
HAL Id: hal-02433525
https://hal.archives-ouvertes.fr/hal-02433525

Submitted on 9 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

EmPoWeb: Empowering Web Applications with
Browser Extensions

Dolière Francis Somé

To cite this version:
Dolière Francis Somé. EmPoWeb: Empowering Web Applications with Browser Extensions. SP 2019
- 40th IEEE Symposium on Security and Privacy, May 2019, San Francisco, United States. �hal-
02433525�

https://hal.archives-ouvertes.fr/hal-02433525
https://hal.archives-ouvertes.fr

EmPoWeb: Empowering Web Applications with
Browser Extensions

Dolière Francis Somé

Université Côte d’Azur / Inria, France
doliere.some@inria.fr

Abstract—Browser extensions are third party programs, tightly
integrated to browsers, where they execute with elevated priv-
ileges in order to provide users with additional functionalities.
Unlike web applications, extensions are not subject to the Same
Origin Policy (SOP) and therefore can read and write user data
on any web application. They also have access to sensitive user
information including browsing history, bookmarks, credentials
(cookies) and list of installed extensions. They have access to a
permanent storage in which they can store data as long as they
are installed in the user’s browser. They can trigger the download
of arbitrary files and save them on the user’s device.

For security reasons, browser extensions and web applications
are executed in separate contexts. Nonetheless, in all major
browsers, extensions and web applications can interact by ex-
changing messages. Through these communication channels, a
web application can exploit extension privileged capabilities and
thereby access and exfiltrate sensitive user information.

In this work, we analyzed the communication interfaces
exposed to web applications by Chrome, Firefox and Opera
browser extensions. As a result, we identified many extensions
that web applications can exploit to access privileged capabilities.
Through extensions’ APIS, web applications can bypass SOP
and access user data on any other web application, access
user credentials (cookies), browsing history, bookmarks, list of
installed extensions, extensions storage, and download and save
arbitrary files in the user’s device.

Our results demonstrate that the communications between
browser extensions and web applications pose serious security
and privacy threats to browsers, web applications and more
importantly to users. We discuss countermeasures and proposals,
and believe that our study and in particular the tool we used to
detect and exploit these threats, can be used as part of extensions
review process by browser vendors to help them identify and fix
the aforementioned problems in extensions.

I. INTRODUCTION

Browser extensions or addons are third party programs, that

can extend the functionality of browsers and improve users’

browsing experience. In this work, we focus on the WebExten-

sions API, a cross-browser extensions system compatible with

major browsers including including Chrome, Firefox, Opera

and Microsoft Edge [1], [2], [3], [4]. Tightly integrated to

browsers, extensions have access to elevated browser APIs

and features. For instance, they can make HTTP requests to

get data from any web application server, including those

where users are logged into, such as their mailing, banking,

social network applications, etc. As a comparison, web ap-

plications are bound by the Same Origin Policy (SOP) [5]

and cannot access other web applications data, unless they

both implement mechanisms such as Cross-Origin Resource

Sharing (CORS) [6].

Due to their privileged position in browsers, it is well under-

stood that extensions pose serious security and privacy threats

to user data [7], [8], [9], [10], [11], [12], [13]. Therefore, in

order to limit extensions capabilities, a mandatory permission

system requires that extensions explicitly declare the set of

APIs they effectively need to access. Nonetheless studies have

shown that extensions still require many permissions [14],

[15], [16]. Extensions also go through a review process from

browser vendors [17]. But again studies have unveiled many

malicious extensions circumventing the review process to

exfiltrate sensitive user data [15], [18], [19].

Besides, a benign (non-malicious) extension can be buggy,

allowing adversaries to exploit its vulnerabilities in order

to get access to user sensitive data. One type of adversary

that can exploit such vulnerabilities in extensions is the web
attacker [9], [10], [13]. Indeed for security reasons, exten-

sions and web applications execute in different and isolated

contexts. Nonetheless, extensions have access to the DOM of

webpages. Extensions and webpages can also set up commu-

nication channels to exchange data with one another using the

postMessage API [20] for instance. Bandhakavi et al. [9]

and Carlini et al. [10] found that a few extensions manipulate

data extracted from webpages without sanitization, leading to

privileged escalations, because such data can be influenced by

a web attacker. Calzavara et al. [13] found that message

passing APIs can be abused for privilege escalation, and

formally characterized the privileges that be exploited by a

web attacker.

Similarly to those studies, our threat model considers the

web application as the attacker. Specifically, we seek to study

at large scale, the security and privacy implications of message

passing APIs [13] among extensions in the wild, whether there

are extensions that can be exploited by web applications to

access sensitive user information. For instance, an extension

can set up an interface (register a listener) to receive from web

applications, messages consisting of the URL of a resource

(data) hosted by another web application. The extension then

makes a request to fetch the data (since it can do so with any

web application as it is not subject to the SOP) and returns

the response to the web application that sent the URL. Hence,

these communications channels are a way for a deliberately

or accidentally vulnerable extension to indirectly give a web

application access to browser features and APIs that the web

application is not directly allowed to access.
We built a static analyzer and applied it to the message

passing interfaces exposed by Google Chrome, Firefox and

Opera extensions to web applications. When the tool found

that a privileged extension capability could potentially be

exploited by web applications, the extension was flagged

suspicious. By manually reviewing the code of suspicious

extensions, we found that 197 of them (mostly on Chrome) can

be exploited by web applications (attackers) to access elevated

browser features and APIs and sensitive user information. The

extensions we have found have vulnerabilities that can be ex-

ploited by web applications to (i) break the privilege separation

between extensions and web applications and execute arbitrary

code in extensions context, (ii) bypass the Same Origin Policy

and access user data on other applications, (iii) read user

cookies and use them to mount session hijacking attacks [21],

(iv) access data such as user browsing history, bookmarks,

list of installed extensions that besides violating user privacy

can be used for tracking purposes [22], [23], [24], [25], (v)

store and retrieve data from extensions persistent storage for

tracking purposes and (vi) trigger the download of malicious

software on the user device which execution can damage user

data.
In summary, this paper shows the security and privacy

threats associated with the interactions between browser ex-

tensions and web applications and makes the following con-

tributions:

• We built a static analysis tool and analyzed extensions

message passing interfaces at large-scale: 66,401, 9,391

and 2,523 extensions on Chrome, Firefox and Opera

respectively. About 4.97%, 5.14% and 8.48% of Chrome,

Firefox and Opera extensions respectively were flagged

as suspicious.

• We identified 197 extensions that pose various security

and privacy threats to browsers, web applications, and

users. They can be exploited by web applications to

bypass the SOP, read user cookies, browsing history,

bookmarks, list of installed extensions, store and retrieve

data from the extension storage, or download malicious

files and store them on the user device.

We provide online a web page for navigating through the

different results of this work, including the tool and videos

demonstrating how we exploited the capabilities of some of

the extensions.
In the beginning of October 2018, we reported our findings

to the vendors who positively acknowledged the issues. For

instance, Firefox has already removed all the reported exten-

sions, and Opera all but 2. We are still discussing with Opera

on how to fix the 2 extensions. With Chrome, we are also

discussing with them on the actions to take. That notwithstand-

ing, we argue that browser vendors need to review extensions

more rigorously, in particular take into consideration the use of

message passing interfaces in extensions. We think that tools

such our static analyzer can help in identifying and fixing the

security and privacy threats we have identified in this paper.

