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We want:

a local Hamiltonian such that

I with degenerate ground space (quantum code)

I the energy of an error scales linearly with the size of the error
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The current research on quantum error correction
mostly concerned with the goal of building a (large) quantum computer

desire for realistic constructions

I LDPC codes: the generators of the stabilizer group act on a small number of qubits

I spatial/geometrical locality: qubits on a 2D/3D lattice

I main contenders: surface codes, or 3D variants

A fairly reasonable and promising approach

I good performance for topological codes: efficient decoders, high threshold

I overhead still quite large for fault-tolerance (magic state distillation) but the numbers
are improving regularly

Is this it?
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Better quantum LDPC codes?
from a math/coding point of view, topological codes in 2D-3D are not that good
I 2D toric code Jn, k = O(1), d = O(

√
n)K

I topological codes on 2D Euclidean manifold (Bravyi, Poulin, Terhal 2010)

kd2 ≤ cn

I topological codes on 2D hyperbolic manifold (Delfosse 2014)

kd2 ≤ c(log k)2n

I things are better in 4D hyp. space: Guth-Lubotzky 2014 (also Londe-Leverrier 2018)

Jn, k = Θ(n), d = nαK, for α ∈ [0.2, 0.3]

what can we get by relaxing geometric locality in 3D?

I we still want an LDPC construction, but allow for non local generators

I a nice mathematical topic with many frustrating open questions!
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Classical LDPC codes are well understood

sparse parity-check matrix H ∈ Fm×n
2 :

C = kerH

I good codes with k = Θ(n), d = Θ(n) can be found by picking H at random

I efficient decoding with belief propagation
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quantum LDPC codes remain poorly understood

stabilizer group S = 〈g1, . . . , gm〉 with gi ∈ Pn (n-qubit Pauli group) such that [gi, gj] = 0

LDPC:
I |gi| small (constant or log)

I ∀` ∈ [n], ]{i : ` ∈ supp(gi)} small

C = {|ψ〉 ∈ (C2)⊗n : gi|ψ〉 = |ψ〉, ∀i ∈ [m]}

The big questions (for me!)

I what kind of parameters are possible for qLDPC?

I efficient decoding??

I links with Hamiltonian complexity

A. Leverrier quantum LTC 27 nov 2019 6 / 25



quantum LDPC codes with large minimum distance

Beating the
√
n of the toric code is very hard!

I Freedman, Meyer, Luo (2002): construction based on S1 × S2

d ∝ n1/2 log1/4 n

I Kaufman, Kazhdan, Lubotzky (2016): construction based on Ramanujan complexes

dX ∝ n, dZ ∝ log n

+ balancing technique (Hastings 2017)

=⇒ d ∝ n1/2 log1/2 n

I construction by Hastings (2017) he conjectures could yield d ∝ n1−ε
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quantum LDPC codes with large minimum distance

best minimum distance when asking for constant rate

hypergraph product codes (Tillich, Zémor 2009) of two good classical LDPC codes

Jn,Θ(n),Θ(
√
n)K

I note 1: generalization of the toric code (product of 2 repetition codes)

I note 2: existence of codes with d ∝ n by relaxing the LDPC condition to
√
n-local

generators (Bravyi, Hastings 2014)

Do good qLDPC codes exist?
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Decoding quantum LDPC codes

I essentially solved for topological codes!

What about general codes?

I belief propagation: several issues (Poulin, Chung 2008)

I lots of small cycles
I many symmetric patterns (half generators) where the decoder gets stuck
I how to deal with degenerescence??

I greedy decoding in local balls
I for 4D hyperbolic codes (Hastings 2014)
I small-set-flip for quantum expander codes (Leverrier, Tillich, Zémor 2015, Fawzi,

Grospellier, Leverrier 2018)
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Small-set-flip for quantum expander codes
I consider a classical expander code (Sipser, Spielman 1996), i.e. such that its factor

graph is an expander
I hypergraph product code =⇒ quantum expander code Jn,Θ(n),Θ(

√
n)K

small-set-flip decoding

I for each gi: consider all patterns of errors within gi and apply the one that decreases
the syndrome weight the most (if it exists)

I repeat while possible

I correct arbitrary errors of weight O(
√
n)

I locality of SSF =⇒ distant clusters of errors are also dealt with
I cst threshold for local stochastic errors on both qubits and syndrome measurements
I reasonable performance in practice: threshold around 6-7 % with noiseless syndrome

measurement and ≈ 3% for noisy syndrome measurement for phenomenological noise
model (Grospellier, Krishna 2018, Grospellier, Grouès, Krishna, Leverrier 2019)
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Soundness and local testability

The analysis of the bit-flip decoder for classical expander codes and SSF for quantum
expander codes relies on the soundness of the codes:

soundness of quantum expander codes

for any error e such that |e| := d(e, C) ≤ c
√
n,

|s(e)| ≥ η|e|

for η = cst, and s(e) the syndrome

If true for any e, then locally testable code

=⇒ easy to distinguish between codewords and words far from the code, making a
constant number of queries to the word.

