

In order to qualitatively evaluate the results, we identified implication rules from
the training data as shown in Table 5. For a given test sample, we also used implication
rules to validate the output. For Example: Predict that whether Aarav has diabetes or
not from his blood pressure, body mass index and age (See Table 4).
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Table 3: Feature Interpretation for two classes (Diabetes and Non Diabetes)
Diabetes Non Diabetes

Number of times of pregnancy — (# Preg) 15.6% 36.7%
Plasma glucose concentration every 2 hours in
an oral glucose tolerance test — (Plasma)

13.2% 37.5%

diastolic blood pressure (mm Hg) —- (Diast
BP)

16.4% 42.18%

triceps skin fold thickness (mm) —- (skin) 12.5% 41.4%
2-Hour serum insulin (mu U/ml) —- (insulin) 11.7% 43.7%
body mass index (weight in kg/(height in
(mm)2) —- BMI

10.9% 45.3%

diabetes pedigree function — Pedigree 9.3% 43.7%
Age in years —- Age 5.4% 40.6%

Table 4: Classification Example using FCA
Person details Input from user
Name Aarav
Age 25, Age-range(2)
Blood Pressure 66, BP-range(1)
Body Mass Index 23.2, BMI-Range(2)

4 Related Work

Most machine learning model rely on validation set accuracy as a way of primary mea-
surement of trust. However, there are limitations of these approaches in using models
in a real world paradigm. Recognizing the importance of interpretations in assessing
trust, various frameworks have been proposed that focus on interpretable models, es-
pecially for the medical domain [2,3,4]. While such models may be appropriate for
some domains, they may not apply equally well to others. In the domain of computer
vision, systems that rely on object detection to produce candidate alignments [5] or
attention [6] are able to produce explanations for their predictions. However these mod-
els are constrained to specific neural network architectures. Our focus is on building
general, model-agnostic explanations that can be applied to any classifier.

Another common approach for generating explanation is to build another model
over the outcome of original model [7,8]. One limitation of this approach is that these
models approximate the original model globally, thus interpreting outcomes at a fine
grain level becomes a significant challenge. In order to interpret model at fine grain
local level, LIME is a promising approach that approximates the original model lo-
cally [9]. Recent works such as SHAP (SHapley Additive exPlanations) provide robust
framework to interprete predictions of Ml models [10]. Machine learning models have
also been described in terms of Formal Concept Analysis (FCA) [11]. Similarly, Formal
concept analysis has been successfully used in other areas such as knowledge process-
ing [12].
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Table 5: Implication rules
Rule # instances
BP-range(2), Age-range(2) =⇒ Outcome(0) 226
BMI-range(1), BP-range(1) =⇒ Outcome(0) 128
BMI-Range(2), BP-Range(2) =⇒ Outcome(1) 63
Age-Range(1), BMI-Range(2), BP-Range(1) =⇒ Outcome(1) 41
BP-Range(0), Age-Range(2), BMI-Range(0) =⇒ Outcome(0) 95
BP-Range(0), Age-Range(2), BMI-Range(2) =⇒ Outcome(1) 86
BP-Range(1), Age-Range(1), BMI-Range(2) =⇒ Outcome(1) 178

Fig. 2: No Diabetes Fig. 3: Diabetes

Our approach is model and domain agnostic. However, using FCA based interpre-
tation approach, the outcome can be interpreted with a sound theoretical basis.

5 Conclusion and Future Work

We considered Formal Concept Analysis in context of interpretation of machine learn-
ing models particularly focusing on classification and assuming that model to be ex-
plained is a black box model. The main attention was drawn to the lattice based classifi-
cation analysis of attributes. We showed the significance using well known classification
problem i.e. diabetes prediction. In this paper, we limited our experiments to two class
classification problems, however the proposed approach can be generalized to multi-
class classification problems easily. In future, we want to extend this work to various
other domains such as computer vision.
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Abstract 
We explore how to validate the soundness of textual explanations in a domain-independent manner. We
further assess how people perceive explanations of their opponents and what are the factors 
determining whether explanations are acceptable or not. We discover that what we call a complete 
discourse tree (complete DT) determines the acceptability of explanation. A complete DT is a sum of a 
traditional DT for a paragraph of actual text and an imaginary DT for a text about entities used but not 
explicitly defined in the actual text. 

1 Introduction 

Providing explanations of decisions for human users, and understanding how human agents explain their 
decisions, are important features of intelligent decision making and decision support systems. A number 
of complex forms of human behavior is associated with attempts to provide acceptable and convincing 
explanations. In this paper, we propose a computational framework for assessing soundness of 
explanations and explore how such soundness is correlated with discourse-level analysis. 

Importance of the explanation-aware computing has been demonstrated in multiple studies and 
systems. Also, (Walton, 2007) argued that the older model of explanations as a chain of inferences 
with a pragmatic and communicative model that structures an explanation as a dialog exchange. The 
field of explanation-aware computing is now actively contributing to such areas as legal reasoning, 
natural language processing and also multi-agent systems (Dunne and Bench-Capon, 2006). It has 
been shown (Walton, 2008) how the argumentation methodology implements the concept of 
explanation by transforming an example of an explanation into a formal dialog structure. Galitsky 
(2008) differentiated between explaining as a chain of inference of facts mentioned in dialogue, and 
meta-explaining as dealing with formal dialog structure represented as a graph. Both levels of 
explanations are implemented as argumentation: explanation operates with individual claims 
communicated in a dialogue, and meta-explanation relies on the overall argumentation structure of 
scenarios. 

In this paper we explore how good explanation in text can be computationally differentiated from 
bad explanation. Intuitively, a good explanation convinces the addressee that a communicated claim is 
right, and it involves valid argumentation patterns, logical, complete and thorough. A bad explanation 
is unconvincing, detached from the beliefs of the addressee, includes flawed argumentation patterns 
and omits necessary entities. In this work we differentiate between good and bad explanation based on 
a human response to such explanation. Whereas users are satisfied with good explanation by a system 
or a human, bad explanations usually lead to dissatisfactions, embarrassment and complaints. 

2 Validating explanations with Discourse Trees 
2.1 Classes of explanation 

To systematically treat the classes of explanation, we select an environment where customers 
receive explanations from customer service regarding certain dissatisfactions these customers 
encountered. If these customers are not satisfied with explanations, they frequently submit detailed 
complaints to consumer advocacy sites. In some of these complaints these customers explain why they 
are right and why the company’s explanation is wrong. From these training sets we select the 
good/bad explanation pairs and define respective explanation classes via learning to recognize them. 
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Another way to consider a bad explanation is what we call an explanation attempt: a logical chain is 
built but it has some omissions and inconsistencies so that the explanation is bad. An absense of a 
logical chain means the absense of explanation; otherwise, if such chain obeys certain logical 
properties it can be interpreted by something else besides explanation but instead argumentation, 
clarification, confirmation or other mental or epistemic state. 

2.2 Explanation and Argumentation 
Explanations are correlated with argumentation and sentiments. A request to explain is usually 
associated with certain arguments and a negative sentiment.  
For an arbitrary statement S a person may have little or no prior reason for believing this statement to 
be true. In this case a cognitive response is a doubt, which is articulated with a request for evidence. 
Evidence is a kind of reason, and the attempt to provide evidence in support of a conclusion is 
normally called an argument. Argument reasoning is represented on the top of Fig. 1. 

On the other hand a person may already know S and require no further evidence for the truth of S. 
But she still may not understand why S holds (occurred, happened etc. In this case she would request 
for a cause. Explanation is defined as an attempt to provide a cause in support of a conclusion. 
Explanation reasoning may be represented in the bottom of Fig. 1. 
 

 
  Fig.1: Relationship between argumentation and explanation 
 

2.3 Hybrid discourse trees 
In the banking domain nonsufficient fund fee (NSF) is a major problem that banks have difficulties 

communicating with customers. An example of brief, informal explanation follows: 
It's not always easy to understand overdraft fees. When a transaction drops your checking account balance 

below zero, what happens next is up to your bank. A bank or credit union might pay for the transaction or 
decline it and, either way, could charge you a fee. 

 
Fig 2. Discourse tree of explanation text with the imaginary part shown in the top-right for nucleus ‘transaction’. 
 

The concept of transaction is not tackled in this text explaining nonsufficient fee. An ontology 
could specify that transaction = {wiring, purchasing, sending money} but it is hard to be complete. 
Instead, one can complement the notion of transaction via additional text that will elaborate on 
transaction, providing more details on it. 
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Hence Elaboration relation for nucleus transaction is not in actual DT but is assumed by a recipient of 
this explanation text.  We refer to such rhetorical relations as Imaginary: they are not produced from 
text but are instead induced by the context of explanation. Such multiple imaginary RRs form 
additional nodes of an actual DT for a text being communicated. We refer to the extended DT as 
complete: it combines the actual DT and its imaginary parts. Naturally, the latter can be dependent on 
the recipient: different people keep in mind distinct instances of transactions. 

We formalize this intuition by using discourse structure of the text expressed by DTs. Arcs of this 
tree correspond to rhetorical relations (RR), connecting text blocks called Elementary Discourse Units 
(EDU). We rely on the Rhetorical Structure Theory (RST, Mann and Thompson, 1988) when 
construct and describe discourse structure of the text. 

When people explain stuff, they do not have to enumerate all premises: some of them implicitly 
occurring in the explanation chain and are assumed by the person providing explanation to be known 
or believed by an addressee. However, a DT for a text containing explanation only incudes EDUs from 
actual text and assumed, implicit parts with its entities and phrases (which are supposed to enter 
explanation sequence) are absent. How can we cover these implicit entities and phrases? 

In the considered example Elaboration relation for nucleus transaction is not in actual CDT but is 
assumed by a recipient of this explanation text. We refer to such rhetorical relations as Imaginary: they 
are not produced from text but are instead induced by the context of explanation. Such multiple 
imaginary RRs form additional nodes of an actual DT for a text being communicated. We refer to the 
combined CDTs as hybrid: it combines the actual CDT and its imaginary parts. Naturally, the latter 
can be dependent on the recipient: different people keep in mind distinct instances of transactions. 
Complete discourse tree for the example is shown on Fig.2. Complete discourse trees also have 
communicative actions attached to their edges in the form of VerbNet verb signatures (Galitsky and 
Parnis, 2019). 
 

2.4 Semantic representation 

Fig.3 Frame semantic parse for the explanation 
 
A frame semantic parse for the same text is shown in Fig. 3. The reader observes that it is hard to tag 

entities and determine context properly. Bank is tagged as Placing (not disambiguated properly) and 
‘credit union might’ is determined as a hypothetical event since union is represented literally, as an 
organization, separately from credit. Overall, the main expression being explained, ‘transaction drops 
your checking account balance below zero’, is not represented as a cause of a problem by semantic 
analysis, since a higher level considerations involving a banking – related ontology would be required.  

Instead of relying on semantic–level analysis to classify explanations, we propose a discourse-level 
machinery. This machinery allows including the explanation structure beyond the ones from explanation 
text but also from the accompanying texts mined from various sources to obtain a complete logical 
structure of the entities involved in explanation. 
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2.5 Discourse tree of explanations 
Valid explanation in text follow certain rhetoric patterns. In addition to default relations of Elaborations, 
valid explanation relies on Cause, Condition, and domain-specific Comparison (Fig. 4) As an example, 
we provide an explanation for why thunder sound comes after lightning: 

 
‘We see the lightning before we hear the thunder. This is because light travels faster than sound. The 
light from the lightning comes to our eyes much quicker than the sound from the lightning. So we hear it 
later than we see it.‘ 
  
 
joint 
  elaboration (LeftToRight) 
    cause (LeftToRight) 
      temporal (LeftToRight) 
        TEXT: We see the lightning 
        TEXT: before we hear the thunder . 
      TEXT: This is because light travels faster than sound . 
    elaboration (LeftToRight) 
      TEXT: The light from the lightning travels to our eyes much quicker than the sound from the 
lightning . 
      comparison (LeftToRight) 
        TEXT:so we hear it later 
        TEXT:than we see it . 

Fig. 4: A discourse tree for an explanation of a lightning 
 
The clause we need to obtain for an implication in the explanation chain is verb-group-for-moving 

{moves, travels, comes} faster  verb-group-for-moving-result {earlier}.  This clause can be easily 
obtained by web mining, searching for expression  ‘if noun verb-group-for-moving faster then noun 
verb-group-for-moving-result earlier. 

What would make this DT look like a one for invalid explanation? If any RR under top-level 
Elaboration turns into Joint it would mean that the explanation chain is interrupted.  

We explore argumentation structure example of (Toulmin, 1958, Kennedy et al., 2006). We show two 
visualizations of the discourse tree and the explanation chain (in the middle) in Fig. 5. 

 
elaboration 
  TEXT:Harry was born in Bermuda . 
  explanation (LeftToRight) 
    attribution (LeftToRight) 
      TEXT:A person born in Bermuda is a British subject . 
      TEXT:It is on account of the following statutes 123 . 
    condition 
      TEXT:So , presumably , Harry is a British subject , 
      Joint 
        TEXT:unless both his parents were aliens , 
 
        TEXT:or he has become a naturalized American . 
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Fig. 5: Toulmin’s argument structure (in the middle) and its rhetorical representation via EDUs (on the 

top) and via discourse relations (on the bottom) 
 
An interesting application of Toulmin’s model is the argumentative grammar by Lo Cascio (1991), a 

work that, by defining associative rules for argumentative acts, is naturally applicable, and indeed has 
been applied, to the analysis of discourse structure in the pre-DT times. 

2.6 Logical Validation of Explanation via Discourse trees 
Logically, explanation of text S is a chain of premises P1 ,…, Pm which imply S.  S is frequently 

referred to as a subject of explanation. For this chain P1 ,…, Pm   each element Pi is implied by its 
predecessors: P1 ,… Pi-1  Pi. In terms of a discourse tree, there should be a path in it where these 
implications are realized via rhetorical relations. We intend to define a mapping between EDUs of a 
DT and entities Pi occurring in these EDUs which form the explanation chain. In terms on underlying 
text, Pi are entities or phrases which can be represented as logical atoms or terms. 