We also discuss a few proposals on the current design of the

message passing interfaces so as to mitigate the attacks that

web applications can mount against extensions.

II. BACKGROUND

A. Browser extensions capabilities

Standard web technologies (HTML, CSS and JavaScript) are

used to develop extensions for major web browsers including

Chrome, Opera, Firefox, and Microsoft Edge. Interestingly,

their specific extensions APIs, [1], [3], [2], [4] are compatible

with each other to some extent, making it easy to migrate

extensions written for a specific browser to other browsers with

just a few changes. This work focuses on these extensions,

referred to as WebExtensions.

Extensions security considerations Extensions are third

party software, that users install to alter their browsers behav-

ior and improve their browsing experience. Tightly integrated

to browsers, extensions have access to privileged browser

features, making them interesting targets for attackers. Hence,

to limit the harm that attackers could cause if they take

control of an extension, the APIs that extensions effectively

have access to are only those for which they have explicitly

requested the related permission in their manifest.json
file. Listing 1 shows an example of manifest file and the

permissions (features and APIs) the extension will be

granted at runtime.

{
"permissions": [
"<all_urls>",
"storage",
"management",
"cookies"
"history",
"bookmarks",
"downloads",

]
}

Listing 1: Permissions declaration in a manifest file

These are only a subset of all the capabilities provided by

browsers to extensions. When installed, this extension will be

granted full access (read/write) to data on any web application,

thanks to its host permission <all_urls>. This implies

that if the user is logged into a web application (such as

mailing, banking, social networks), the extension also has

access to the user’s private data on that application. The

rest of the permissions read straightforwardly. The storage
permission allows the extension to store and retrieve data

in the browser as long as it is installed. The permissions

management, cookies, history, and bookmarks give

the extension access to the list of installed extensions, web

applications cookies, user browsing history and bookmarks

respectively. With the downloads permission, the extension

can download and save arbitrary files in the user device.

At runtime, those APIs (and any extension-specific API in

general) are all accessible via the chrome object in Chrome

and Opera browsers, and via browser object in Firefox and

Microsoft Edge. To ease the readability of this work, we often

omit the chrome and browser from extensions APIs names.
Architecture

Fig. 1: Browser extensions architecture - Communications

with web applications

Extensions can be divided in three main parts, as shown

in Figure 1. The background page is the main part of the

extension. It has full access to all the capabilities of the

extension. Users interact with the extension through UI pages

(i.e. UI elements, options and setting pages), in order to enable

or disable it, or customize its behavior. UI pages also have

access to the full capabilities of the extension. Content scripts

are injected by extensions to run along web applications.

Even though they are not granted access to all the extension

capabilities, they can directly use the host and storage
permissions to access user data on any web application or to

store and retrieve data from the extension storage. Content

scripts can also manipulate the DOM of webpages [26] and

inject content in them. On Chrome and Opera, each extension

is assigned a permanent unique identifier, which is the same

for all users of the extension. Firefox however generates a

random identifier for the extension, per user browser [27].

B. Interactions
Background and UI pages have direct access to each other’s

execution contexts [28], but content scripts execute in a

separate context. Web applications run in yet other separate

execution contexts. Nonetheless, content scripts have direct

access to web applications localStorage, DOM, and execution

context, where they can inject and execute arbitrary scripts.
Even though content scripts, background pages and web

applications run in separate execution contexts, they can

establish communication channels to exchange messages with

one another [29], [30] as shown in Figure 1. We describe

below the APIs for sending and receiving (listening for)

messages between the content scripts, background pages and

web applications.
Content scripts and background pages There are two

types of communication channels: one-time and long-lived

channels. One-time channels are opened to send a message and

are closed after the response is received. Long-lived channels,

connections or ports, are maintained open to exchange multiple

messages. A port can have a name in order to distinguish it

from other long-lived channels.
For one-time messages, content scripts use the

runtime.sendMessage API to send messages to

background pages. Similarly, background pages employ the

tabs.sendMessage API to send messages to content

scripts. For receiving messages, both components can invoke

the runtime.onMessage.addListener API.

Similarly, runtime.onConnect.addListener and

runtime.connect are used to establish long-term com-

munications between background pages and content scripts.

Web applications and content scripts Exchanges be-

tween web applications and content scripts are achieved with

the Cross-Origin Communications API [20]: postMessage
is used for sending messages, and onmessage or

addEventListener to receive messages. Below is a listing

which shows how messages are sent and received between web

applications and content scripts.

// Send and receive
postMessage("Hello Extension", "*");
addEventListener("message", function(event){
Received_response = event.data;

});
// Receive and Reply

addEventListener("message", function(event){
Received_message = event.data;
postMessage("Hello Web Application", "*")

});

In this example, the web application sends the message

Hello Extension to the content script, which receives and

writes it in the variable Received_message. Then it replies

with Hello Web application, which the web application re-

ceives and saves in the variable Received_response.

Web applications and background pages On Chrome

and Opera, web applications can also directly communicate

with extensions background pages. To do so, extensions

have to declare in their manifest.json file, using the

externally_connectable key, the list of web appli-

cations, where communication with the background page is

allowed. For security reasons, one cannot use wildcard (for

instance *) to allow communications between the background

pages and all web applications. Additionally, communications

can only be initiated by web applications.

The runtime.sendMessage and runtime.connect
APIs are exposed to web applications in Chrome and Opera,

and can be used to send one-time messages or establish long-

term connections with background pages. Conversely, the

APIs runtime.onMessageExternal.addListener
and runtime.onConnectExternal.addListener
can be used in the background page, to receive and reply

to messages sent by web applications. Below is an example

of how to send a message from a web application to the

background page of an extension which unique identifier is

ExtensionID.

// Send and Receive
chrome.runtime.sendMessage(ExtensionID, "Hello

Extension", function(response){
Received_response = response;

});
// Recieve and Reply

chrome.runtime.onMessageExternal.addListener(
function(message, sender, sendResponse){

Received_message = message;

sendResponse("Hello Web application");
})

The application sends Hello Extension to the background page

which replies with Hello Web application.

C. Threat models

An attacker is a script that is present in a web application

currently running in the user browser. The script either belongs

to the web application or to a third party. The goal of the

attacker is to interact with installed extensions, in order to

access user sensitive information. It relies on extensions whose

privileged capabilities can be exploited via an exchange of

messages with scripts in the web application. We consider the

following security and privacy threats posed by extensions.

1) Execute code: these are extensions that can be exploited

by the attacker to execute arbitrary codes in the exten-

sion context. Executing code in the background page

gives the attacker access to all the capabilities of the

extension. In content scripts, the attacker can bypass

SOP by making cross-origin AJAX requests, and use

the extension permanent storage for tracking purposes.

2) Bypass SOP: in this case, an attacker can exploit the

capability of the extension to make cross-origin requests

without being restricted by the Same Origin Policy.

3) Read Cookies: the attacker can read the user cookies

and use them to mount session hijacking attacks, access

user data and take actions on her behalf.