Many applications in the classical setting, mostly in theoretical CS, e.g. for PCP theorem
review paper by Goldreich (2006)
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Quantum locally testable codes

I notion introduced by Aharonov, Eldar (2015)

I applications remain a bit unclear at the moment, essentially in Hamitlonian
complexity

I qLTC with linear minimum distance would establish the NLTS conjecture (Eldar,
Harrow 2017)

I existing qLTC (this talk) allows to prove an average-case version of NLTS (Eldar 2019)
I strong form of confinement of errors (Stephen’s talk yesterday)
I link with single-shot decoding (Campbell 2018)

I definition requires to quantize notions of distance to code and weight of the syndrome
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qLTC with soundness η

I q-local quantum code C =⇒ Hamiltonian HC = 1
qm ∑m

i=1
1
2 (1− gi)

I projector ΠCt on t-fattening of the code

Ct := Span{(A1 ⊗ · · · ⊗An)|ψ〉 : |ψ〉 ∈ C, |{i : Ai 6= 1}| ≤ t}

DC = ∑
t
t(ΠCt −ΠCt−1)

A quantum code is locally testable with soundness η if

HC �
η

N
DC (energy ≥ η × distance)

2 known constructions

I Hastings (2017): η = 1
log3 n , k = 2

I this work: η = 1
log2 n , k = 1, possibly also for k = ω(1)?
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Examples of codes which are NOT locally testables

I 2D toric code: errors of weight Ω(
√
n) and constant energy

I D-dimensional toric code

I quantum expander codes: errors of weight Ω(
√
n) and constant energy
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The hemicubic code construction

alternative name: the projective code (QIP’19)
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Main properties of the hemicubic codes
almost LDPC: log-local

The simplest version: 1 logical qubit

JN, 1, d ≥
√
N/1.62K

I locally testable with η = Ω
(

1
log2 N

)
, open whether η = Θ

(
1

logN

)
?

I efficient decoder for adversarial errors of size d
polylog(N)

The general case: k = Nα

explicit parameters of the form: JN,poly(N),poly(N)K

I conjectured local testability

A. Leverrier quantum LTC 27 nov 2019 16 / 25



Idea behind the construction: homological codes with large min distance?

Geometric interpretation of N and d for surfaces:

I N ≈ area of the surface

I d = systole of the surface, length of the
shortest loop which is not the boundary
of a 2D subregion of the surface

I idea: minimize N at fixed d

I work on surface with positive curvature
=⇒ sphere (requires some identification
to get a logical qubit)
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The real projective plane

I identify antipodal points =⇒ some loops are not
boundaries: homology

I 1 logical qubit
I systole = π
I area = 2π =⇒ systole >

√
area

I ?
=⇒ D >

√
N

Not an infinite family of quantum codes...
Solution: increase the ambient dimension (similar to Hastings 2016)
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A discrete real projective plane

I identify pairs of antipodal faces of the cube

I N = 6 (qubits on edges)

I DX = 3 (smallest non trivial cycle)

I DZ = 2 (smallest non trivial cocycle)

I D = min(DX,DZ) = 2

I N = DXDZ
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The hemicubic code: a discrete real projective n-space

I n-hemicube: antipodal quotient of the n-hypercube

I qubits on p-faces (1 ≤ p ≤ n− 1), generators on (p± 1)-faces

I N = (np)2
n−p−1, K = 1

I DX = (np) (minimal nontrivial cycle has a p-face in every direction)

I DZ = 2n−p−1 (minimal nontrivial cocycle consists of all p-faces in a given direction)

I N = DXDZ

I DX ≈ DZ ≈
√
N for p = αn with α ≈ 0.227.

This code has already appeared in the literature in a completely different form relying on
Khovanov homology (Audoux 2013).
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Local testabilty of the hemicubic code

Recall that we want to prove that a lower bound on the syndrome weight:

1
qm
|s(e)| ≥ η

N
d(e, C), ∀e ∈ PN

Hemicubic code: m = Θ(N), q = Θ(logN)

We will prove |s(e)| = Ω
(

d(e,C)
logN

)
, which implies η = Ω

(
1

log2 N

)
.

Geometric interpretation

for a homological code, |s(e)| is the weight of a boundary and d(e, C) is the minimal
weight of its filling.

We are looking for filling inequalities.
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A filling inequality for the n-hypercube
The syndrome is a boundary B. We are looking for a filling F of it of low weight.
Filling inequality by Dotterrer (2012)

I qubits on 2-faces, checks on edges
I send the syndrome to the left by filling

with horizontal squares
I iterate
I choose the order of directions carefully

Dotterrer’s bound

I Dotterrer’s algorithm yields: |B| ≥ cst |F| =⇒ |S(e)| ≥ cst d(e, C)
I here: no homology, but a similar approach works for the hemicube

I our current analysis loses a log factor compared to Dotterrer
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antipodal map = translation by the classical repetition code

codewords of the repetition code: {000,111}

τ111(001) = 001+ 111 = 110
τ111(00∗) = 00 ∗+111 = 11∗
τ111 is the antipodal map.

Generalization

Quotient of the n-cube by arbitrary linear codes?
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The general construction

The simple construction identifies some cell x of the n-cube with x+ 111 · · · 1.
In other words, the faces are identified if they differ by an element of the repetition code.

I choose a classical linear code C = [n, k, d]

I associate qubits with p-faces of the n-cube, where we identify elements of a given
coset of C:

x ∼ y ⇐⇒ x+ y ∈ C

I many more logical qubits: k = (p+k−1
p )

I surprisingly, dimension and minimum distance only depend on the k and d from C,
not on H
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Perspectives
hemicubic code

I simplest version: n-cube with identified antipodal faces
I d =

√
N

I locally testable

I general version
I n-cube with identification of cosets of a linear code
I explicit dimension and minimum distance
I conjectured to be locally testable?

main open question

I what kind of length is possible for quantum LTC? exponential in k, polynomial?

Thanks!
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