These implication-focused rhetorical relations rr are: 
1) elaboration: Pi can be an elaboration of Pi-1 ; 
2) attribution: Pi can be attributed to Pi-1 ;  
3) cause: this is a most straightforward case,   

Hence Pi   Pj  if rr(EDUi , EDUj ) where Pi EDUi  and Pj  EDUj . We refer to this condition as 
“explainability” via Discourse Tree. 

Actual sequence P1 ,…, Pm   for S is not known, but for each S we have a set of good explanations 
Pg1 ,…, Pgm   and a  set of bad explanations Pb1 ,…, Pb2. 
Good explanation sequences obey explainability via DT condition and bad – do not (Galitsky 2018). 
Bad explanation sequences might obey explainability via DT condition for some Pbi. If a DT for a text 
is such that explainability via DT condition does not hold for any Pbi   then this DT does not include 
any explanation at all. 
The reader can observe that to define a good and a bad explanation via a DT one needs a training set 
covering all involved entities and phrasing Pi occurring in both positive and negative training sets. 

2.7 Constructing Imaginary Part of a Discourse Tree 
By our definition imaginary DTs are the ones not obtained from actual text but instead built on 

demand to augment the actual ones. For a given chain P1 ,…, Pi’ , …, Pm   let Pi’ be the entity which is 
not explicitly mention in a text but instead is assumed to be known to the addressee. This Pi’ should 
occur in other texts in a training dataset. To make the explainability via DT condition applicable, we 
need to augment actual DTactual with imaginary DTimaginary such that Pi’   EDU of this DTimaginary.  We 
denote DTactual  DTimaginary as DTcomplete.  

If we have two textual explanations in the positive set of good explanations for the same S, T1 and 
T2: 

Elaboration 

Explanation 

Attribution Condition 

Joint 

Rebuttal Rebuttal Claim Backing Warrant Datum 
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T1: P1 ,…, Pm  S 
T2: P1 , Pi’,…, Pm  S 

then we can assume that Pi’ should occur in a complete explanation for S and since it does not occur 
in T1  then DT(T1) should be augmented with DTimaginary such that Pi’  EDU of this DTimaginary.  
 

3 Learning Framework and Evaluation 
In this section we automate our validation of text convincingness including description of a training 
dataset and learning framework. 

We conduct our evaluation in two steps. Firstly, we try to distinguish between texts with 
explanation and without explanation. This task can be accomplished without an involvement of virtual 
DTs. Secondly, once we confirm that that can be done reasonably well, we drill into more specific 
tasks of differentiating between good and bad explanation chains within the dataset of the first task. 

3.1 Building a Dataset of Good/bad Explanation Chains 
We form the positive explanation dataset from the following sources: 

1. Customer complaints; 
2. Paragraphs from physics and biology textbook; 
3. Yahoo! Answers for Why/How-to questions. 

The negative training dataset includes the sources of a totally different nature: 
1. Definition/factoid paragraphs from Wikipedia, usually, first paragraphs; 
2. First paragraphs of news articles introducing new events; 
3. Political news from Functional Text Dimension dataset. 

We formed the balances components of the positive and negative dataset for both tasks: each 
component includes 240 short texts 5-8 sentences (250-400 words).  

We now comment on each source. The purpose of the customer complaint dataset is to collect texts 
where authors do their best to explain their points across by employing all means to show that they are 
right and their opponents are wrong. Complaints are emotionally charged texts providing explanation 
of problems they encountered with a financial service, how they tried to explain their viewpoint to a 
company and also a description of how these customers attempted to solve it (Galitsky et al., 2008, 
GitHub Customer Complaints dataset 2019). 

Also, to select types of text with and without explanation, we adopt the genre system and the 
corpora from (Lee, 2001). The genre system is constructed relying on the Functional Text Dimensions. 
These are genre annotations which reflect judgments as to what extent a text can be interpreted as 
belonging to a generalized functional category. A genre is a combination of several dimensions. For 
the positive dataset, we select the genre with the highest density of explanation such as scientific 
textbook. For the negative dataset, we focus on the genres which are least likely to contain 
explanations, such as advertisement, fiction-prose, instruction manuals and political news. The last one 
is chosen since it has the least likelihood to contain an explanation. 

For the positive dataset for the second task, as good explanation chains, we rely on the following 
sources: 

1. Customer complaints with valid argumentation patterns; 
2. Paragraphs from phisics textbook explaining certain phenomena, which are neither factoid nor 

definitional; 
3. Yahoo! Answers for Why/How-to questions; 

 
We form the negative dataset from the following sources:  

1. Customer complaints with invalid argumentation patterns; these complaints are inconsistent, 
illogical and rely on emotions to bring their points across; 

2. Paragraphs from phisics textbook formulating longer questions and problems; 
3. Yahoo! Answers for Why (not How-to) questions which are reduced to break the explanation 

flow. Sentences are deleted or re-shuffled to produce an incohesive, non-systematic 
explanation. 
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3.2 Crawling Information for Imaginary Discourse Tree Construction 
Imaginary DTs can be found by employing background knowledge in a domain independent manner: 
no offline ontology construction is required. Documents that were found on the web can be the basis 
of constructing imaginary DTs following the algorithm described in the Section 2.4. 

Given an actual part of the text A, we outline a top-level search strategy for finding a source for 
imaginary DTs (background knowledge) B. 

1) Build DT for A; 
2) Obtain pairs of entities from A that are not linked in DT (e.g. thunder, eye); 
3) Obtain a set of search queries based on provided pairs of entities 
4) For each query: 

a) Find a short list of candidate text fragments on the web using search engine API (such as 
Bing); 

b) Build DT for the text fragments; 
c) Select fragments which contain rhetoric relation (Elaboration, Attribution, Cause) linking 

this pair of entities; 
d) Choose the fragment with the highest relevance score 

The entity mentioned in the algorithm can be interpreted in a few possible ways. It can be named 
entity, head of a noun phrase or a keyword extracted from a dataset. 

Relevance score can be based on the score provided by the search engine. Another option – 
computing score based on structural discourse and syntactic similarity (Galitsky, 2017). 

3.3 Learning Approaches and Pipelines 
Discourse Tree Construction. A number of RST parsers constructing discourse tree of the text are 

available at the moments. For instance, in our previous studies we used the tool provided by (Surdeanu 
et.al., 2015) and (Joty et al., 2014). 

Nearest Neighbor learning. To predict the label of the text, once the complete DT is built, one 
needs to compute its similarity with DTs for the positive class and verify that it is lower than similarity 
to the set of DTs for its negative class. Similarity between CDT's is defined by means of maximal 
common sub-DTs. Formal definitions of labeled graphs and domination relation on them used for 
construction of this operation can be found, e.g., in (Ganter, 2001). 

SVM Tree Kernel learning. A DT can be represented by a vector of integer counts of each sub-
tree type (without taking into account its ancestors). For Elementary Discourse Units (EDUs) as labels 
for terminal nodes only the phrase structure is retained: we suppose to label the terminal nodes with 
the sequence of phrase types instead of parse tree fragments. For the evaluation purpose Tree Kernel 
builder tool (Moschitti, 2006) can be used. 

3.4 Detecting explanations and valid explanation chains 
We first focus on the first task, detecting paragraphs of text which contain explanation, and estimate the 
detection rate in Table 1. We apply two different learning techniques, nearest neighbor (in the middle, 
greyed) and SVM TK, applied to the same discourse-level and syntactic data. 

 
Table 1: Explanation detection rate 

Source PKNN RKNN F1KNN PSVM RSVM F1SVM 
1+ vs 1- 77.3 80.8 79.0 80.9 82.0 81.4 
2+ vs 2- 78.6 76.4 77.5 74.6 74.8 74.7 
3+ vs 3- 75.0 77.6 76.3 76.6 77.1 76.8 
1..3+ vs 1..3- 76.8 78.9 77.8 74.9 75.4 75.1 

The highest recognition accuracy, reaching 80%, is achieved for the first pair of the dataset 
components, complaints vs wikipedia factois, most distinct ‘intense’ explanation vs enumeration of 
facts, with least explanations. The other datasets deliver 2-3% drop in recognition performance. These 
accuracies are comparable with various tasks in genre classification (one-against-all setting in Galitsky 
et al., 2016).  
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Table 2 shows the results of differentiation between good and bad explanation. The accuracy is 
about 12% lower than for the first task, since the difference between the good and bad explanation in 
text is fairly subtle. 

 
Table 2: Recognizing good and bad explanation chains 

Source P-virtual R-virtual F1-virtual P R F1 
1+ vs 1- 64.3 60.8 62.5 72.9 74.0 73.4 
2+ vs 2- 68.2 65.9 67.0 74.6 74.8 74.7 
3+ vs 3- 63.7 67.4 65.5 76.6 77.1 76.8 
1..3+ vs 1..3- 66.4 64.6 65.5 74.9 75.4 75.1 
 

However, validation of explanation chain is an important task in a decision support. A low accuracy 
can still be leveraged by processing a large number of documents and detecting a birst in problematic 
explanation in a corpus of texts. 

4 Discussion and Conclusions 
In this work we considered a new approach to validating the convincingness of textual explanations. We 
introduced the notion of a complete discourse tree (complete DT) including actual and imaginary parts. 
Imaginary DT is constructed for the text about entities used but not explicitly defined in the actual text. 

We outlined an algorithm for building an imaginary discourse tree. We also described a possible 
strategy for crawling background knowledge which is the source of the imaginary part. We also 
introduced the new dataset of good and bad explanations made by complainants in the financial 
domain. Finally, we outlined the learning framework used for automated detection of good and bad 
explanations. It is based on RST parsing and learning on complete discourse trees provided by the 
parser. 

Both professional and non-professional writers provide explanations in texts but detection of invalid 
explanations is significantly harder in the former case compared to the latter. Professional writers in 
such domains as politics and business are capable of explaining “anything”, and in user-generated 
content errors are visible. 

Detecting faulty explanations in user-generated content is important in automated Customer 
Relation Management systems where a response to user requests with valid explanation should be 
different to user response with invalid explanation. 

It is important to combine rule-based learning frameworks with the ones with implicit feature 
engineering such as statistical and deep learning. The latest history of applications of statistical 
technique sheds a light on the limitation of these techniques for systematic exploration of a given 
domain. Once statistical learning delivered satisfactory results for discourse parsing, the interest to 
automated discourse analysis faded away. Since the researches in statistical ML for discourse parsing 
were mainly interested in recognition accuracies and not the interpretability of obtained DTs, no 
further attempts at leveraging obtained DTs were made. However, a number of studies including the 
given one demonstrate that DTs provide insights in the domain where keyword statistics does not help. 

On the basis of work by Austin, Searle, Grice and Lorenzen, such discipline as pragmadialectics 
provides a comprehensive analysis of argumentative dialogues.  This discipline combines the study on 
the formalism to represent data, from modern logic, and empirical observations, from descriptive 
linguistics, for the analysis of argumentative dialogues, modeled by dialectics, seen as sets of 
linguistic speech. The model proposes rule-base argumentative dialogues, but does not help with a 
dialogue generation algorithm.  
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Abstract 

We convert existing training datasets into the ones closed under linguistic generalization operations to 
expand infrequent cases. We transfer the definition of the least general generalization from logical for-
mulas to linguistic structures, from words to phrases, sentences, speech acts and discourse trees. The 
main advantage of the resultant frameworks is explainability and learnability from a small set of sam-
ples. Learning via generalization of linguistic structures turned out to be well suited for industrial lin-
guistic applications with limited training datasets. 

1 Introduction 

A lack of data, especially covering tail phenomena, is a major bottleneck for language learning system. 
As statistical and deep learning language systems provide higher overall accuracy in most cases, it is 
never obvious how to circumscribe these successful cases and how to extend the training datasets to cov-
er tail, unsuccessful cases (Ettinger et al., 2017., Kovalerchuk and Kovalerchuk, 2017). To address this 
problem we can expand a training dataset into a form that would force the learning framework to acquire 
generalizations from it. 

To measure of similarity of abstract entities expressed by logic formulas, a least-general generalization 
was proposed for a number of machine learning approaches, including explanation based learning and 
inductive logic programming. Least general generalization was originally introduced by (Plotkin, 1970). 
It is the opposite of most general unification (Robinson, 1965) therefore it is also called anti-unification. 

Least general generalization can be considered as an intersection operation in the FCA framework 
(Ganter and Kuznetsov, 2001). This operation can be used for the construction of the lattices of the 
closed sets in many domains such as text analysis (Makhalova et al., 2015) and many others (Kuznetsov, 
2013a,2013b). 

2 Generalization of the Texts 

For instance, for the two words of the same POS, their generalization is the same word with POS. If 
lemmas are different but POS is the same, POS stays in the result. If lemmas are the same but POS is dif-
ferent, lemma stays in the result. 

Let us represent a meaning of two natural language expressions by logic formulas and then construct 
unification and anti-unification of these formulas. Some words (entities) are mapped into predicates, 
some are mapped into their arguments, and some other words do not explicitly occur in logic form repre-
sentation but indicate the above instantiation of predicates with arguments. How to generalize the ex-
pressions? 

• camera with digital zoom  
• camera with zoom for beginners 
To express the meanings we use logic predicates camera(name_of_feature, type_of_users) (in real life, 

we would have much higher number of arguments), and zoom(type_of_zoom). The above NL expres-
sions will be represented as: 

 camera(zoom(digital), AnyUser) 
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 camera(zoom(AnyZoom), beginner), 
where variables (non-instantiated values, not specified in NL expressions) are capitalized. Given the 

above pair of formulas, unification computes their most general specialization camera(zoom(digital), be-
ginner), and anti-unification computes their most specific generalization, camera(zoom(AnyZoom), 
AnyUser). 