4) Trigger Downloads: the attacker exploits extensions

to trigger the download of arbitrary malicious files

(software) and saves them on the user’s device without

requiring any action from the user. If the user inadver-

tently runs such software, the attacker takes control of

her device and performs malicious actions.

5) Read browsing history, bookmarks and list of in-
stalled extensions: these information reveal the user

interests and habits and can be used by the attacker for

tracking purposes, or to serve targeted and personalized

advertisement.

6) Store data: the attacker can store and retrieve informa-

tion in the extension storage. This can be used for track-

ing purposes, even though users clear web applications

storages.

For the sake of simplicity, we often refer to the attacker as the

web application in which it runs.

III. METHODOLOGY

We built a static analyzer that detects suspicious commu-

nications enabled by extensions with web applications. To

identify extensions that are potentially concerned with the

security and privacy threats identified in the previous section,

we focus on 78,315 extensions from Chrome, Firefox and

Opera browsers. Then we manually reviewed the code of

the extensions to precisely validate the results of the static

analyzer, and more importantly to construct the signatures

of the messages that have to be exchanged with extensions

to successfully exploit their capabilities. Figure 2 shows the

analysis process.

Fig. 2: Methodology - static and manual analysis

A. Static analysis

The goal of the static analyzer is to report only extensions

that potentially pose a security and privacy threat, in order

to reduce false positives as much as possible, and reduce

the burden of the manual analysis. It has been fully writ-

ten in JavaScript, using various Node.js packages. We used

Esprima [31] and Recast [32], for parsing and manipulating

JavaScript abstract syntax trees (AST), and Jsdom [33] for

parsing HTML.

Unpack extensions and gather scripts We crawled ex-

tensions using SlimerJS Browser Automation tool [34]. In

the extension manifest.json file, background pages are

either declared by a set of scripts files, or an HTML file,

which further includes the scripts of the background page.

UI pages are built as HTML pages, and also indicated in

manifest.json file. The Jsdom HTML parser served

here to extract scripts embedded in background as well as

UI pages. Static content scripts are directly declared in the

manifest.json file. Background and UI pages can further

dynamically inject content scripts in web applications, by

calling the tabs.executeScript API. Those were also

extracted by analyzing the AST of background and UI pages

scripts, and analyzed as other content scripts.

Parse scripts and build AST Scripts were parsed with Es-

prima, resulting in an AST [35], which contains all JavaScript

constructs used in content scripts, background and UI pages

scripts. Almost everything in JavaScript is an object [36].

To ease manipulation of the AST, the following additional

actions were taken to build three indexed tables of assignments

to variables and object properties (assignments), function

definitions/expressions and object methods (functions),

and finally functions and object methods invocations (calls).

Basically, those are key/value pairs, in which the keys in

the tables corresponded to the names of variables, object

properties and functions. Each entry was then associated

with a list of all possible values it could resolve to. For

assignments, the values were all expressions assigned to a

variable or object. For function definitions and object methods,

the values were the parameters and body of the function.

Finally, for function calls, the values associated to their names

in the indexed table were their invocation arguments. The

static analyzer successfully handled functions defined using

the bind method, and functions invoked using the call or

apply methods.

Event handlers of page messages APIs For each mes-

sage listener (See Section II) in content scripts, background

and UI pages, we first looked up the indexed table of

function invocations (calls) to search whether the exten-

sion registered listeners for messages from the web applica-

tions (a call to addEventListener API for instance in

content scripts). In browser contexts, all JavaScript objects

are properties of a global object named window. Differ-

ent aliases, this, self, global, are sometimes used

to refer to the window object [37], [38]. JavaScript ob-

ject properties can be accessed using the dot and the array

or bracket notations [39]. For the sake of simplicity, we

considered the dot notation and the bracket notation when

the property name was a literal (a string). Considering the

global object names (window, top, self, this), and

JavaScript dot and bracket property accesses, we generated

the different ways an API can be invoked. For instance,

addEventListener can be called in 9 different ways

addEventListener, window.addEventListener,
window["addEventListener"] and others. In general,

we consider that an object could be accessed in 9 different

ways, its properties in 18 different ways, the properties of

its properties in 36 ways and so forth. When we found

an invocation to communications APIs in content scripts,

background and UI pages, we extracted their arguments and

resolved them as follows.

For addEventListener, the first argument should be

the literal message, and the second argument a function.

Otherwise, we use the indexed table of assignments and

functions to resolve them to the literal message and a

function respectively. Resolving an argument simply consist

in checking whether the indexed table has an entry which

key matches the argument name, and further checking whether

any of its associated values resolve to the type and value we

expect the argument to have. For addEventListener, we

expect the first argument to be a Literal and have the value

message. Its second argument is expected to be a function.

We follow the same process to extract all message handlers

(listeners) in content scripts, background and UI pages.

Sensitive APIs Calls The handlers (functions) of web

applications messages in extensions are parsed to extract all

their constructs. If the handlers further call other functions,

those functions are looked up using the indexed table, and

their bodies parsed to also extract their constructs. Finally,

the constructs are analyzed to decide whether the extension

potentially poses any of the security and privacy threats

considered in this work.

• An extension is flagged as potentially executing ar-

bitrary code sent from web applications if it invokes

functions like eval (in any part of the extension) or

tabs.executeScript (in background and UI pages).

• An extension is flagged as potentially allowing web appli-

cations to bypass SOP, if its constructs include APIs that

can be used to make AJAX calls. This includes the cre-

ation of new XMLHttpRequest objects, calls to fetch
API, or any AJAX specific API provided by popular

third party libraries such jQuery and AngularJS ($.get,
$.ajax, $.post, $http.get, $http.post).

• If the constructs include calls to storage API such as

storage.local.set, storage.local.get,
storage.sync.set, storage.sync.get, then

the extension is flagged as potentially storing/retrieving

data for web applications.

• An extension is considered as potentially leaking user

cookies, history, bookmarks, and list of extensions

to web applications if either of the following

invocations were found in their message handlers

constructs: cookies.getAll, history.search,
history.getVisits, bookmarks.getTree,
management.getAll, and related APIs.

• Finally, an extension is considered as probably allowing

web applications to download and save files in the user

computer (device) if their messages event handlers con-

structs include invocation to downloads.download.

It is worth mentioning the case of content scripts forwarding

messages to background pages. When this is the case, the

constructs of content scripts messages handlers in the back-

ground pages are also analyzed, looking for calls to any API

which potentially poses security and privacy threats. In fact,

content scripts only have access to the host and storage
capabilities. When they need access to more capabilities, they

can send messages to the background pages which may then

give them access to the related capability. Content scripts can

forward messages they receive from web applications, to the

background page. The latter handles the message and responds

to the content scripts which in turn respond to the application.

This is particularly true in Firefox which does not allow direct

communications between web applications and background

pages. Nonetheless, we have observed many content scripts

forwarding messages to background pages, even to access

APIs they can directly use from their own context.

B. Manual Analysis

Recall that for each suspicious extension, the tool reports

precisely (i) the component(s) (content scripts, background or

UI pages) and the file or set of files to analyse, (iii) the name

of the message passing interfaces registered (iv) the handlers

of the message passing interfaces and other functions that are

called from those handlers (v) and finally, the sensitive APIs

that are triggered in the handler and its called functions. So

the goal of the manual analysis was to confirm the suspicion

of the static analyzer, build and test the precise signatures

of messages that had to be sent by web applications to

exploit extensions capabilities. Following is how we typically

manually review an extension.

Unpack in Browser First, we download and unpack the

extension code directly in a browser, using the CRX Extension

Viewer [40]1. We locate the files to be analyzed, according to

the concerned component(s). In the particular case of content

scripts, the tool reports the precise index in the content scripts

array containing the file or set of files that has to be analyzed 2.

Identify Messages This step is concerned with building the

payloads or signature of messages that can be sent to the

extension to exploit is capabilities. In each file, we search

for the message passing interfaces, their handlers and the

functions they invoke. In those handlers and functions, we

look for the sensitive APIs that are triggered and more

importantly, the parts of the received messages that trigger

calls to the extensions sensitive APIs. To build the payloads,

we carefully inspect how objects received as parameters in

the message passing interfaces handlers (and related functions)

are manipulated, which properties of the objects are accessed,

the names of the properties, and their values. This gives us

the precise signature of the messages. Two situations arise

here. Either we found that the signature of the messages are

predefined by the extension, in which case they cannot be

influenced by the attacker (See Section V-H for more details),

and we stop the analysis and consider the extension as a false

positive. Otherwise, we continue the analysis by installing and

interacting with the extension by sending messages according

to the signature that we have found.

Install and Test – Download and Patch The final step

consists in mounting the exploits against the vulnerable ex-

tension with the payloads built in the previous step. Those

interactions are done from the Browser console [41], after we

navigate to the websites in which the extension injects its files.

Sometimes, those websites require users to be logged in. We

would create accounts and navigate to them. In rare cases, we

could not create accounts or the websites were not responding.

So we download the extension, and modify its permissions in

order to make it inject files in websites that are accessible

(i.e. http://localhost/), from were we mount the attack. During

the tests, we use the browser debugger, set breakpoints in the

extension codes in order to track the propagation of messages

and calls in the extension code.

Time taken to manually analyze extensions It is rather

difficult to precisely evaluate how much time it takes to

manually analyze an extension. Indeed, this work went through

3 phases. We did a first crawl of extensions in the middle of

November 2017 and run our static analyzer to test it. It took

around 2 months and half (till the beginning of February 2018)

to come with a mature analyzer. But during that phase, we had

already discovered almost 87% of the extensions reported in

this paper. Then, from the beginning of February 2018 we

analyzed all the extensions again in around 4 weeks. Finally,

in mid of May 2018, we did a new crawl and analysis, and it

1CRX Extension Viewer [40] is an handy extension that can download and
nicely display in the browser the content of extensions, allowing to navigate
their files very conveniently

2Indeed, content scripts are declared as an array of a set of files, so the
tool reports the index of the files to analyse

took around 10 days to vet the extensions. Again, for most of

the extensions, we had already tested them, built the signatures

of the messages, so analyzing them again consisted only in

checking that they were still exploitable.

So overall, what we observed is that during the phase

we implemented and tested the static analyzer, manually

reviewing the code of a suspicious extension was long, because

the process was rather imprecise and not straightforward. Then

throughout that period of tests, we had acquired a lot of

expertise in the review process, which made it faster in the

end. For instance, we have started to recognize similar patterns

and codes in extensions (many extensions reuse similar code)

and therefore we knew when they had to be skipped or not an

extension. Currently, we think that for an expert, 15 mn would

be a sufficient average time to correctly review an extension for

the threats that we have reported. In practice, some extensions

will take longer to analyse while others will be analyzed in a

couple of minutes.

C. Limitations and Challenges

First note that we considered only scripts that are part

of the extension packages. For instance, background and

UI pages may reference external scripts. Those scripts were

not considered in our analysis. Nonetheless, we think that

extensions bundles are more likely to contain most of the APIs

that we consider in this work, as extensions developers are

recommended to avoid referencing remote scripts in extensions

codes.

Our static analysis tool suffers from many limitations. The

first one is the fact that we did not consider scopes [38], which

lead to unnecessary functions being analyzed. However, this is

not a problem ultimately because all the results were further

manually reviewed to remove false positives. It also suffers

from some false negatives, mainly because of the flexibility

of JavaScript that make it challenging to exhaustively address

all the ways message listeners can be invoked in extensions.

Manually analyzing complex, large and sometimes minified

and obfuscated JavaScript programs making use of callbacks

everywhere is not trivial for a single person. But we have taken

all the time that was necessary to correctly perform the study.

Finally, for a very few extensions, despite all our efforts at

the static and manual analysis levels, we could not draw any

conclusion about the potential threats they may pose.

IV. TOOL FOR ANALYZING COMMUNICATIONS APIS

This section demonstrates a case study of the tool. We have

released online a web version of the tool. It can be used to

analyzed extensions directly in a browser.

Result of the static analyzer Listing 2 shows the result

produced by the tool when applied to the eRail.in Chrome

extension [42].

{
"com_via_cs": {

"to_back": {
"back": {

"ajax": {
"$.get": "",

"$.post": "",
"$.ajax": "",
"XMLHttpRequest": ""

},
"cookies": {

"chrome.cookies.getAll": "",
"chrome.cookies.remove": "",
"cookies": ""

}
}

}
}

}

Listing 2: Result of analyzing the eRail.in extension

• com_via_cs implies that webpages can communicate

with the extension via the content scripts, by using the

postMessage API. This extension has only 1 content

script. When there are multiple content scripts, the tool

analyzes each of them independently and produces results

corresponding to each of them.

• to_back indicates that the messages sent by webpages

to the content script are forwarded to the extension

background page.

• The tool found that two sensitive APIs are

reached in the background page: AJAX requests

with calls to the jQuery AJAX APIs ($.get,
$.post, $.ajax) and access to cookies with

invocation to the chrome.cookies.getAll and

chrome.cookies.remove APIs.

The main goal of the tool is to raise awareness about

the fact that an attacker may potentially get access to the

extension’s privileged APIs. One can then further review the

code to validate or refute the results of the tool. For instance,

after manually vetting the code of the eRail.in extension, we

effectively confirm that any webpage can access all user cook-

ies and make AJAX request to any domain. See Section VI

for more details about examples of messages to be sent to

extensions to benefit from their privileged capabilities.

Releasing the tool In addition to the full static analyzer

used in this work, we have also prepared an online version for

analyzing the message passing APIs of extensions. The only

difference with the version used in this work is that it does not

handle dynamically injected content scripts. This was done for

simplicity reasons. That notwithstanding, in order to analyze

dynamic content scripts, one can simply declare them in the

extension manifest as static content scripts. Both versions of

the tool will be publicly released.

There is room for further improving the tool. For instance,

lessons can be learnt from the state-of-the-art on JavaScript

static analysis tools in order to improve the extraction of

messages passing listeners and tracking the escalation of

extensions sensitive APIs. The set of threats considered in

this work can also be extended further with state-of-the-art

extensions threats in the literature.

V. EMPIRICAL STUDY

We downloaded Chrome [43], Opera [44], and Firefox [45]

extensions by the end of November 2017. The extensions were

statically analyzed in the beginning of February 2018 — on a

cluster of 200 nodes mainly because of storage limitations on

our own devices. This was preceded by a long period of tests

during which we improved the static analyzer, and fixed the

list of security and privacy threats. In the middle of May 2018,

we did another crawl and analysis. The results presented here

are for this second dataset.