At syntactic level, we have generalization (‘^’) of two noun phrases as: {NN-camera, PRP-with, [digi-
tal], NN-zoom [for beginners]}. 

We eliminate expressions in square brackets since they occur in one expression and do not occur in 
another. As a result, we obtain{NN-camera, PRP-with, NN-zoom]}, which is a syntactic analog as the 
semantic generalization above. 

The purpose of an abstract generalization is to find commonality between portions of text at various 
semantic levels. Generalization operation occurs on the levels of Text / Paragraph / Sentence / Individual 
word. 

At each level except the lowest one, individual words, the result of generalization of two expressions 
is a set of expressions. In such set, for each pair of expressions so that one is less general than other, the 
latter is eliminated. Generalization of two sets of expressions is a set of sets which are the results of pair-
wise generalization of these expressions. 

Only a single generalization exists for a pair of words: if words are the same in the same form, the re-
sult is a node with this word in this form. To involve word2vec models (Mikolov et al., 2015), computing 
generalization of two different words, we use the following rule. If subject1=subject2, then sub-
ject1^subject2 = <subject1, POS(subject1), 1>. Otherwise, if they have the same part-of-speech, sub-
ject1^subject2 =<*,POS(subject1), word2vecDistance(subject1^subject2)>. If part-of-speech is differ-
ent, generalization is an empty tuple. It cannot be further generalized. 

For a pair of phrases, generalization includes all maximum ordered sets of generalization nodes for 
words in phrases so that the order of words is retained. In the following example  

To buy digital camera today, on Monday  
Digital camera was a good buy today, first Monday of the month 

generalization is {<JJ-digital,  NN-camera> ,<NN- today, ADV,Monday>} , where the generalization 
for noun phrases is followed by the generalization by adverbial phrase.  Verb buy is excluded from 
both generalizations because it occurs in a different order in the above phrases. Buy - digital - camera 
is not a generalization phrase because buy occurs in different sequence with the other generalization 
nodes. 

At the discourse level, rhetorical relations with elementary discourse units can be generalized as well. 
Only rhetorical relations of the same class (presentation relation, such as antithesis, subject matter rela-
tion, such as condition, and multinuclear relation, such as list) can be generalized. We use N for a nucle-
us or situations presented by this nucleus, and S for satellite or situations presented by this satellite. Sit-
uations are propositions, completed actions or actions in progress, and communicative actions and states 
(including beliefs, desires, approve, explain, reconcile and others). Hence we have the following expres-
sion for Rhetoric Structure Theory- based (RST, Marcu, 2000) generalization for two texts text1 and 
text2: 
text1 ^ text2 = i,j (rstRelation1i, (…,…) ^ rstRelation2j (…,…)),  
where I  (RST relations in text1),  j  (RST relations in text2). Further, for a pair of RST relations 
their generalization looks as follows: rstRelation1(N1, S1) ^ rstRelation2 (N2, S2) =  (rstRelation1^ 
rstRelation2 )( N1^N2, S1^S2). 

The texts in N1, S1 are subject to generalization as phrases. The rules for rst1^ rst2  are as follows. If 
relation_type(rst1 ) ! = relation_type(rst2 ) then similarity is empty. Otherwise, we generalize the 
signatures of rhetoric relations as sentences: sentence(N1, S1) ^ sentence (N2, S2) (Iruskieta et al., 2015). 

To optimize the calculation of generalization score, we rely on a computational study which 
determined the POS weights to deliver the most accurate similarity measure between sentences 
possible (Galitsky et al., 2012). The problem was formulated as finding optimal weights for nouns, 
adjectives, verbs and their forms (such as gerund and past tense) such that the resultant search 
relevance is maximl. Search relevance was measured as a deviation in the order of search results from 
the best one for a given query (delivered by Google); current search order was determined based on 
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the score of generalization for the given set of POS weights (having other generalization parameters 
fixed). As a result of this optimization performed in (Galitsky et al., 2012), we obtained WNN = 1.0, 
WJJ = 0.32, WRB = 0.71, WCD = 0.64, WVB = 0.83, WPRP = 0.35  excluding common frequent verbs like 
get/ take/set/put for which WVBcommon= 0.57. We also set that W<POS,*> =0.2 (different words but the 
same POS), and W<*,word> =0.3 (the same word but occurs as different POSs in two sentences). 
Generalization score (or similarity between sentences sent1, sent2) then can be expressed as sum 
through phrases of the weighted sum through words wordsent1 and word sent2 
score(sent1, sent2) =  ∑ {NP, VP, …}∑ WPOS word_gen(word sent1 word sent2). The best generalization can 
then be defined as the one with the highest score. This way we define a generalization for phrases, sen-
tences and paragraphs, as well as verb signatures from VerbNet, speech acts, communicative actions, 
as well rhetorical relations. 

Result of the generalization can be further generalized with other parse trees or generalization. For a 
set of sentences, totality of generalizations forms a lattice: order on generalizations is set by the 
subsumption relation and generalization score (Khardon and Arias, 2006). 

3 Question Answering Relevance via Generalization 
To rank answers according to the relevance to a complex paragraph-sized question, paragraph-level 
generalization comes into play. It needs to involve a set of parse trees for each sentence of the para-
graph and the paragraph-level discourse information. We refer to the sequence of parse trees plus a 
number of arcs for inter-sentence relations of the discourse type between the nodes for words as a 
parse thicket (Galitsky, 2017). It is a graph that includes parse trees for each sentence, as well as addi-
tional arcs for inter-sentence discourse relationships. We intend to demonstrate the richness of repre-
sentation by parse thickets and the robustness of syntactic generalization operation on them for search 
relevance.  

Our example is a web search query and its answers selected from the first page of a Google search. 
Although both answers A1 and A2 share very similar keywords, we show that using discourse 
information helps to differentiate them, relying on parse thicket representation and syntactic 
generalization operation with query Q. 
Q: I am buying a foreclosed house. A bank offered me to waive inspection; however I am afraid I will 
not identify some problems in this property unless I call a specialist. 
A1: My wife and I are buying a foreclosure from a bank. In return for accepting a lower offer, they 
want me to waive the inspection.  I prefer to let the bank know that I would not waive the inspection … 
Instead I would agree that I would pay the costs involved for a proper and thorough home inspec-
tion… 
A2: I am a foreclosure specialist in a bank which is subject to an inspection. FTC offered us to waive 
inspection if we can identify our potential problems with customers we lent money to buy their proper-
ties.  
The reader can see that A2 is totally irrelevant while A1 is relevant. 

We selected the first Google search result for the correct answer and composed a totally irrelevant 
answer with the same keywords to demonstrate the role of discourse-level generalization.  
  

41



   

 

 
Fig. 1a parse thicket for question Q 

 
Fig. 1b Parse thicket for the valid answer A1 
 

 
Fig. 1c: Parse thicket for the invalid answer A2 
 

The list of common keywords gives us a hint that both documents are about a relationship between 
the same entities, a house, a buyer and a bank in connection to a foreclosure and an inspection. 
However one can see that the relations between these entities in A1 and A2 are totally different. It is 
also obvious that something beyond the keyword statistics and n-gram analysis needs to be done to 
figure out the correspondence of the structure of these relations between A1 and Q, and A2 and Q. 
Buy, foreclosure , house, bank, wave, inspection..  

One can see that the key for the right answer here is rhetorical (RST) relation of contrast: bank 
wants the inspection waved but the buyer does not. Parse thicket generalization gives the detailed 
similarity picture that looks more complete than both the bag-of-words approach and pair-wise 
sentence generalization would. The similarity between Q and A1 is expressed as a parse thicket 
expressed here as a list of phrases 
 [[NP [DT-a NN-bank ], NP [NNS-problems ], NP [NN*-property ], NP [PRP-i ]], VP [VB-* TO-to 
NN-inspection ], VP [NN-bank VB-offered PRP-* TO-to VB-waive NN-inspection ], VP [VB-* VB-
identify NNS-problems IN-* NN*-property ], VP [VB-* {phrStr=[], roles=[A, *, *], phrDescr=[]} 
DT-a NN-* ]]] 
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And similarity with the invalid answer A2 is expressed as a parse thicket formed as a list of phrases 
[[NP [DT-a NN-bank ], NP [PRP-i ]], [VP [VB-* VB-buying DT-a ], VP [VB-* PRP-me TO-to VB-
waive NN-inspection ], VP [VB-* {phrStr=[], roles=[], phrDescr=[]} PRP-i MD-* RB-not VB-* DT-* 
NN*-* ],  

The important phrases of the Q ^ A1 similarity are VP [NN-bank VB-offered PRP-* TO-to VB-waive 
NN-inspection], VP [VB-* VB-identify NNS-problems IN-* NN*-property],  
which can be interpreted as a key topic of both Q and A1: bank and not another entity should offer to 
waive inspection. This is what differentiates A1 from A2 (where these phrases are absent).  Although 
bank and problems do not occur in the same sentences in Q and A1, they were linked by anaphora and 
RST relations. Without any kind of discourse analysis, it would be hard to verify whether the phrases 
containing bank and problems are related to each other. Notice that in A2, problems are associated with 
customers, not banks, and different rhetoric relations from those common between Q and A1 help us 
figure that out. Notice the semantic role attributes for verbs such as VB-* {phrStr=[], roles=[A, *, *], 
phrDescr=[]} in generalization result. 

Parse thickets for Q, A1 and A2 are shown in Fig. 1a, 1b and 1c respectively. Notice the similarity in 
discourse structure of Q, A1 and not in A2:  the RST-contrast arc. Also, there is a link for a pair of 
communicative actions for Q, A1 (it is absent in A2): afraid-call and accept-want. 

4 Conclusions and Future Work 
The generalization operation described earlier can be applied for the expanding of the training sets. 

It can multiply tail cases, make it more balanced, and eliminate noisy samples which cannot be 
generalized. We are planning to apply it in the number of the industrial linguistic applications with 
limited training datasets. 
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Abstract. While the traditional philosophical epistemology stresses the
importance of distinguishing knowledge from true beliefs, the formalisa-
tion of this distinction with standard logical means turns out to be prob-
lematic. In Knowledge Representation (KR) as a Computer Science disci-
pline this crucial distinction is largely neglected. A practical consequence
of this neglect is that the existing KR systems store and communicate
knowledge that cannot be verified and justified by users of these systems
without external means. Information obtained from such systems does
not qualify as knowledge in the sense of philosophical epistemology.
Recent advances in the research area at the crossroad of the compu-
tational mathematical logic, formal epistemology and computer science
open new perspectives for an effective computational realisation of jus-
tificatory procedures in KR. After exposing the problem of justification
in logic, epistemology and KR, we sketch a novel framework for rep-
resenting knowledge along with relevant justificatory procedures, which
is based on the Homotopy Type theory (HoTT). This formal framework
supports representation of both propositional knowledge, aka knowledge-
that, and non-propositional knowledge, aka knowledge-how or procedu-
ral knowledge. The default proof-theoretic semantics of HoTT allows for
combining the two sorts of represented knowledge at the formal level
by interpreting all permissible constructions as justification terms (wit-
nesses) of associated propositions.

Keywords: Knowledge Representation · Justification · Homotopy Type
theory

1 Concept of Knowledge

1.1 Knowledge according to the Philosophical Epistemology

JTB and Gettier Problem The current philosophical discussion on the con-
cept of knowledge focuses on the so-called JTB theory of knowledge according

? Supported by RFBR grant 19-011-00799.
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to which knowledge is Justified True Belief. The JTB theory dates back to Plato
and, in modern terms, states that subject S knows that p (where p is a propo-
sition) just in case the following three conditions are satisfied [1]:

1. p is true
2. S believes that p
3. S is justified in believing that p.

Leaving the psychological concept of belief aside of our present analysis we would
like to stress the following features of JTB theory:

– JTB identifies knowledge with knowledge of certain proposition or proposi-
tions; this type of knowledge is conventionally referred to as propositional
knowledge aka knowledge-that.

– JTB assumes that the truth-value of a given proposition is determined wholly
independently of one’s knowledge of this proposition. Such an account of
truth has a long tradition in logic and has been strongly defended, among
other people, by Gottlob Frege. We shall shortly show that this conception
of truth is not commonly accepted in the philosophical logic.

– According to JTB, a true belief, i.e., one’s belief in certain true proposition,
by itself does not constitute knowledge. A missing element is justification.
Assuming that a mathematical proof is a special form of justification, for
a motivating example think of Bob who is able to state the Pythagorean
theorem (provided she understands its meaning and believes it is true) and
Alice who is also able to prove it. In terms of JTB theory Alice knows the
theorem but Bob doesn’t. What is at stake here is not the linguistic meaning
of “know” but the difference between the two sorts of epistemic states, viz.
knowledge and (true) belief (or however one may prefer to call them).

A major part of the mainstream discussion on and about JTB concerns the so-
called Gettier Problems. In 1963 Edmund Gettier published a highly influential
paper [2] where he showed using some linguistic examples that the concept of
justification involved into JTB is very problematic: a subject can be compelled
to belief that p, where p is true proposition, by certain reason r, which she
relates to p by a mere mistake; allegedly such “false reasons” cannot be ruled
out by the JTB theory, so this theory is at best incomplete and at worst wholly
wrong. Without being able to discuss here Gettier-style epistemological problems
systematically we would like to express our general take on this issue: in our
view, the core problem here is that the concept of justification unlike that of
truth is not adequately accounted for by standard logical tools. On the contrary
to a popular opinion it also concerns mathematical proofs. However during last
decades there was a significant progress towards this goal some elements of which
are described in what follows.

Since JTB accounts only for the propositional knowledge certain authors ar-
gue that it doesn’t cover the concept of knowledge in its full extent leaving aside
an irreducibly procedural knowledge aka knowledge-how. We endorse this view
and remark after Ryle [3] that knowing how to make logical inferences and oth-
erwise justify one’s beliefs is (irreducibly) procedural rather than propositional
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in its character. Another challenge for JTB comes from the constructive tra-
dition in logic, which tightly relates truth and knowledge by identifying truth
of proposition with the existence of its proof (evidence). From the constructive
point of view the tripartition of knowledge into (i) true proposition, (ii) one’s
belief in this proposition and (iii) justification of this belief is hardly tenable be-
cause here truth of a given proposition requires its justification (proof) in some
form at the first place. Notice that even if this constructive approach is incom-
patible with JTB in its usual form, it shares with JTB the notion according to
which justification is a necessary element of knowledge. In fact the constructive
approach takes justification to be even more important by making it constitutive
for truth and logic itself. M. Cohen and E. Nagel express this view on logic when
they describe its purpose, in full generality, as the “determination of the best
available evidence” 4.

1.2 Knowledge in Computer Science and Information Technology

Knowledge Representation (KR) sometimes also referred to as Knowledge Rep-
resentation and Reasoning is an established discipline in Computer Science and
a devoping information technology. Obviously one should not expect to find in
KR literature a thorough analysis of the knowledge concept, which can be more
appropriate in the philosophical literature. Nevertheless authors of some mono-
graphs and textbooks in KR provide informal descriptions of basic concepts of
the discipline including that of knowledge and reasoning [5],[6],[7]. Remarkably,
none of such descriptions found by us in the CS literature mentions the standard
epistemological condition according to which knowledge needs to be justified.

This observation squares with another one. In 1980-ies the philosophical term
“ontology” began its independent life in CS and since 1995 the latest [8] has been
used systematically as a standard technical term and concept in the KR design
and research. In philosophy the term “ontology” refers to the problematic area of
research and reflection that concerns, to use Aristotle’s famous word, the being
qua being or, in more modern terms, general features of all entities in their mere
capacity of being existent: it includes classifications of entities into different sorts
(e.g., objects, events and their properties) and the like. Ontologies used in KR
are computationally implemented formal semantic frameworks for representing
objects and their mutual relations; knowledge represented in a KR system refers
to these objects and relations as its subject-matter, i.e., to what this knowledge
is “about”.

4 Here is the full quote:

[T]he constant and universal feature of science is its general method, which
consists in the persisting search for truth, constantly asking: Is it so? To what
extent is it so? Why is it so? [. . .] And this can be seen on reflection to be
the demand for the best available evidence, the determination of which we
call logic. Scientific method is thus the persistent application of logic as the
common feature of all reasoned knowledge [4, p. 192]
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Despite the fact that KR ontologies lose at some extent their philosophical
origins, the difference between the philosophical and the CS concepts of ontology
is not dramatic. Formal ontology, which is a philosophical ontology developed
with a support of formal logical methods, can be seen as a middle ground that
links the traditional philosophical ontology, on the one hand, and the technical
concept of ontology used in KR, on the other hand.

What is puzzling here in eyes of a philosopher is the following. A philosophi-
cal discipline that covers problems concerning knowledge is called epistemology
but not ontology. Just like ontology epistemology is developed, in part, with a
support of formal methods; this approach is known as formal epistemology. Yet,
the CS discipline that essentially involves the concept of knowledge, viz. KR, for
some reason makes use of ontology but not of epistemology.

We don’t assume here that CS or any other engineering discipline must re-
spect traditional philosophical distinctions when it borrows philosophical terms
and concepts and then modifies them for its own use. However we claim that
the above observations point to a real problem, which has a practical dimension.
The issue of reliability of information available via electronic communications
is widely discussed in special and general literature and since recently is also
recognised as an important social and even political problem [9]. The existing
data verification technologies are designed for serving developers and adminis-
trators of KR systems rather than its regular users, and for this reason don’t
fully address this problem. In order to make a piece of information obtained by
a user of KR system reliable in eyes of this very user (as this is required by
the JTB conception of knowledge and by any other conception that takes the
issue of justification seriously) a supporting evidence needs to be available to
the user herself. We assume here that this evidence also needs to be specific and
not reduce to a general assurance that the given KR system is reliable.

A part of the problem, as we see it, is that the standard logical tools such
as the first-order Classical logic along with its usual philosophical underpinning
leave the epistemic concept of justification aside. The philosophical conceptions
of truth and logical reasoning that underline this notion of logic prioritise onto-
logical aspects with respect to epistemological ones. Correspondingly, theoretical
prototypes of KR systems, which use this standard logical and semantic frame-
work, essentially use ontologies but don’t support the epistemic procedure of
justification. If Sundolm is right that epistemic considerations have been sys-
tematically neglected in the mainstream logical research until very recently [10],
it is a little surprise that they have been also neglected in CS. In the next Section
we elaborate on this point providing more details and then propose a remedy.
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2 Model-theoretic and Proof-theoretic Semantics

The standard notion of axiomatic theory that stems from Hilbert assumes that:

– A theory is set T of formulas that are interpreted as true statements; such
interpretations of formulas are called models of the given theory;

– A theory has a subset of formulas A ⊂ T called axioms of the given theory;
– A theory comprises set R of syntactic rules, which, in particular, regulate

derivations of new T -formulas from some given T -formulas. T -derivations
preserve truth in the sense that given any model m of T , they derive from
true sentences only true sentences (soundness). T comprises all formulas
T -derivable from its axioms (deductive closure).

– T -formulas, which are T -derivable from the axioms (other than the axioms)
are called theorems of T . A derivation of theorem from axioms (and by ex-
tension also from some intermediate theorems) is called a proof of a given
theorem. The standard notation for the derivability of theorem B from ax-
ioms A1, . . . , An in theory T is as follows: A1, . . . , An `T B.

This familiar scheme involves at least one epistemic term, namely, “proof”.
However as convincingly, in our view, argues Prawitz the bold identification of
proofs with syntactic derivations is not justified [11]. In order to explain the
argument we need the following formal notion of logical consequence relation
due to Tarski [12]:

Definition 1 T -formula B is called a logical consequence of T -formulas A1, . . . , An,
in symbols A1, . . . , An |=T B just is case every interpretation m that interprets
A1, . . . , An as true sentences also interprets B as true sentence.

Since T is sound (with respect to some fixed class of its interpretations), every
T -theorem B derived from T -axioms A1, . . . , An is a logical consequence of these
axioms. Prima facie this observation justifies the idea that a formal derivation of
B represents its logical inference from T -axioms, which qualifies as its T -proof.
Prawitz argues to the contrary. Even if it is the case that a given syntactic deriva-
tion faithfully represents a truth-preserving logical inference, nothing guarantees
in this setting that the same symbolic representation allows one to see that truth
is preserved. A further problem concerns the specific Hilbertian notion of axiom
and the related Tarskian notion of truth-in-a-model, which has little to do with
the traditional notion of axiom as a self-evident truth. The concept of evidence is
wholly alien to this approach and ruled out as psychological and hence logically
irrelevant. This makes a sharp contrast with the aforementioned Cohen&Nagel’s
conception of logic where the notion of evidence has a central role [4]. What is
an epistemic value, if any, of a formal proof in the above technical sense remains
unclear.

At the same time the above logico-semantic framework can be straightfor-
wardly related to ontology via the following principle known as the truthmaker
realism (TMR):

Given a true statement there exists an entity (or entities) that make(s) this
statement true. [13]

49



Once one accepts TMR the notion of formal ontology readily suggests itself
as a useful formal semantic tool, which helps one to supplement, and in many
applications even to replace, the talk of models and interpretations by talks
about some familiar entities that a given theory is supposed to account for.
The Tarski-style formal semantics helps to make this ontological talk formal
and rigorous. This is a pragmatic reason to accept some form of TMR and the
notion of formal ontology, which may convince even those people, including KR
developers, who are not interested in traditional philosophical debates about
being and existence. One does not need to explore deep philosophical questions
about being in order to use formal ontologies as semantic tools. This explains
why the notion of formal ontology became useful and popular in the AI research.

However, as we have already stressed, the neglect of epistemic considerations
in the foundations of the above logico-semantic framework and, more specifically,
the lack of satisfactory formal treatment of justification, rises a problem, which
is not only theoretical but also practical. Once the theoretical and practical sig-
nificance of justification is recognised, it becomes clear that the standard logical
and semantical tools are not sufficient for developing theoretical prototypes of
reliable KR systems.

In the philosophical and mathematical logic this epistemological problem is
well recognised and understood by a part of the professional community. There
is presently a number of tentative solutions on the market. A systematic formal
treatment of Justification Logic with explicit justificatory terms is given in the
new monograph by S. Artemov and M. Fitting [14]. A variety of approaches that
attempt to supplement or replace the standard model-theoretic logical semantics
(MTS) outlined above by some version of alternative epistemically relevant se-
mantic is now grouped under the header of proof-theoretic semantics (PTS) [15].
It is remarkable that many versions of PTS are more “computer-friendly”, i.e.,
more apt for computer implementation, than their MTS analogues because they
give semantic values directly to syntactic rules and procedures rather than only
to formulas. A systematic overview of this actively developing area of research
is out of the scope of this paper. In the next Section we only briefly describe a
formal theory that belongs to the PTS family (albeit arguably goes beyond PTS
in some essential aspects) and propose it to the role of novel formal semantic
framework for KR.

3 Homotopy Type theory as KR framework

3.1 MLTT, HoTT and Their Proof-Theoretic Semantics

Homotopy Type theory (HoTT) is a growing family of type theories with depen-
dent types, which are interpreted (more or less formally) in terms of Homotopy
theory, which is a part of Algebraic Topology5. Such homotopical interpretations
of type theories were discovered independently by Steven Awodey and Vladimir

5 The exposition of MLTT/HoTT found in this subsection reuses some materials pub-
lished in [18].
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Voevodsky in mid 2000-ies. We consider here the standard HoTT presented in
[17], which uses the syntax of Martin-Löf’s Type theory (MLTT) [16] extended
with the single Univalence Axiom, which is out of the scope of the present dis-
cussion. This version of HoTT preserves the core proof-theoretic semantics of
the original MLTT and extends it with a new homotopy semantics. We analyse
the relationships between the original MLTT semantics and the HoTT semantics
and attempt to make their combination coherent.

MLTT is a rule-based formal system that comprises no axiom. Its basic for-
mulas are called judgements and interpreted accordingly. MLTT comprises four
basic forms of judgements.

(i) A : TY PE;
(ii) A ≡TY PE B;
(iii) a : A;
(iv) a ≡A a′

In words (i) says that A is a type, (ii) that types A and B are the same, (iii)
that a is a term of type A and (iv) that a and a′ are the same term of type A.
We now leave (i) and (ii) aside and provide more details on (iii) and (iv).

Martin-Löf offers four different informal readings of (iii) [16, p. 5]:

1. a is an element of set A
2. a is a proof (construction) of proposition A (“propositions-as-types”)
3. a is a method of fulfilling (realizing) the intention (expectation) A
4. a is a method of solving the problem (doing the task) A (BHK semantics)

The author argues that these interpretations of judgement form (iii) not
only share a logical form but also are closely conceptually related despite of
their different linguistic appearance.

Let us now turn to judgement form (iv). It says that terms a, a′, both of
the same type A, are equal. This equality is called judgemental or definitional
and does not qualify as a proposition; the corresponding propositional equality
writes as a =A a′ and counts as a type on its own (a =A a′ : TY PE) called
an identity type. In accordance to reading (2) of judgement form (iii) a term
of identity type is understood as a proof (also called a witness or evidence) of
the corresponding proposition. MLTT validates the rule according to which a
judgemental equality entails the corresponding propositional equality:

a ≡A a′

refla : a =A a′

where refla is the canonical proof of proposition a =A a′.
The extensional version of MLTT also validates the converse rule called the

equality reflection rule:

p : a =A a′

a ≡A a′
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HoTT draws on an intensional version of MLTT that does not use such a
principle and allows for multiple proofs of the same propositional equality.

Let now p, q be two judgmentally different proofs of proposition saying that
two terms of a given type are equal:

p, q : P =T Q

it may be the case that p, q, in their turn, are propositionally equal, and that
there are two judgmentally different proofs p′, q′ of this fact:

p′, q′ : p =P=TQ q

This and similar multi-layer syntactic constructions in MLTT can be con-
tinued unlimitedly. Before the rise of HoTT it was not clear that this syntactic
feature of the intensional MLTT can be significant from a semantic point of
view. However it became the key point of the homotopical interpretation of this
syntax. Under this interpretation

– types and their terms are interpreted, correspondingly, as spaces and their
points;

– identity proofs of form p, q : P =T Q are interpreted as paths between points
P,Q of space T ;

– identity proofs of the second level of form p′, q′ : p =P=TQ q are interpreted
as homotopies between paths p, q;

– all higher identity proofs are interpreted as higher homotopies;

Recall that path p between points P,Q of topological space T is continuous
map p : [0, 1] → T such that p(0) = P and p(1) = Q. Intuitively a path can
be thought of as a trajectory of moving test point where the real interval [0,1]
represents time. In a more abstract presentation the real unit interval [0,1] is
replaced by abstract unit object I. Homotopy h between paths p, q is continuous
map h : [0, 1]2 → T such that h(t, 0) = p(t) and h(t, 1) = q(t); intuitively it
can be thought of as a “path between paths” or a continuous transformation
of path p into path q. Higher homotopies are defined similarly. For a modern
introduction into the basic Homotopy theory see [19].

The homotopical interpretation makes the complex structure of identity types
in the intensional MLTT surveyable and suggests a revision of the original se-
mantics of MLTT by distinguishing between propositional and non-propositional
types on the syntactic level. According to this new point of view not every type
can be interpreted either as a proposition or as a set but each of these two in-
terpretations is admissible only for types of appropriate sorts. More precisely,
consider the following

Definition 2 Space aka homotopy type S is called contractible or space (type)
of h-level (-2) when there is point p : S connected by a path with each point x : A
in such a way that all these paths are homotopic (i.e., there exists a homotopy
between any two such paths).
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Definition 3 We say that S is a space of h-level n+ 1 if for all its points x, y
path spaces x =S y are of h-level n.