In this section, we first give an overview of the results, then

we discuss in more details each threat and the report extensions

where it was found.

A. Overview

Table I presents the number of extensions we collected and

analyzed. Chrome provides the largest share of extensions,

followed by Firefox and Opera. Recall that for Firefox, we

are considering only extensions built using the new WebExten-

sions API [2], and not those using the XPCOM/XUL API [46].

The static analysis tool reported 3,996 suspicious extensions

that we manually vetted. The results of the manual analysis

are also shown in Table I. As with the share of extensions,

Chrome had the largest share of extensions with threats. In a

total of 197 extensions, only 16 were found on Firefox, 10

on Opera, and the 171 others are Chrome extensions. Note

that some single extensions pose more than one threat at a

time. All the 197 extensions reported here effectively posed at

least one or more of the security and privacy threats described

in Section II. During the manual analysis, we also identified

the messages to be sent in order to exploit their capabilities.

The full list of the extensions and the threats that they pose are

given in Table IX in the Appendix, because of page limitations.

TABLE I: Data overview

Chrome Firefox Opera Total
Extensions analyzed 66,401 9,391 2,523 78,315
Suspicious extensions 3,303 483 210 3,996
Execute Code 15 2 2 19
Bypass SOP 48 9 6 63
Read Cookies 8 - - 8
Read History 40 - - 40
Read Bookmarks 37 1 - 38
Get Extensions Installed 33 - - 33
Store/Retrieve Data 85 2 3 90
Trigger Downloads 29 5 2 36
Total of unique extensions 171 16 10 197

Extensions installs and categories Figure 3 presents the

distribution of users impacted, or the number of installs per

extension at the time of writing this paper. Around 55% of

the extensions have less than 1000 users, while the remainder

45% have thousands of installs, showing that those threats

are present in rather popular extensions, hence affecting many

users. About 27% of extensions have less than 100 users and

another 27% have between 100 and 1000 users. We see this as

an opportunity for a tool such as ours to help improve exten-

sions security, as it can serve to detect potentially malicious

extensions while they are not yet very popular among users,

thereby limiting their impact on users.

Table II further presents the category of these extensions.

Note that the categorization of extensions is not done the same

way by Chrome, Firefox and Opera browsers. Some categories

exist only on specific browser, and not on others. Moreover, we

found similar (or the exact same) extensions being differently

classified depending on the browser. We tried to merge the

different categories whenever possible.

As one can observe, Productivity is the most popular

category among the reported extensions. It is also the most

popular category among all Chrome and Opera extensions

we have downloaded, and also the most popular category in

various datasets in recent studies [24], [23], [19]. This category

does not exist on Firefox.

We were surprised by the results that only 15 extensions

(7.61%) are classified as Developer Tools. Considering

the severity of the threats, we were expecting that most of

them would be extensions provided for developers to perform

some controlled experiments. Since our results represent only

a lower bound of the number of extensions potentially posing

these risks, it would not be surprising that even more exten-

sions also exhibit similar threats.

�

����� �������� ���������� ������������ �������

� �� �� �� �� �� 	�
� �� �� ���

Fig. 3: Distribution of the number of users per extension

TABLE II: Category of extensions

Category # Extensions
Productivity 81
Social & Communication 48
Fun 19
Accessibility 17
Developer Tools 15
Search Tools 6
Shopping 4
Blogging 2
Privacy & Security 2
Other 2
Appearance 1
Total 197

Extensions privilege only some web applications About

55 extensions (45, 7 and 3 on Chrome, Firefox and Opera

respectively) communicate with any web applications to give

them access to extensions privileged APIs. Interestingly, on

Chrome, 7 of them allow to execute arbitrary code in the

extension context, 15 of them are concerned with SOP bypass,

26 for storing data, 2 can be exploited by any web application

to read all user cookies and 5 to read the cookies of the current

web application.

The vast remainder of extensions (72.08%) can be exploited

only by specific web apps to benefit from their privileged

capabilities. For instance, reading user browsing history, book-

marks, and list of installed extensions, is enabled by extensions

only to specific applications such as fliptab.io, atavi.com,

mail.google.com. In particular, downloads are allowed by

many extensions (on Chrome and Opera) mostly from vk.com.

The fact that most extensions allow communications with

only some specific apps can also be explained by the fact that

most of those we found allow interactions between web apps

and the background pages directly. Let us recall that it is only

possible to allow communications between background pages

and specific web apps (and not all web apps).

Extensions allow to connect to arbitrary web appli-
cations If many extensions tend to privilege specific web

applications as shown previously, the exact opposite is ob-

served regarding the hosts extensions allow web applications

to connect to, in order to access user data. For example, 37

out of the 48 extensions that can be used to bypass SOP on

Chrome, give access to the user data on any other application.

On Firefox, it is 6 out of the 9 extensions which allow access

to any web application data.

These two observations (extensions mostly give access to

their privileged APIs only to some web applications, and allow

them to access any other web application data in the case

of SOP bypass) suggest that the access they give to their

capabilities is rather deliberate. Moreover, for the majority of

extensions, the messages to send to exploit the different APIs

in extensions are so trivial that they could have only been

deliberate (See Section VI).

Most privileged web applications As already mentioned,

most extensions allow specific apps to benefit from their priv-

ileged APIs. This is the case for instance of fliptab.io where

scripts can communicate with 31 very similar HD wallpaper

extensions on Chrome, that has hundreds to thousands of users.

The domain vk.com can interact with 19 extensions (17 on

Chrome and 2 on Opera), mostly to download files on the user

device. The domain atavi.com can get access to user’s history,

most visited websites (topsites) and bookmarks thanks to 6

extensions.

Extensions which pose more than one threat All the

extensions reported here pose at least 1 of the security and

privacy threats considered in this work. Nonetheless, some

extensions pose several threats.

The eRail.in [42] extension on Chrome gives access to all

user cookies and allows full SOP bypass from any web appli-

cation. Moreover, it has more than 400k users. Interestingly, a

version of the extension exists on Firefox, but it leaks cookies

and data of a limited set of web applications (all related to the

extension owner’s domain) to the the extension’s provider own

domains. Five extensions provided by Fabasoft (See Table VI

in the Appendix) leak the current tab cookies. As such, they

allow attackers to even access HTTPOnly cookies, and use

them to mount session hijacking attacks.

Ringostat dialer [47] is the only extension that executes

arbitrary code sent from app.ringostat.com directly in its

background page. All other extensions execute the arbitrary

attacker code in the context of the content scripts. Recall

that the background page has access to all the capabilities an

extension declares. Interestingly, it has the host, storage,

cookies, and tabs permissions, meaning that any script

present on app.ringostat.com can access user data on any other

domain, access the extension storage, cookies, open new tabs,

inject code directly in any tab, etc.

StartHQ [48] also allows to bypass SOP from starthq.

com, and leaks user browsing history. Similarly, SalesforceIQ
CRM [49] allows to bypass SOP and leaks installed extensions

to mail.google.com and salesforceiq.com.