These definitions gives rise to the following stratification of types/spaces in
HoTT by their h-levels:

– h-level (-2): single point pt;
– h-level (-1): the empty space ∅ and the point pt: truth-values aka (mere)

propositions;
– h-level 0: sets aka discrete point spaces: comprise no non-contractible paths;
– h-level 1: flat path groupoids : comprise paths but no non-contractible sur-

faces;
– h-level 2: 2-groupoids : comprise paths and surfaces but no non-contractible

volumes;
– . . .
– h-level ω: ω-groupoids.

Space Sn of h-level n can be transformed into a space [S]k of h-level k < l via
its k-truncation, which can be informally described as a forced identification of all
homotopies (paths) of all levels higher than k. In particular, the (-1)-truncation
[S]−1 of any given space S brings point pt when S is not empty and brings the
empty space ∅ otherwise.

The notion of truncation allows for interpreting type [S]−1 as a proposition
and the original type S as a (h-stratified) space of proofs of this proposition:
[S]−1 is true when it has a proof in S and is false otherwise. Assuming that the
scope of logic restricts to propositional types one can now describe higher types
and their terms as being extra-logical. However the homotopic semantics of the
extra-logical terms still qualifies as proof-theoretic because such terms serve as
proof terms of certain propositions.

3.2 How to use HoTT for KR purposes

If different terms of the same type are not distinguished then HoTT is function-
ing as a constructive propositional logic with explicit proof terms, which in this
case can be also called internalised truth-values. If the (in)equalities of terms
are taken into account only up to the set level (which means that distinctions
between different paths between the same terms, i.e., between “different ways
of being equal”, are ignored) then HoTT functions as a constructive first-order
calculus with internalised (constructive) sets that already provides more informa-
tion about its proof terms. These sets are constructively internalised in the sense
that they are represented here with syntactic constructions available in HoTT
itself rather than introduced with a help of some external meta-theoretical tools
as this is done in case of standard Tarski semantics for the Classical first-order
logic.

This feature alone demonstrates a potential of HoTT as a representational
framework: it supports representation of propositions along with objects that
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those propositions are “about”; the same terms can be also described as truth-
makers of their base propositions, their evidences or their proofs. Accordingly,
HoTT represents a propositional knowledge (since the true represented propo-
sitions are evidenced) along with an associated procedural knowledge, viz., the
knowledge of how to construct for the given proposition its evidences aka proofs.
Such a justificatory procedure for propositional knowledge has its formal dual in
the form of verification of the corresponding procedural knowledge. In this case
the epistemic goal is not to justify a propositional belief but to assure that an
accomplished construction has some required properties. Think of technological
processes which certain desired outcomes, which needs to be checked and veri-
fied. Since this difference in epistemic goals does not affect the basic semantics
of HoTT, our proposed approach applies to both these sorts of tasks.

Higher levels of the homotopy ladder provide more expressive power for rep-
resenting objects and spaces where these objects live. The (flat) groupoid spaces
(h-level 1) already allow for representing certain non-trivial topological features
of the base spaces. Leaving for another occasion a study of possible applications
of topological concepts in KR we would like to stress here its intuitive appeal.
This is not a minor issue when we are talking about possible ways to justify
knowledge obtained via a KR system, which is supposed to be available to a
regular user. A HoTT-based approach has been already successfully used for an
automated verification of non-trivial mathematical proofs [21]. An advantage of
this approach over other approaches in the automated proof verification is that
the homotopical interpretation allows a mathematician to express her reason-
ing with a commented program code or a pseudo-code without giving up the
usual intuitive support of this reasoning. This specific feature of HoTT might
be helpful for designing a format for human-readable evidences or certificates
that a hypothetical KR system could produce in order to justify the supplied
knowledge in eyes of its user. A toy example of HoTT-based representation used
outside the pure mathematics is found in [20].

We summarise our explanation of relevance and possible advantages of using
HoTT as a formal KR framework that supports justification as follows:

1. HoTT admits the constructive epistemically-laden proof-theoretic semantics
intended by Martin-Löf’s Type for MLTT (in a slightly modified form).

2. The cumulative h-hierarchy of types made explicit via the homotopical in-
terpretation supports the distinction between propositional, set-level and
higher-level types. This distinctive feature of HoTT supports formal con-
structive representation of objects (of various levels) and propositions “about”
these objects within the same framework. Each such object serves as a wit-
ness/truthmaker for proposition obtained via the propositional truncation
of type where the given object belongs.

3. HoTT comprises a system of formal rules, which are interpreted as logical
rules at the propositional h-level and as rules for object-construction at all
higher levels. This feature of HoTT supports representation various extra-
logical procedures (such as material technological procedures) keeping track
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of the corresponding logical procedures at the propositional level of repre-
sentation.

4. HoTT/MLTT is computer-friendly, i.e., computationally implementable. Frag-
ments of HoTT/MLTT have been implemented in proof-assistant Coq, pro-
gram languages AGDA, LEAN and some other products.

5. HoTT-constructions admit intuitive spatial (homotopical) interpretations
that may be used for facilitating human-computer interactions.

4 Conclusion

During the last decade KR technologies have been enriched with approaches
based on the Big Data analysis, Machine Learning and artificial Neural Net-
works. According to a radical opinion, these new approaches make more tradi-
tional logical approaches based on the explicit representation of facts and rules
hopelessly outdated and irrelevant. We disagree. Because of their possible un-
predictable behaviour [22] Neural Networks and other tools of Big Data analysis
can significantly enrich but not replace logical approaches and logical tools in
KR.

At the same time we agree that standard logical architectures and formal
ontologies, which are presently used in KR, don’t provide a sufficient theoretical
background for KR because they have no epistemological content. In this paper
we explained the relevance of epistemological considerations in logic and KR and
then pointed to some recent advances in mathematical logic, more specifically
discussing the Homotopy Type theory, that may allow to use logical approaches
in KR more effectively.
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Abstract. The main result of the paper provides a lower bound on
sufficient number of randomly generated formal concepts to correctly
predict all important positive test examples with given confidence level.
The technique coincides with modern approach to the famous theorem of
V.N. Vapnik and A.Ya. Chervonenkis. However the situation is dual to
the classical one: in our case test examples correspond to fixed subsets
and probabilistically generated formal concepts must fall into selected
areas of sufficient large volume.
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1 Introduction

Formal Concept Analysis (FCA) [1] is a popular means based on lattice theory
for formalizing methods of data analysis in case of small samples.

Applicability of FCA to Big Data has several obstacles:

– Exponentially large number of hypotheses with respect to size of the initial
formal context in the worst case.

– Many problems of FCA belong to famous classes of NP - and #P -complete
problems [3].

– There is a positive probability of “accidental” concepts appearance that
correspond of overfitting phenomenon [7].

The paper [6] introduces the Markov chain approach to probabilistic gener-
ation of formal concepts (so-called VKF-method). The computer VKF-system
uses the coupling Markov chain to generate random sample of concepts. Each run
of this chain terminates with probability 1. Since each hypothesis (formal con-
cept) is generated by independent run of the Markov chain, the system makes
the induction step in parallel by several threads. Finally the system predicts
target class of each test example by the analogy reasoning.

? Partially supported by RFBR grant 17-07-00539A
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The key question of the approach is how to determine sufficient number
of hypotheses to predict target class with given level of confidence. The paper
proposes an answer to this question.

Used technique mostly coincides with modern approach to the famous theo-
rem of V.N. Vapnik and A.Ya. Chervonenkis. However the situation is dual to
the classical one: in our case test examples correspond to fixed subsets and prob-
abilistically generated formal concepts must fall into selected areas of sufficient
large volume. The general approach of Vapnik-Chervonenkis uses the “Occam
razor” principle where no assumption on selected hypothesis made except to its
correctness on all training examples. Hence a hypothesis coincides with area of
objects space. To reject a bad hypothesis is needed to randomly pick training
objects from the corresponding subset.

2 Background

2.1 Basic definitions and facts of FCA

Here we recall some basic definitions and facts of Formal Concept Analysis
(FCA) [1].

A (finite) context is a triple (G,M, I) where G and M are finite sets and
I ⊆ G × M . The elements of G and M are called objects and attributes,
respectively. As usual, we write gIm instead of 〈g,m〉 ∈ I to denote that object
g has attribute m.

For A ⊆ G and B ⊆M , define

A′ = {m ∈M |∀g ∈ A(gIm)}, (1)

B′ = {g ∈ G|∀m ∈ B(gIm)}; (2)

so A′ is the set of attributes common to all the objects in A and B′ is the set of
objects possesing all the attributes in B. The maps (·)′ : A 7→ A′ and (·)′ : B 7→
B′ are called derivation operators (polars) of the context (G,M, I).

A concept of the context (G,M, I) is defined to be a pair (A,B), where
A ⊆ G, B ⊆ M , A′ = B, and B′ = A. The first component A of the concept
(A,B) is called the extent of the concept, and the second component B is
called its intent. The set of all concepts of the context (G,M, I) is denoted by
B(G,M, I).

Let (G,M, I) be a context. For concepts (A1, B1) and (A2, B2) in B(G,M, I)
we write (A1, B1) ≤ (A2, B2), if A1 ⊆ A2. The relation ≤ is a partial order on
B(G,M, I).

A subset A ⊆ G is the extent of some concept if and only if A′′ = A in which
case the unique concept of which A is the extent is (A,A′). Similarly, a subset
B of M is the intent of some concept if and only if B′′ = B and then the unique
concept with intent B is (B′, B).
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Proposition 1. [1] Let (G,M, I) be a context. Then (B(G,M, I),≤) is a lattice
with join and meet given by

∨

j∈J
(Aj , Bj) = ((

⋃

j∈J
Aj)
′′,
⋂

j∈J
Bj), (3)

∧

j∈J
(Aj , Bj) = (

⋂

j∈J
Aj , (

⋃

j∈J
Bj)
′′); (4)

ut

Corollary 1. For context (G,M, I) the lattice (B(G,M, I),≤) has (M ′,M) as
the bottom element and (G,G′) as the top element. In other words, for all
(A,B) ∈ B(G,M, I) the following inequalities hold:

(M ′,M) ≤ (A,B) ≤ (G,G′). (5)

ut

Definition 1. For (A,B) ∈ B(G,M, I), g ∈ G, and m ∈M define

CbO((A,B), g) = ((A ∪ {g})′′, B ∩ {g}′), (6)

CbO((A,B),m) = (A ∩ {m}′, (B ∪ {m})′′). (7)

so CbO((A,B), g) is equal to (A,B) ∨ ({g}′′, {g}′) and CbO((A,B),m) is equal
to (A,B) ∧ ({m}′, {m}′′).

We call these operations CbO because the first one is used in Close-by-One
(CbO) Algorithm to generate all the elements of B(G,M, I), see [2] for details.

Useful properties of introduced operations are summarized in the following
Lemmas.

Lemma 1. Let (G,M, I) be a context, (A,B) ∈ B(G,M, I), g ∈ G, and m ∈M .
Then

g ∈ A⇒ CbO((A,B), g) = (A,B), (8)

m ∈ B ⇒ CbO((A,B),m) = (A,B), (9)

g /∈ A⇒ (A,B) < CbO((A,B), g), (10)

m /∈ B ⇒ CbO((A,B),m) < (A,B). (11)

Lemma 2. Let (G,M, I) be a context, (A1, B1), (A2, B2) ∈ B(G,M, I), g ∈ G,
and m ∈M . Then

(A1, B1) ≤ (A2, B2)⇒ CbO((A1, B1), g) ≤ CbO((A2, B2), g), (12)

(A1, B1) ≤ (A2, B2)⇒ CbO((A1, B1),m) ≤ CbO((A2, B2),m). (13)

Now we represent the coupling Markov chain algorithm that is a core of
probabilistic approach to machine learning based on FCA (VKF-method).
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Data: context (G,M, I), external function CbO( , )
Result: random concept (A,B) ∈ B(G,M, I)
X := G tM ; (A,B) := (M ′,M); (C,D) = (G,G′);
while ((A 6= C) ∨ (B 6= D)) do

select random element x ∈ X;
(A,B) := CbO((A,B), x); (C,D) := CbO((C,D), x);

end
Algorithm 1: Coupling Markov chain

The order on two concepts (A,B) ≤ (C,D) at any intermediate step of the
while loop of Algorithm 1 follows from Lemma 2.

2.2 Probabilistic algorithms for FCA-based machine learning

Now we represent the general scheme of machine learning based on FCA (VKF-
method). The reader can learn the classical deterministic FCA-based approach
to machine learning from Kuznetsov [4]. Our technique uses probabilistic Algo-
rithm 1 for computing a random subset of formal concepts.

As usual, there are two sets of objects called the training and test samples,
respectively.

From positive examples of the training sample the program generates a formal
context (G+,M, I). The negative examples form the set G− of counter-examples
(obstacles).

Set Gτ of examples to predict the target class contains all test objects.

After that the program applies the coupling Markov chain algorithm 1 to
generate a random formal concept (A,B) ∈ B(G+,M, I). The program saves
the concept (A,B), if there is no obstacle o ∈ G− such that B ⊆ o′.

Data: number N of concepts to generate
Result: random sample S of formal concepts without obstacles
G+ := (+)-examples, M := attributes; I ⊆ G+ ×M is a formal context
for (+)-examples;
G− := (-)-examples; S := ∅; i := 0;
while (i < N) do

Generate concept 〈A,B〉 by Algorithm 1; hasObstacle := false;
for (o ∈ G−) do

if (B ⊆ o′) then
hasObstacle := true;

end

end
if (hasObstacle = false) then

S := S ∪ {〈A,B〉};
i := i+ 1;

end

end
Algorithm 2: Inductive generalization
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Condition (B ⊆ o′) of Algorithm 2 means the inclusion of intent B of concept
〈A,B〉 into the fragment (attributes subset) of counter-example o.

If a concept avoids all such obstacles it is added to the result set of all the
concepts without obstacles.