Finally, user browsing history, bookmarks and installed ex-

tensions can be read by an attacker in atavi.com and *.fliptab.io

thanks to 6 and 31 extensions respectively (See the full list in

the Appendix). The latter also let fliptab.io stores and retrieves

data in the extension storage.

Cross-browser extensions It is worth mentioning that most

of the extensions we found on Opera and Firefox were also

present on Chrome. While the compatibility of extensions

APIs on major browsers [2], [1], [3], [4] let developers reach

more users, attackers also widen their attack surface because

they can impact more users thanks a single cross-browser

extension. For instance, we have noticed that megatest2016,

an extension provider, had 2 extensions on Chrome, and

a very similar one on Opera. At the time of writing this

paper, Chrome removed the 2 extensions (they were allowing

ok.ru and other applications to bypass SOP, but we do not

know if their removal were due to the SOP bypass) while

on Opera, it is still available as MegaTest - [50]. The 2

Photo Zoom for Facebook and Facebook Photo Zoom Firefox

add-ons have similar versions on Chrome, but these do not

allow SOP bypass. Similarly, the ModernDeck extension is

present both on Opera [51] and Chrome [52]). On Opera, it

allows to store/retrieve data, while on Chrome it does not. This

represent yet another problem of cross-browser extensions.

While users of the same extension suffer from security and

privacy threats on one browser, on the other browser where the

extension is removed or fixed, users do not. Browser vendors,

and more importantly users would gain from security and

privacy perspectives, if browser vendors share their reviews

of extensions with one another, in order to help take similar

actions like removing extensions, or updating them to remove

threats they pose.

B. Execute Code

Extensions execute in browsers with elevated privileges.

From an attacker’s perspective, being able to execute arbitrary

code in an extension context also gives the attacker access to

the extension capabilities. We found 15 extensions on Chrome,

2 on Firefox and 2 on Opera that can be exploited by web apps

to execute code in their privileged context. Only one extension

on Chrome Ringostat dialer [47] executes in its background

page, code that it receives from app.ringostat.com. Then it

gives access to user data on any application, user cookies,

allows code injection in in any tab the user opens, the use

of the extension storage, etc. All other extensions execute

the attacker’s code in the contexts of the content scripts.

Even though content scripts have limited access to extensions

capabilities, they are not subject to SOP, can store/retrieve

data, and more importantly, they have access to the full DOM

on the web applications pages in which they are injected.

The extension iwassa, present on Opera [53] and

Chrome [54] allows any app to open any URL in a new

tab, and execute any code (content script) in it. If the code

in the context of the content script can already access any

application data, one can further inject specific content in

the DOM of the new tabs opened, to exfiltrate for instance

any token/secret present in the application DOM. In fact, in

addition to cookies, many sensitive applications use tokens to

further perform additional checks about the origins of requests

before letting users perform sensitive actions on their data.

Another interesting example is that of the LinkClicker
extension also present on Opera [55] and Chrome [56]. It

allows any application to send a code which will be further

injected in any new tab the user opens during the current

browsing session. One can use it to track the user while she is

browsing, gather any credentials that she is providing to log

into any application, and exfiltrate those to the attacker.

In many of these cases, the problem is due to the fact that

the extension does not correctly sanitize the codes received

from web applications, allowing attackers to execute arbitrary

codes. A good example is that of the GureTV: To watch
television extension on Firefox [57]. It did well to sanitize

content sent from web applications, but not content sent from

iframes embedded in the applications. Hence, one can create

an iframe, and send an arbitrary code which will be executed

in the context of the content scripts.

Many of the other extensions work similarly, and allow

(at least) to access arbitrary user data on any application,

and/or store and retrieve data (when they have the appropriate

permissions).

C. Bypass SOP

Extensions are not subject to the SOP, and therefore have

access to user data on any web application for which they have

declared the host permission. Through message exchanges

with extensions, 48, 9 and 6 of extensions on Chrome, Firefox

and Opera respectively, allow web applications to bypass

SOP by accessing user data on any other web application.

As for other threats, the trend is rather to allow only some

web applications to bypass SOP, even though 15 of such

Chrome extensions allow any application to access any other

application data. Hence, the majority of arbitrary SOP bypass

can be exploited by specific web applications, including: ok.ru,

mail.google.com, logincat.com, etc. Interestingly, when SOP

bypass is possible, in most of the cases the data of all domains

can be accessed. On Chrome for instance, it is 37 out of the

48 extensions that allow access to any application data. Even

when the SOP bypass is partial, it is enabled to rather sensitive

domains. For instance, 5 extensions out of 11 allow SOP

bypass to users’ Google accounts: salesmate.io, appspot.com

and aliexpress.com can access users Gmail account. One

extension [58] allows access to the linkedin.com data of more

than 400k users from Gmail, and blog.renren.com can access

github.com [59].

D. Cookies

We found 8 Chrome extensions that can be exploited by

web applications to read user cookies: 2 of them allow any

web application to read all user cookies [42], [60], 1 only

allow app.ringostat.com [47] to read all user cookies,

and the other 5 of them allow an attacker script to read the

cookies of the tab in which it executes. The number of users

affected is very important (more than 415k for eRail.in [42],

9.6k for Telerik Test Studio Chrome Playback 2014.1 [60]

and 78 for Ringostat dialer [47]. Cookies can be used to

hijack users browsing sessions, access their data and take

actions on their behalf. It is worth mentioning that the three

extensions that can be exploited to read all user cookies, have

probably been poorly programmed. It is more likely that the

ability to read cookies was meant to be used from specific

web applications, but unfortunately the extensions were poorly

programmed, allowing other web applications to also get

access to user cookies. In particular, the Ringostat dialer [47]

extension did not expose any means to get user cookies. But

it allows to execute any code sent from app.ringostat.com in

the extension background page context (using eval function),

giving the application access to all the capabilities of the

extension. Among those, the cookies, storage and arbitrary

host permissions, and the ability to open tabs, inject and

execute arbitrary code in them, etc.

We found that the web application https://erail.in/ is ef-

fectively reading all user cookies when the eRail.in [42]

Chrome extension is installed. This means that the extension

is intentionally given access to user cookies to https://erail.in.

However, it is not clear whether the cookies of interest were

only those of https://erail.in or any cookie or if only cookies

of https://erail.in/ were meant to be leaked. Unfortunately,

any web app can access all user cookies stored by any web

application, and use them to hijack user sessions. Interestingly,

the extension has a version on Firefox, where the cookies

which are leaked are only those of domains related to erail.in

and are leaked only to erail.in and eair.in.

The case of the extension Telerik Test Studio Chrome
Playback 2014.1 [60] is particularly interesting, as one has

to setup complex interactions, involving the extension content

scripts and background page, as well as the application and its

server. In particular, the interactions are triggered from the web

application, but the cookies are sent to the server of the ap-

plication instead of being returned directly to the application.

Following the same mechanism, one can clear cookies, delete

user browsing history, etc. A similar extension is also available

on Firefox progress-test-studio-extension. Unfortunately, we

could not analyze it as it was not downloading.

Finally, 5 Fabasoft extensions (See more details in Table VI

in the Appendix) allow the attacker to read the current tab

cookies of any web application. Even though a web application

protects its cookies with the HTTPOnly flag [61], an attacker

script running in the web application bypasses this protection

by obtaining the cookies via the extension. It can further use

them to mount session hijacking attacks against the user.