We replace a time-consuming deterministic algorithm (for instance, ”Close-
by-One”) for generation of all concepts by the probabilistic one to randomly
generate the prescribed number of concepts.

The goal of Markov chain approach is to select a random sample of formal
concepts without computation of the (possibly exponential size) set B(G,M, I)
of all the concepts.

Finally, machine learning program predicts the target class of test examples
and compares the results of prediction with the original target value.

Data: random sample S of concepts, list of (τ)-objects
Result: prediction of target class of (τ)-examples
X := (τ)-examples;
for (o ∈ X) do

PredictPositively(o) := false;
for (〈A,B〉 ∈ S+) do

if (B ⊆ o′) then
PredictPositively(o) := true;

end

end

end
Algorithm 3: Prediction of target class by analogy

3 Main result

Algorithm 3 gives the following

Definition 2. Object o with fragment (attributes subset) o′ ⊆ M is positively
predicted by concept 〈A,B〉 if B ⊆ o′.

If there are n = |M | attributes then intent B of any concept 〈A,B〉 is a point
of n-hypercube {0, 1}n.

Definition 3. Lower half-space H↓(o) corresponding to object o with frag-
ment o′ ⊆M is defined by linear inequality xj1 + . . .+ xjk <

1
2 , where M \ o′ =

{mj1 , . . . ,mjk}. The empty lower half-space 0 < 1
2 (equals to {0, 1}n) is allowed

too and corresponds to o′ = M .

Remark that cardinality of all possible lower half-spaces is equal to 2n.
Key observation is

Lemma 3. Object o is positively predicted if and only if lower half-space H↓(o)
contains a fragment B of at least one concept 〈A,B〉.
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Definition 4. Object o is called ε-important if probability of occurrence of
random concept 〈A,B〉 with B ∈ H↓(o) is greater than ε.

A family of concepts is called ε-net if for each ε-important object o there is
at least one its member 〈A,B〉 with B ∈ H↓(o).

Now we are interested only in 1-st type error probability (positive prediction
fails): we need to determine a number N (depending on ε and δ) such that a
random sample of cardinality N forms ε-net with probability greater than 1− δ.

Lemma 4. For all ε with l > 2
ε and for any independent random samples S1

and S2 of concepts of cardinality l the following inequality holds:

Pl{S1 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅,PH > ε]} ≤
≤ 2 ·P2l{S1S2 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅, |S2 ∩H| > ε · l/2]}.

Lemma 5. For all ε and for any independent random samples S1 and S2 of
concepts of cardinality l the following inequality holds:

P2l{S1S2 : ∃H ∈ (Sub ↓) [S1 ∩H = ∅, |S2 ∩H| > ε · l/2]} ≤
≤ mSub↓(2l) · 2−εl/2.

Theorem 1. For n = |M | and for any ε > 0 and 1 > δ > 0 random sample of
concepts of cardinality

N ≥ 2 · (n+ 1)− 2 · log2 δ

ε

forms ε-net with probability > 1− δ.

Proof. Solve inequality 2 · 2n · 2−εN/2 ≤ δ with respect to N to obtain the
estimate.

Conclusions

In this paper we provided a lower bound on sufficient number of randomly gen-
erated formal concepts to correctly predict all important positive test examples
with given confidence level. The technique mostly coincides with modern ap-
proach to the famous theorem of V.N. Vapnik and A.Ya. Chervonenkis, but the
situation is dual to the classical one.
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the Greedy Clustering Algorithm Based on

Interval Pattern Concepts?
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Abstract. Interval pattern concepts are a particular case of pattern
structures. They can be used to clusterize rows of a numerical formal
context (data matrix): two rows are close to each other if their entries
at the corresponding positions fall within a given interval.
The problem of mining interval pattern concepts has much in common
with the known problem related to computational geometry: given a
finite set of points in the Euclidean space, position a box of a given size
in such a way that it encloses as many points as possible. This problem
and its variations have been thoroughly studied in the case of a plane;
however, the authors are not aware of the existence of algorithms which in
a reasonable time produce an exact solution in the space of an arbitrary
dimension.
There exists an approximate greedy algorithm for solving this problem.
It produces a solution with time which is linear in the number of points
and polynomial in dimension. We apply a clustering approach based on
that algorithm to the gene expression table from the dataset “The Cancer
Cell Line Encyclopedia”. The resulting partition well agrees with a priori
known biological factors.

Keywords: Interval pattern concepts · Clustering · Greedy algorithms.

1 Introduction

In our days researchers frequently need to investigate various biological and
medical data represented as numerical contexts (data tables). Rows of tables
correspond to objects; columns correspond to attributes. It is often necessary
to find clusters that are composed of objects featuring similar attributes. One
of the most convenient tools that can be used for clustering this kind of data is
Formal Concept Analysis.

? The research was supported by the Russian Science Foundation (project 16-11-00058
“The development of methods and algorithms for automated analysis of medical
tactile information and classification of tactile images”).
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Formal concept analysis (FCA) is a data analysis method based on applied
lattice theory and order theory. Within the framework of this theory a formal
concept is defined as a pair (extent, intent) obeying the Galois connection (see
the monograph [1] by B. Ganter and R. Wille).

One of the variations of FCA is known as the theory of pattern structures,
which was elaborated by B. Ganter and S. Kuznetsov in [2]. An important par-
ticular case of pattern structures is interval pattern structure with the operation
of interval intersection, which allows one to apply cluster analysis to rows of nu-
merical contexts [3]. In this case similarity means that all the differences between
the values of the corresponding attributes fall into given intervals.

It is easily seen that the problem of detecting similar objects can be refor-
mulated in geometrical terms, namely, as the problem of optimal positioning of
a d-dimensional box with given edge lengths for the set P of points, i.e. finding
a position of the box that maximizes the number of points of the set P enclosed
by the box (here d ∈ N is the number of attributes in the numerical context
considered, P is the set generated by the rows of the numerical context).

In practice, biomedical data often involve thousands of entries, and each
entry is described by hundreds of attributes. The existing algorithms that solve
the problem of finding an optimal position of a box do not allow one to obtain
an exact solution for high-dimensional data within a reasonable time. In [4]
the authors introduced a fast approximate greedy algorithm for solving this
problem and applied the corresponding clustering approach to the dataset of
tactile images registered by the Medical Tactile Endosurgical Complex (MTEC,
[5]). The experiment results demonstrated significant advantage of the proposed
algorithm over the conventional k-means method in clustering quality.

In this paper we apply this clustering algorithm to the dataset “The Cancer
Cell Line Encyclopedia” [6]. This dataset includes an expression table for about
20000 genes in 917 cancer cell lines. The cell lines were derived from tissues of
23 different organs. The aim of the study is to check if cancers from close organs
have close gene expression values.

The rest of the paper is organised as follows. In Section 2 we introduce defi-
nitions from the formal concepts theory. In Section 3 we overview the clustering
algorithm from [4]. In Section 4 we describe the procedure and present the re-
sults of application of the algorithm to the gene expression data, and in Section
5 we make concluding remarks.

2 Main Definitions

In this section we briefly recall the main definitions of the theory of formal
concepts and give a geometrical interpretation of the problem of finding an
interval pattern concept of maximum extent size.

Definition 1. A semilattice operation on the partially ordered set (M,≤) is a
binary operation u : M ×M that features the following properties for a certain
e ∈M and any elements x, y, z ∈M :
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– x u x = x (idempotency);
– x u y = y u x (commutativity);
– (x u y) u z = x u (y u z) (associativity);
– e u x = e.

Definition 2. Let (P,≤P ) and (Q,≤Q) be partially ordered sets. A Galois con-
nection between these sets is a pair of maps ϕ : P → Q and ψ : Q→ P (each of
them is referred to as a Galois operator) such that the following relations hold
for any p1, p2 ∈ P and q1, q2 ∈ Q:

– p1 ≤P p2 ⇒ ϕ(p1) ≥Q ϕ(p2) (anti-isotone property);
– q1 ≤Q q2 ⇒ ψ(q1) ≥P ψ(q2) (anti-isotone property);
– p1 ≤P ψ(ϕ(p1)) and q1 ≤Q ϕ(ψ(q1)) (isotone property).

Applying the Galois operator twice, namely, ψ(ϕ(p)) and ϕ(ψ(q)), defines a
closure operator.

Definition 3. A closure operator (·) on M is a map that assigns a closure
X ⊆M to each subset X ⊆M under the following conditions:

– X ≤ Y ⇒ X ≤ Y (monotony);
– X ≤ X (extensity);

– X = X (idempotency).

Definition 4. A pattern structure is a triple (G, (D,u), δ), where G is a set of
objects, (D,u) is a meet-semilattice of potential object descriptions, and δ : G→
D is a function that associates descriptions with objects.

The Galois connection between the subsets of the set of objects and the set of
descriptions for the pattern structure (G, (D,u), δ) is defined as follows:

A� := ug∈Aδ(g), where A ⊆ G,
d� := {g ∈ G | d v δ(g)}, where A ⊆ G.

Definition 5. A pattern concept of the pattern structure (G, (D,u), δ) is a pair
(A, d), where A ⊆ G is a subset of the set of objects and d ∈ D is one of the
descriptions in the semilattice, such that A� = d and d� = A; A is called the
pattern extent of the concept and d is the pattern intent.

A particular case of a pattern concept is the interval pattern concept. The
set D consists of rows of a numerical context which are treated as tuples of
intervals of zero length. An interval pattern concept is a pair (A, d), where A is
a subset of the set of objects and d is a tuple of intervals with ends determined
by the smallest and the largest values of the corresponding component in the
descriptions of all objects in A.

Since interval pattern concepts are determined by objects that have similarly
“distributed” attributes, these concepts are convenitent to use in data clustering.
The interval width can be either the same for all components (in such case it is
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denoted by δ), or different for different components (in such case the widths are
denoted by δ1, δ2, . . . , δd).

Let P be a set of n points in Rd (d ∈ N), δ1, δ2, . . . , δd be positive real
numbers.

Definition 6. A d-orthotope (also called a box) with center x = (x1, . . . , xd) ∈
Rd and edge lengths δ1, δ2, . . . , δd is the Cartesian product of the intervals

[
x1 −

δ1
2
, x1 +

δ1
2

]
× . . .×

[
xd −

δd
2
, xd +

δd
2

]
.

It can be easily seen that the problem of identification of a maximum interval
concept can be reformulated in terms of finding an optimal position of the box
with the edge lengths δ1, δ2, . . . , δd, that is, maximizing the number of points
of the set P enclosed by the box. This formulation can be generalized to the
problem of finding an optimal position of a ball in an arbitrary metric space,
since any box can be treated as a ball in the stretched L∞ metric in which
the distance ρ(x, y) between the points x = (x1, . . . , xd) and y = (y1, . . . , yd) is
defined as

ρ(x, y) = max
1≤i≤d

δi|xi − yi|.

3 The Greedy Clustering Algorithm Based on Interval
Pattern Concepts

In this section we briefly overview the greedy clustering algorithm which was
introduced in [4]. Given the set P = {pi}ni=1 ⊂ Rd, the algorithm splits it
into mutually disjoint clusters C1, . . . , Ck. The splitting procedure is based on
optimal box positioning and uses a standard greedy approach. Namely, at each
step an optimal positionDi of the box for the set P\(C1, . . . , Ci−1) is determined,
and Ci is assigned to be equal to (P \ (C1, . . . , Ci−1))

⋂
Di. In order to avoid

producing a big number of small clusters consisting of outliers, the algorithm
uses a restriction on the number of points in the resulting clusters — they must
include at least cmin objects. With this restriction some points can be considered
unclustered.

The clustering procedure uses the approximate greedy iterative algorithm
for solving the problem of an optimal box positioning. The parameters of that
algorithm are the box edge lengths δ1, δ2, . . . , δd, the positive real numbers
s, smin, λ < 1 and the function f : N × N → N. The parameters s, smin,
and λ regulate the duration of one iteration, while the function f returns the
number of iterations for the given values n and d. Greater number of iterations
and greater duration of each iteration provide better approximation.

Now we will briefly describe the greedy algorithm for finding an approxi-
mately optimal position of a box. After a short preprocessing procedure the
box with the edge lengths δ1, δ2, . . . , δd is transformed into the d-dimensional
unit cube, and the algorithm locates the base unit cube, i.e. the optimal unit
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cube with integer vertice coordinates. The main idea of the algorithm consists
in constructing f(n, d) sequences of unit cubes in such a way that each sequence
starts from a random point in the base unit cube and satisfies the condition that
the next cube contains more points than the previous one. After that the algo-
rithm returns a locally optimal cube C. Each sequence is constucted iteratively.
Suppose that m cubes from a sequence are already constructed. There are two
possible cases.

1. If the current cube can be translated with the current step by one of the
axes (the initial step size is equal to s) with an increase in the number of
enclosed points, then the current cube is moved to this position.

2. Otherwise, the current step size is decreased by a factor of λ < 1. If the step
size threshold sminis reached then the procedure is terminated.

Under additional technical restrictions the authors of [4] proved the following
precision and complexity bounds.

Theorem 1. Let Dalg be an optimal cube produced by the algorithm and Dopt

be a globally optimal cube. Then

1

2d
≤ |Dalg

⋂
P |

|Dopt

⋂
P | ≤ 1

and this estimate is sharp.

Theorem 2. The algorithm for finding an approximately optimal position of the
box has

O

(
dn log(n) +

d3n1−
1
d

smin
f(n, d)

)

worst-case time complexity and O(dn) space complexity.

Theorem 3. The clustering algorithm has

O

((
dn log(n) +

d3n1−
1
d

smin
f(n, d)

)
· n

cmin

)

worst-case time complexity and O(dn) space complexity.

4 Applying the Clustering Algorithm to “The Cancer
Cell Line Encyclopedia”

We consulted biologists and selected 432 columns of the expression table asso-
ciated with genes encoding receptors, channels and transcription factors. First,
we applied the clustering algorithm to the whole table. Thus, in our notation
we have n equal to 917 and d equal to 432. For tuning algorithm parameters
we used the following procedure. Let D denote the maximal pairwise distance
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Fig. 1. Dendrogram of the hierarchial clustering of features.
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Fig. 2. Plot of the first two principal components for the clusters; 29 outlying samples
are removed from this figure.
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Fig. 3. Mutual arrangment of the clusters and organ groups. The number at the inter-
section of the ith row and the jth column indicates the number of samples which fall
into both Group i and Cluster j; 29 outlying samples are excluded from consideration.

between the points considered. By the Pythagoras theorem, all points can be
placed in a cube with edge length D

√
d. Then, a simple grid search approach on

the interval
(

0, D
√
d
)

was utilized for finding an acceptable cube edge length.

The remaining parameters were manually tuned in order to reach acceptable
(accuracy) / (running time) ratio.

We seleceted the cube edge length equal to 6.7 (i.e. δ1 = δ2 = ... = δ432 =
6.7); cmin, s, smin and λ were set equal to 10, 0.5, 0.3, 0.9, respectively, and the
function f(n, d) was taken as [log(dn)], where [x] denotes the integer part of x.
Despite an acceptable run time (several minutes) the results were unsatisfactory:
the output of the algorithm included one huge 390-element cluster, two medium-
sized 77- and 69-element clusters, and the remaining approximately optimal
cubes contained less than 10 points each. This means that more than 40% of
samples (381 out of 917) actually were not clusterized. Such behavior was the
result of strictness of the relation “a point lies in a box” which means that each
coordinate of a point must fall into a fixed range. Under this restriction, even one
outlying coordinate of a point knocks it out of a cube. In high dimensional spaces
single coordinate outliers are quite probable and inevitable, so before using the
clustering algorithm it is reasonable to apply some dimension reduction and
smoothing technique.

We applied Ward’s method of hierarchial clustering to data features (R func-
tion hclust from the package stats [7] was used). The dendrogram produced
(Fig. 1) was cut at height 55, which corresponds to 10 clusters. Then the expres-
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sion values in the clusters were averaged. The new feature space had dimension
d equal to 10. The greedy clustering algorithm was run on the dataset with re-
duced dimension with the cube length equal to 3; the other parameter values
were left unchanged. The number of outliers essentially decreased after moving
to the new agglomerated feature space — their quantity varied in the range be-
tween 25 and 35. The resulting partition consisted of 6 groups (see Fig. 2) and
had an interesting biological interpretation. Namely, we calculated the number
of samples in all intersections of clusters and organs. Based on this cardinali-
ties we concluded that the clusters obtained were highly correlated with organ
groups (see Fig. 3):

– Group 1: haematopoietic and lymphoid tissue, liver, skin, central nervous
system, bone, soft tissue, pleura;

– Group 2: salivary gland, upper aerodigestive tract, oesophagus, biliary tract,
stomach, pancreas, small intestine, large intestine, breast, thyroid,
endometrium, urinary tract, lung (non-small cell cancer);

– Group 3: Kidney, ovary, prostate;
– Group 4: Autonomic ganglia and lung (small cell cancer).

It can be seen that major organ systems fall into different groups. Namely,
Group 1 contains almost all non-solid organs, Group 2 contains organs from di-
gestive system, Group 3 contains organs from genitourinary system, and Group
4 contains organs from autonomic nervous system and respiratory system. How-
ever Groups 2 and 3 seem to be dependent: Group 2 also contains some organs
from genitourinary system. Thus the clusters differ by the organ systems they
contain. Note that Figures 2 and 3 give ground to merge Cluster 6 with Cluster
1 and Cluster 5 with Cluster 4. The quality of the clusters can be addition-
ally illustrated by more subtle arguments. For example, separation of small and
non-small cell lung cancers seems to be reasonable, since there are some recep-
tor coding genes which are differently expressed in these cancer types [8]. Note
also that small cell lung cancer appear in the same cluster with the autonomic
ganglia cancer (neuroblastoma), since their molecular mechanisms include some
number of the same receptors [9].

5 Conclusions

In this paper we tested the applicability of the greedy clustering algorithm based
on interval pattern concepts from the paper [4] to high-dimensional biomedical
data. We showed that the clusters produced by the algorithm applied to “The
Cancer Cell Line Encyclopedia” dataset were highly correlated with different
organ groups and sophisticated molecular mechanismes of different cancer types.
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Abstract. Efficient representation of packet classifiers has become a significant 
challenge due to the rapid growth of data stored and processed in the forward-
ing, or routing, tables. In our work we propose two algorithms for reducing the 
size of forwarding tables both in length and width by the deletion of redundant 
bits and unreachable rules based on FCA analysis. We consider the task of 
transferring the forwarding packet to the correct destination as the task of mul-
tinomial classification. Thus, the process of reducing the forwarding table size 
corresponds to feature selection procedure with slight modifications. The pre-
sented techniques are based on closed descriptions and decision trees. The main 
challenge in applying decision trees to the task is processing the overlapping 
rules. To overcome this challenge we propose to employ concept-based hypoth-
eses to delete unreachable actions assigned to the overlapping rules. The exper-
iments were performed on data generated by the ClassBench software. The pro-
posed approach results in significant decrease in bits in the forwarding tables as 
features. 

Keywords: FIB optimization, concept-based hypotheses, decision tree. 

1 Introduction and related works 

A FIB (forwarding information base) is a wide-spread network instrument used for 
routing and forwarding packets to the proper output network interface. Due to the 
rapid growth of the forwarding tables size the time of lookup and forwarding process 
increases significantly. Modern networking systems require the process of packet 
transferring to be more and more efficient and fast. In our research we introduce a 
novel technique for optimization of forwarding tables. Application of the proposed 
algorithm results in the reduction of the number of bits, which are kept in the memory 
and used for the lookup process. We consider the task of transferring the forwarding 
packet to the correct destination in accordance with the FIB as a special task of multi-
nomial classification, where train and test data are the same, so overfitting is not an 
issue. Thus, the process of reducing the size of the table is considered as the task of 
feature selection and rule reduction. The presented approaches are based on closed 
descriptions defined in terms of Formal Concept Analysis (FCA). 

Some of the existing techniques for FIB optimization utilize the decision tree ap-
proach, e.g. in [1] the authors present a new algorithm using a heuristic based on the 
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structure built in the classifier. The main idea of algorithm HiCut presented in [1] is to 
create a decision tree based on structural properties of the classifier, where a leaf node 
stores just a few numbers of rules. In [2] the authors introduce a new algorithm called 
HyperCut, which is the modification of HiCut. Each node in the decision tree of Hy-
perCut represents a k-dimensional hypercube. In comparison to the previous version 
of the algorithm the authors claim to attain 2 to 10 times memory reduction. The main 
problem of these approaches is processing the overlapping rules. 

In [3] a novel algorithm that reveals the structural properties of FIB is proposed. 
The authors present a technique for reducing the number of fields (columns) in the 
forwarding table. The approach proposed in the article is similar to the greedy tech-
nique of feature selection. The authors are trying to reduce the rules width by select-
ing the fields and bits which are important for the classification process. They achieve 
it by sequential deletion of each field checking whether the classifier keeps the prop-
erty of order-independence. We will use this algorithm as the baseline in our experi-
ments. 

The paper is organized as follows. In Section 2 we describe data and formalize the 
model of forwarding tables. Section 3 contains the description of the evolving ap-
proaches. Experimental results are reported in Section 4. Section 5 concludes the 
paper.

2 Model description 

The basic scheme of packet classification using forwarding table can be presented as 
follows. The incoming packet goes through the table, and the first row that matches 
the packet description defines the respective action.  

We start with the main definitions of packet forwarding. The table entry is a packet 
header   (          ),    {   }, which is a sequence of   bits, each of them 
can take values zero or one. This sequence goes through the ordered set of rules 
  (          ), where each rule is represented by the ordered set of   ternary 
values 0, 1, and * (“don’t care”), and the corresponding action   ,      ̅̅ ̅̅ ̅, where   
is a number of all possible actions. This set of rules is often implemented in ternary 
content-addressable memory (TCAM). The forwarding process looks for exact values 
for all fields, assigning the packet header to the corresponding action. A header   
matches a rule    if for every bit from   the corresponding bits from    takes either the 
same or * value [4].  

The forwarding table is used with due account of the priority relation on actions. 
Let  (  ) be a priority of action   , then  (  )   (  ) if    . If an input packet 
matches more than one rule, then the rule with the action having the highest priority is
applied.

The initial packet is not given in the binary form. Packet descriptions consist of
several fields, the number of fields depends on the specific protocol version (e.g., 
IPv4 or IPv6). In general, the source and destination hosts, port numbers, or the port 
numbers range make the fields of classification rule. To follow the definition men-
tioned above each of the field values should be performed in TCAM format. For in-
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stance, the IP-address with the mask can be presented in 32-bit form, where the mask 
marks the significant bits. Table 1 gives an example of simplified routing table. 

Table 1. Example of simplified forwarding table. 

IP-address of source port IP-address of destination port 
@145.125.157.1/32 40.140.16.190/32 
@195.33.215.197/32 79.205.27.10/32 
@195.33.215.196/32 79.205.31.157/32 

In this simplified table the rule    is built upon one field, which is IP-address of the 
source port, and the action is represented by IP-address of the destination port. 

First, the initial data is transformed to TCAM format, where each number is en-
coded by zero, one, or * (“don’t care”) value. Table 2 gives an example of ternary 
forwarding table, where only last eight bits of the IP-address are encoded. In this ex-
ample there are 7 various actions    and 8 features   , which generate the rules    of 
the forwarding table. 

Table 2. An example of ternary forwarding table. 

                         Action 
   0 0 0 0 1 0 0 1 A0 
   1 1 0 0 0 1 0 * A1 
   1 1 0 0 0 1 0 0 A2 
   0 0 1 1 1 1 1 1 A3 
   0 1 0 0 1 0 0 1 A4 
   0 1 0 1 1 0 1 1 A4 
   0 1 0 1 1 1 0 0 A5 
   1 0 1 1 0 0 0 1 A5 
   0 0 0 0 1 1 0 1 A6 
   0 0 0 1 1 0 0 0 A7 

2.1 Data representation 

The algorithms we describe below are formulated in terms of Formal Concept Analy-
sis (FCA). To operate with TCAM data we propose a specific pattern structure [5] 
(  (   )  ), where   is a set of objects,   is a set of all possible object descriptions, 
and (   ) is a meet-semi-lattice of object descriptions. Mapping       takes an 
object   to its description   (   ). Galois connection between (    ) and (   ) 
is defined as follows [6]. 

   
g A
Π  ( )    , 

   {       ( )}       (   )          ( )    ( )     
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In our case     is a set of rules,   is a set containing all possible TCAM de-
scriptions of each rule in the alphabet {     }, so the pattern structure is (  (   )  ). 
The scheme of intersection operation   is presented in Table 3. 

Table 3. The scheme of intersection operation  . 

  0 1 * 
0 0 * * 
1 * 1 * 
* * * * 

For example, for rules    and    the result of intersection operation is the following: 

 (     )   (  )   (  )  {        }, and 

 (     )   (  ), as  (     )   (  )   (     ). 

3 Optimization algorithm 

We consider the general task as a standard multinomial classification problem, where 
the rows of the table stay for objects described by features and assigned to the corre-
sponding classes (actions). The application of informative feature selection results in 
revealing the minimal combination of the informative features, thus decreasing the 
width of the routing table. Therefore, the look-up procedure of assigning the packet to 
the corresponding action can become faster. We consider two techniques based on 
concept-based hypotheses. The first approach is based on a variation of Close-by-One 
(CbO) algorithm [7]. This method results in constructing a minimal feature subset that 
determines the corresponding action and the reduction in the number of rules. The 
second approach combines concept-based hypotheses as a preprocessing step for de-
leting the overlapping rules with the decision tree algorithm for revealing the informa-
tive features. 

3.1 Concept-based hypotheses 

Concept-based hypotheses [8] used to generate rules with short premises are reformu-
lation of JSM-hypotheses [9] in terms of formal concepts. Data can be represented by 
  contexts describing each of   actions (classification results)    (   (   )   ) 
       , where    is a set of the  -th action examples; mapping         as-
signs an  -action example    to description   (   )        . The derivation 
operators in these contexts are defined by superscripts  . Thus, the intent of  -th ac-
tion examples are denoted by    . Intents of context    are called  -th action intents. 
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3.2 Method based on Close-by-One algorithm 

The first approach is based on an adaptation of CbO algorithm in the depth-first strat-
egy [5]. The basic scheme of the proposed method is as follows. 

For each context    (   (   )   )         we build the CbO tree trying 
to define a minimal feature subset responsible for defining the  -th action. Let        
be a set of rules, and       

  be a common description for each rule from       , 
where      is a node index in CbO tree (e.g. for the root      equals zero, for the 
root’s children nodes node will be one, etc.). 

1. The root of the tree is a pair (       
 
), where       and    

 
  .  

Its child nodes consist of just one rule and its description (       
 
),     {   } and 

  
    (  

 )        . If  (   )  includes a rule     corresponding to action    , 
then the rule     can be deleted from the routing table as unreachable. It is ex-
plained by the priority property, because each packet that satisfies     also satisfies 
  
 , hence as  (   )   (  

 ),     will never be reached. 
2.  Having created the children nodes of the first generation, we construct the next 

generations of children nodes  (             
 
),       . To accomplish this step 

we add one of the remaining rules to the previous rules set         . To get the fea-
ture-bit vector describing this new set of rules we should intersect the feature-bit 
vector corresponding to the added rule  (      )  with the current node description 
  
(      ) . This step can be formulated in accordance with the following rules. 

  
       

       {  
    },               

      ; 

  
        

         (  
    )  

3. If       
   includes a rule        corresponding to action    , then we have got an 

overgeneralized description. We should return to the parent        and add one 
of the remaining rules. We aim to create the most common description of the  -th 
action that does not cover the description of other actions. 