E. Downloads

Exploiting extensions to trigger the download of arbitrary

files is enabled mainly from specific applications including

vk.com (See Table IV in Appendix) and ok.ru. Only 2 ex-

tensions on Chrome and 3 on Firefox allow downloads from

arbitrary web apps. The main purpose of the related extensions

were to allow the download of music and videos. Sometimes,

they would even suffix the downloaded file name by .mp3
or .mp4. Nonetheless, we have been able to exploit these

extensions in order to trigger the download of arbitrary files

and save them in the user’s device. An attacker can also do

so to download malicious software, which when inadvertently

executed by the user, may allow the attacker to take control

of their computer and perform malicious actions.

It is worth mentioning that none of these extensions required

user action to trigger the downloads. One of them, multiDown-
loader [62] even overwrites a file if it is already present on

the user’s device.

It is also worth mentioning the case of the Chrome repl.it
download extension [63]. It is a helper extension for the https:

//repl.it application used for creating and running programs

in different languages online. The extension allows to save

the code being created. Even though the extension prompts

the user to confirm the file name (default is program.), the

content of the file can be fully arbitrary. As such, an attacker

can trick the user in saving the code being edited, while a

completely different content is saved.

F. History, Bookmarks, and List of Installed Extensions

Two providers distinguish themselves with regards to ex-

tensions that can be exploited to get access to user brows-

ing history, bookmarks and list of extensions. On Chrome,

fliptab.io [64] provides 31 very similar HD wallpapers

extensions (See the full list in Appendix), and allows fliptab.io

to get all browsing history, bookmarks and the list of user

installed extensions. Each of these extensions has between a

hundred and 25k users.

Furthermore, six extensions provided by atavi.com also pro-

vide the same privileges to pages at atavi.com and atavi.test.

One of them, Atavi - bookmark manager [65] has more than

96k users.

Additionally, Browser History [66] leaks user browsing

history to www.americaninternetmatrix.com/history. Finally,

StartHQ [48] leaks browsing history to https://starthq.com.

Other extensions that give access to the list of extensions

include Boomerang for Gmail [67] (with more than 1.5 million

users) to mail.google.com and SalesforceIQ CRM [49], to

mail.google.com and salesforceiq.com.

G. Store/Retrieve Data

About 85 extensions can be exploited by various web

applications to store and retrieve data. On Chrome, 26 of

these extensions give any application access to their storage.

Others give specific apps access to their storage. For instance,

fliptab.io can store data in the user’s browser thanks to

its 31 extensions. The domain netflix.com is also able to

store data thanks to 3 extensions, and mail.google.com
to do so thanks to 2 extensions. The extensions ISOGG Y-
Tree AddOn [68] and PhyloTreeMT AddOn [69] are from

the same provider, even though the web applications they

allow to persist data are respectively isogg.org and

phylotree.org.

Recall that extensions storage is persistent and not affected

by the clearing of browsing data (web application cookies,

storages, ...). As such, they represent a resilient storage which

can be used to bypass user privacy preferences and uniquely

identify them even though they have cleared their cookies.

Interestingly, some extensions propose to sync data they store

on all the devices the user is logged into. For instance, if a user

logs into multiple devices with the same extension installed,

then syncing storages lets an application tracks her accross all

her devices.

H. Other Threats

For SOP bypass, we have reported here the cases where

web applications can access arbitrary data on other web

applications. Nonetheless, we found many extensions allowing

to access some predefined data of other web applications.

This also represents a SOP bypass (since web applications

cannot access such data with their normal privileges). Finally,

we found some Opera and Chrome extensions (like the 31

HD wallpaper extensions by fliptab.io), and some not reported

here) which allow web applications to clear user browsing data

including cookies (or even set/get cookies of some specific

domains), history, bookmarks, cache, stored passwords, or

enable/disable/uninstall extensions. We do not include such

cases in this paper because of page limitations.

VI. CASE STUDY

In this section, we show how an attacker can exploit

the capabilities of an extension by sending the appropriate

message. One can also find online a few videos demonstrating

the exploits on some of concerned extensions, on the Chrome

browser. In order to gain access to privileged browser features

via an extension, an attacker first needs to ensure that the

extension is installed and enabled. Many recent studies dis-

cussed extensions discovery, using for instance their unique

identifiers and web accessible resources [22], [24] or DOM

specific changes they introduce in web pages [23]. This is

not really needed here. Knowing the structure of messages

extensions respond to, is sufficient. If the extension is present,

it will surely reply. To benefit from extensions capabilities, it

is sufficient that the attacker is present in a web application

with which the extension can interact.

A. Example of messages to send to extensions

We refer to Section II which presents the message passing

APIs between webpages and the different components of an

extension. Because of page limitations, we cannot provide for

all extensions, the messages that can be sent from web pages

to exploit extensions capabilities. We illustrate at least each

threat by an extension.

Execute code in content scripts context: Listing 3

present the structure of messages that can be sent from any

webpage to the jianlibao [70] Chrome extension to execute

arbitrary code in the context of its content scripts. Replace

CODE with real JavaScript code, then serialize the message

using JSON.stringify before sending it. The extension

has the storage and host permissions meaning that any

page can bypass SOP and get access to user data on any

domain, store data in the extension storage and later retrieve

it for tracking purposes. Moreover, the code is injected in the

active tab the user is interacting with. As the user may switch

tabs at any time, one can send the code regularly (say every

second) in order to ensure that it is injected in all the web

applications the user is interacting with. Since content scripts

have access to the DOM of webpages, the injected code also

has full access to the active tab DOM, giving it the ability

to undertake any action: recording user name and password,

credit card numbers, emails, etc.

{
type: "getResumeInfo", downloadObj: {

resumeWhereabouts: 5
}, context: {

contentScript: CODE, jsMethod: "console.log"
}

}

Listing 3: Executing arbitrary code in the context of the

content scripts of the current tab the user navigates to, thanks

to the jianlibao Chrome extension.

Extensions such as iwassa [54], [53] or LinkClicker [56],

[55], present on Chrome and Opera, even allow to send a URL

and a code. They will open the URL in a new tab, and execute

the code in the context of the content scripts injected by the

extension in the new tab. Listing 4 presents the case of the

iwassa extension. Replace URL with the URL of the page to

open in a new tab, and CODE with the real code to be executed

in the context of the new tab content scripts.

{ from: "logininfo", val: [URL, CODE, "LoginAPI"] }

Listing 4: Executing code in the context of a choosen tab

thanks to the iwassa extension present on Chrome and Opera.

URL is the URL of the page to open in a new tab, and CODE
the code to be executed.

The extension also has the host permission, allowing to make

AJAX requests to any domain.

Execute code in background page context: Background

pages are the most privileged contexts, as they have access

to all the capabilities of an extension. Listing 5 shows the

message to send to the Ringostat dialer [47] Chrome extension

to execute arbitrary code in the context of its background

page. Interestingly, this extension has the host, storage,

cookies and tabs permission, giving an attacker the ability

to bypass SOP, store data in the extension storage, manage

user cookies and tabs (open new tabs, close some, etc.).

Messages are to be sent from webpages which URLs match

://app.ringostat.com/.