Example. Consider the work of the method by the example of data in Table 2. As we 
have only one rule for   , we leave it without modification, so     {  } and 
  
   {        }. 

The first action is also defined by one rule only:     {  } and    
 
 

{        }, however,     {  } and    
  

  (  )
  {     }, where    defines   . 

According to the second step of the algorithm, since  (  )   (  ), rule    can be 
deleted from the routing table as unreachable. 

The fourth action is determined by two rules {     }. The second generation of 
children is     {     },    

 
 {        }.    

  
 {     }, which means that 

  
   is the most compact description for action   . 
For the fifth action there are also two rules     {     },    

 
 {        }. 

However,    
  

 {        }, where    defines   , in accordance with the third step of 
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the algorithm, the obtained description    
  is too general, and we should return to the 

parent nodes     {  } and     {  }. Thus, action    cannot be presented by one 
rule, both rules    and    should be kept in the final routing table.  

The actions   ,    and    remain the same, because they are described by one rule 
only. To illustrate the process described above we present the part of CbO-tree built 
for FIB given in Table 2 (Fig. 1). The final FIB is given in Table 4. 

 

Fig 1. A part of CbO tree. 

Table 4. An example of forwarding table reduced with CbO algorithm. 

                         Action 
   0 0 0 0 1 0 0 1 A0 
   1 1 0 0 0 1 0 * A1 
   0 0 1 1 1 1 1 1 A3 

      0 1 0 * 1 0 * 1 A4 
   0 1 0 1 1 1 0 0 A5 
   1 0 1 1 0 0 0 1 A5 
   0 0 0 0 1 1 0 1 A6 
   0 0 0 1 1 0 0 0 A7 

It should be mentioned that the proposed technique does not affect the width of the 
routing table significantly. It can reduce the number of informative features for each 
action separately. Besides, it is able to decrease the length of the table by deleting 
unreachable actions and compressing the number of rules. In some cases the width of 
the table can also be reduced, for instance, if a feature-bit takes the same value for 
each rule in the table (i.e. the column of the table consists either of zeros, or ones), 
this feature-bit can be deleted from the table as uninformative. 

3.3 Decision tree and concept-based hypotheses 

The second approach uses concept-based hypotheses in a different way. Here we use 
them not for feature selection, but in the preprocessing step for deleting unreachable 
rules. While the final stage of feature selection is performed by a standard machine 
learning technique, decision tree induction in our case.  
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As we already mentioned some rules can be redundant in the initial table. These 
unreachable rules complicate the process of building the decision tree, whereas they 
should not be taken into account in the first way. We consider using concept-based 
hypotheses to detect them. Having deleted the unreachable rules we generate a deci-
sion tree. To create the optimized table we parse the decision tree finding the route for 
each action with zero error. A route is represented as a row from the optimized table. 

As in the algorithm based on CbO we find pairs (             
 
), where       

  
defines the minimal description for  -th action to detect the unreachable rules. If the 
proportion of “*” in   

      is less than some threshold  , and       
   contains a rule 

  
     corresponding to action    , then we perform a checking procedure as fol-

lows. For all rules          
       {  

    } if  (      )   (  
    ), then        is 

an unreachable rule and can be deleted from the forwarding table.  
Threshold   is used to catch overgeneralized descriptions       

  that can match 
large number of rules, we set it to   ⁄  in this work. For instance, in example given in 
Section 3.2 the proportion of “*” in   

   {        } equals to   ⁄ , which is 
more than a half. So, we assume that it is an overgeneralized description and there is 
no need to compute    

   and check the inclusion. In this algorithm we do not aim at 
finding minimal hypotheses for the actions, but at deleting the unreachable rules. 
Thus, this stage is responsible for decreasing the length of the routing table. We 
should mention that   is a hyperparameter aiming at avoiding long execution time, in 
our experiments the value   ⁄  has provided good performance; however, its impact 
could be examined more carefully in future works. 

Upon deleting all unreachable rules we propose to use decision tree algorithm to 
find the routes that are able to distinguish all the actions. This stage results in selec-
tion of the feature-bits that are informative for classification process, this selection 
decreases the width of the table. The choice of decision tree algorithm is based upon 
two reasons: 

─ built-in procedure of feature selection, thus finding a rule for this or that action we 
obtain a short way of defining it. 

─ overfitting does not present a problem for this specific task, because the routing 
table should be an exact classifier by definition, future data cannot violate it with-
out a general rearrangement of the routing scheme due to external reasons. 

We use python implementation of decision tree classifier based on CART algo-
rithm [10] that constructs binary tree structure and information gain for feature selec-
tion. It should be mentioned that standard machine learning techniques are not able to 
operate with pattern structures, therefore, to create a decision tree we encode the fea-
tures with the following rules: 

 {
     
     

      {
     
     

      {
     
     

       

This encoding scheme respects the intersection operation given by Table 3. Upon 
processing the bits can be simply decoded into the initial ternary form. 
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Having created the decision tree for the initial data without the unreachable rules 
we can apply the simple false-positive check procedure to check the correctness of the 
classification results. 

Thus, in the proposed method the length of the forwarding table is reduced by ap-
plying concept-based hypotheses, whereas, the decision tree with feature selection 
reduces the width of the table. We have applied this method to the sample FIB given 
in Table 2. 

Example. Let us consider the optimization procedure of the sample FIB given in 
Table 2 using the proposed method. In this specific example the most pairs 
(  

       
     ) forming the nodes of CbO tree describe one rule only (see Fig. 1), so 

they are not included in the procedure of unreachable rules defining. However, there 
are several pairs that should be processed. The first pair is 
(  

    
  )  ({  } {        }), where    

  
 {     } and    corresponds to action 

  , which has less priority than    defined by   . Thus, we should check   for    
 ; 

the proportion of “*” in   
   equals to   ⁄ , which is less than    

 ⁄ . This means 
that the description is not too general, and    is a candidate for unreachable rule. Then 
we examine the inclusion of rules’ descriptions  (      )   (  

    ). In our case 
 (  )   (  ) {        }  {        }  {        }   (  ). 

This means that    is an unreachable rule and can be deleted from the forwarding 
table.  

The second pair which describes more than one rule is 
(  

    
  )  ({     } {        }). The set    

  
 {     } does not include rules 

corresponding to different actions (both    and    define action    ) and, hence, there 
are no unreachable rules in this pair. 

The third candidate is (       
 
)  ({     } {        }), where    

  
 

{        }. Rule    corresponds to   , while    and    define   . However, as has 
been mentioned above, the proportion of “*” in    

  is greater than a threshold  . 
Thus, we assume that the obtained description is too general and there are no un-
reachable rules in the set    

  . In this case the assumption is correct, because action 
   cannot be described by the one rule only, both    and    should be kept in the final 
table. Neither the description of     nor the description of    covers  (  ), which 
means that    is a reachable rule. 

Application of the preprocessing stage resulted in deleting of one unreachable rule 
   from the initial sample table. After this step we apply decision tree procedure to 
generate the paths of bits, which are able to define remaining actions, and build the 
optimized forwarding table using these paths. The optimized version of FIB given in 
Table 2 is presented in Tables 5 and 6.  

Table 5. An example of reduced forwarding table. 

                         Action 
   * 0 0 * * 0 * 1 A0 
   * 1 * * 0 1 * * A1 
   * 0 1 * * * 1 * A3 
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      * 1 * * * 0 * * A4 
   * 1 * * 1 1 * * A5 
   * 0 1 * * * 0 * A5 
   * 0 0 * * 1 * 1 A6 
   * 0 0 * * * * 0 A7 

Upon the deletion of unreachable rules the decision tree classifier has revealed the set 
of uninformative bits {     }, which are not included in any classification rule. These 
bits take “*” value for each rule in Table 5. 

Table 6. An example of reduced forwarding table without redundant bits. 

                   Action 
   0 0 * 0 * 1 A0 
   1 * 0 1 * * A1 
   0 1 * * 1 * A3 
   1 * * 0 * * A4 
   1 * 1 1 * * A5 
   0 1 * * 0 * A5 
   0 0 * 1 * 1 A6 
   0 0 * * * 0 A7 

3.4 False-positive check 

If we delete some bits from initial table we may have a so called false positives, when 
some packet satisfies the reduced table (without several bits), whereas it does not 
correspond to any rule in the initial FIB. To make the problem clear, let consider two
reduced tables (table 4 and 6), obtained with the proposed approaches. 

In accordance with the resulting table 4 the packet    (        ) will be for-
warded to    by       rule, whereas    does not satisfies any of the initial actions    
or   , which have been the basis for this new rule. 

In table 6 the same problem occurs. For example, let    (        ) be a for-
warded packet. In accordance with the values of the 1st, 2nd, and 6th bits the reduced 
table will assign this packet to action 3, whereas actually this packet should not be 
assigned to any action and should be stopped by the table.  

To prevent this type of errors a false-positive check procedure should be included 
in the algorithms [3]. The procedure is implemented as follows, if some rules have 
been modified, then we should keep its initial variant in memory (32 bits and the cor-
responding action). Thereafter, if some input packet satisfies the new modified rule, 
then we check whether it also satisfies the initial rules (the ones we keep in the 
memory). If it suits one of them, the packet should be forwarded to the corresponding 
action; it is dismissed, otherwise. The process of checking is a simple comparison of 
two points in multidimensional space. So, the deleted bits are not included in the pro-
cess of the classification procedure itself, but they are kept to prevent false positives. 
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4 Experimental results 

The experiments were performed using the synthesized data provided with Class-
Bench software [11]. ClassBench generates sample routing table according to the 
parameters obtained from the real FIB. The synthesized tables used for the experi-
ments consisted of the IP-address of the source port with 32-bit mask as description 
and IP-address of the destination port as the output action. We evaluated three gener-
ated routing tables characterized by 32 bits and consisting of 100, 500, and 906 rules, 
respectively.  

Two proposed methods were applied to the tables described above. We compared 
the performance of the proposed methods with the results of the approach similar to 
the one presented in [3]. The authors of [3] utilize structural properties of FIB and 
reduce the width of the table by deleting the bits which do not affect the order-
independence property. This algorithm is close to greedy technique of feature selec-
tion, where the order-independence property is checked instead of the information-
gain criterion. This algorithm acts as a baseline in the experiments. The results ob-
tained during the experiments are presented in Tables 7-9, where “Order independ-
ence” stay for the approach from [3]. We assess the performance with respect to the
following properties.

Reduced number of feature-bits (column 1) shows how many bits of the 32 ini-
tial ones have been declared informative. Reduced number of rules (column 2) gives 
the amount of rules in the final table. This property demonstrates how many rules 
have been declared unreachable or have been united. The last property (column 3) 
says how many actions have been deleted from the table as unreachable. 

Table 7. The results of optimization for the table with 100 rules, 32 bits, and 57 unique actions 

Method Reduced number of 
features 

Reduced number of 
rules 

Number of deleted 
actions 

CbO-based 20 52 2 
DT + JSM 14 59 2 

Order-
independence 10 86 2 

Table 8.  The results of optimization for the table with 500 rules, 32 bits, and 95 unique actions 

Method Reduced number of 
features 

Reduced number of 
rules 

Number of deleted 
actions 

CbO-based 22 95 32 
DT + JSM 15 114 32 

Order-
independence  29 367 32 
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Table 9. The results of optimization for the table with 906 rules, 32 bits, and 95 unique actions 

Method Reduced number of 
features 

Reduced number of 
rules 

Number of deleted 
actions 

CbO-based 31 84 38 
DT + JSM 30 79 38 

Order-
independence  29 309 38 

We can see that the best results in reduction of table width are obtained by the deci-
sion tree algorithm in combination with concept-based hypotheses. Applying concept-
based hypotheses resulted in deleting two of 57 in the first experiment, and 32 and 38 
actions of 95 in the second and the third experiments respectively. This approach 
deleted more than a half of all initial features of the first and second synthesized FIBs. 
In two of three experiments the length of the table was reduced by CbO-based algo-
rithm in the best way. It confirms the fact that the first approach succeeds in deleting 
redundant rules, while the other techniques are better in width reduction. It should be 
mentioned that we keep in the memory initial rules, which constitute the new modi-
fied rules and correspond to reachable actions, in order to perform false-positive 
check procedure by necessity. 

The baseline approach utilizing order-independence property [3] showed the best 
results in minimizing the width of a forwarding table in the first experiment with 100 
rules and 57 unique actions. However, it should be mentioned that respecting order-
independence property one increases the number of rules. Turning the table into or-
der-independent format requires extending of some rules and decoding the “don’t 
care” value into the zeros and ones in order to prevent conflict of rules. 

5 Conclusion 

In our work we have presented two approaches to forwarding table minimization 
based on decision trees and concept-based hypotheses. The first technique is based on 
CbO-tree construction using a special pattern structure. The second approach utilizes 
decision tree classification algorithm in combination with concept-based (JSM) hy-
potheses (DT + JSM) aiming to delete the unreachable rules and reduce the length of 
the table. 

The experiments performed on data provided by the ClassBench software showed 
that the best trade-off between decreasing the width and the length of the classifier is 
obtained by DT + JSM technique. This method resulted in significant reduction in 
both the rules and bits number. The former was obtained by revealing the contradict-
ing hypotheses and, thus, unreachable rules deletion, whereas the latter was achieved 
by applying the decision tree algorithm to the modified table without unreachable 
rules. The proposed approaches were compared to the existing technique based on 
keeping order-independence property of the table. Whereas the number of deleted 
redundant features is comparable, the number of the rules kept in the final table is 
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larger for the order-independent approach. The method based on CbO-tree construc-
tion resulted in significant reduction of routing table length, which was obtained by 
intersection of the rules corresponding to specific action; however, it could not reduce 
big number of features. 

Overall, the proposed algorithms can be applied to the task of forwarding table 
minimization. In this work we overview the simplified version of the table that does 
not include range features. Thus, in our future research we are planning to apply in-
terval pattern structures to process such type of fields and make our algorithms com-
petitive with the state-of-the-art approaches. 
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