{

message: "execCommand",
data : {
command: "eval", params: CODE

}
}

Listing 5: Message to send to Ringostat dialer background

page to execute arbitrary code. Replace CODE with the real

code to be executed.

Bypass SOP: Here we take the example of the Buxenger
extension, available both on Chrome and Firefox. Listing 6

shows the structure of messages to be sent to the extension in

order to make AJAX requests to any domain (SOP bypass).

The case shown here, is for making HTTP GET requests. But

the extension also allows to make AJAX requests using HTTP

POST, DELETE, PATCH methods.

{ message: "ajax-get", url: URL, callbackId: ID }

Listing 6: Make arbitrary AJAX requests thanks to the

Buxenger extension present on Chrome and Firefox. Replace

URL with the URL of the data to access, and ID with any

value.

Retrieve cookies: Listing 7 shows the case of the

eRail.in Chrome extension which allows any webpage to

retrieve the list of user cookies.

{ Action: "GETCOOKIE" }

Listing 7: Message to send to erail.in extension in order

retrieve all user cookies

This includes any cookies, such as the user authentication

cookies set after she has logged into web applications. One

can further use the cookies to mount session hijacking attacks.

The extension also allows to make arbitrary AJAX requests,

by sending messages as shown in Listing 8

{ Action: "GET_BLOB", URL: URL }

Listing 8: Making AJAX requests thanks to the eRail.in
Chrome extension

Downloads files: Listing 9 shows the signature of mes-

sages to send from any webpage, to the HTTP Comman-
der [71] Chrome extension in order to trigger the download

of any file. Replace FILE URL with the URL of the file to

download, and FILE NAME with the name under which the

file will be saved on the user device. Multiple files can be

sent in the message. They will all be downloaded one after

the other.

{
type: "HTCOMNET_DOWNLOAD",
files: [{url: FILE_URL, path: FILE_NAME}]

}

Listing 9: Download files on the user device, thanks to the

HTTP Commander extension.

Store data in extension storage: Listing 10 shows

messages to send in order to store and retrieve data in

the VisualSP Training for Office 365 [72] Chrome extension

storage. Replace DATA TO STORE with the data to be stored

in the extension storage. Later on, send the second message

to retrieve data. The data will be sent to iframes in the page.

To collect the data previously stored in the extension storage,

before sending the message, one can simply add an iframe

to the webpage, then send the message, collect the previously

stored data from the iframe, and send it back to the parent

page.

// Store data
{ owner: "VisualSP", command: "SetUserId",
data: DATA_TO_STORE

}
// Retrieve data.
{ owner: "VisualSP", command: "GetUserId" }

Listing 10: Store and retrieve data in VisualSP Training for
Office 365 Chrome extension storage

History, bookmarks, extensions list: We show here the

case of the Space Galaxy HD Wallpapers [73]. It is one of

the 31 HD Wallpapers from fliptab.io (See Table III in

the appendix) that lets pages matching *.fliptab.io, to manage

user history, bookmarks, extensions list and storage. Listing 11

shows the different messages that has to be sent to get the

related information.

// Message for retrieving user browsing history
{ type: "history", act: "get_all" }

// Message for retrieving bookmarks
{ type: "bookmarks", act: "get_all" }

// Message for retrieving the list of extensions
{ type: "extensions", act: "get_all" }

Listing 11: The Space Galaxy HD Wallpapers Chrome

extension allows to get user browsing history, bookmarks and

extension list

B. Forcing the attack

In order for an attacker to gain access to an extension’s

APIs, he must have a script loaded in a web application that

is allowed to interact with the extension. Moreover, in most

cases, the application has to be running in the user browser

in order for communications to be possible. Figure 4 shows

a simple scenario in which A.com is an application currently

running in a user browser. This application provides content

A.com/content (a script) for another application B.com which

can communicate with an extension to get access to some

privileged APIs. However, B.com is not currently running

in the user browser. A.com can force the attack to happen,

by opening B.com (upon a user interaction with the A.com).

Once B.com runs, the script that it embeds from A.com gets

executed and can communicate with the extension to get access

to its privileged APIs — for instance to access user data on

any other application — and exfiltrate this to A.com. With the

prevalence of some third party scripts providers among web

Fig. 4: A.com forces an attack by opening B.com thereby

allowing A.com/content to load, execute and interact with

extensions in order to exfiltrate user data to A.com.

applications [74], this scenario can be easily implemented by

attackers to gain from extensions capabilities.

Combining multiple extensions Another scenario where

access to any extension capabilities can be indirectly gained

is when some extensions make it possible to open new tabs and

inject and execute arbitrary codes in them. We have recorded a

video showing the use of the LinkClicker extension [56] which

allows to open a new tab and execute code in it, and the Space
Galaxy HD Wallpapers extension [73] which allows only

fliptab.io to get/delete user browsing history, bookmarks

and extensions list. From any application (the localhost in

our example), we opened www.flipatab.io, and injected

a code in its context. The code retrieved the list of extensions,

bookmarks and user history. This information could be further

sent to a server chosen by the attacker. One can even use the

LinkClicker extension to send the retrieved information back

to the attacker by opening a new tab of the attacker application

(localhost in our case).

VII. DISCUSSION

Here we discuss countermeasures and proposals to mitigate

the threats introduced by extensions via message passing.

A. Disclosure to vendors

We have disclosed the list of extensions to Chrome, Firefox

and Opera. All vendors acknowledged the issues. Firefox has

removed all the reported extensions. Opera has also removed

all the extensions but 2 which can be exploited to trigger

downloads. The reason given by Opera is that the downloads

can only be triggered from specific websites. However, we

made them observe that those websites include third party

scripts that can also trigger arbitrary downloads. So discussion

still continues with Opera on the 2 remaining extensions, in

particular to ensure that users are aware of the downloads.

Chrome also acknowledged the problem in the reported exten-

sions. We are still discussing with them on potential actions

to take: either remove or fix the extensions.

B. Proposals

The discussions with browser vendors confirmed our argu-

ments that their current extensions review process is weak.

In fact, none of them has considered the fact that extensions

put user data at risk via vulnerabilities in the use of mes-

sage passing APIs. Moreover, we are worried that malicious

extensions developers that would be aware of the ability to

exfiltrate user data via message passing, would deliberately

introduce such vulnerabilities in their extensions. There are

various ways an extension could exploit its own vulnerabilities

without being blocked by browser vendors. For example,

the extension developer can operate a website. Then when

the user opens her browser and navigates to her favorite

web applications, the extension injects its own website as an

iframe and exfiltrate user data from that iframe. For browser

vendors, a quick fix of the threats discussed in this work

is to consider message passing interfaces as a medium for

introducing vulnerabilities in extensions, thereby putting users

data at risk. New extensions must be reviewed accordingly,

in order to fix such threats. To help in this process, browser

vendors may mandate that extensions explicitly declare the list

of web applications they intent to interact with by message

passing via the extensions content scripts, very similarly to

what is done with the externally_connectable key

used in extensions manifest.json files to declare the list

of web applications the extension background pages intent to

directly interact with (See Section II-B).

The best solution to mitigate this threat would have been

to ban the interactions between webpages and extensions,

but this would impact the many extensions making use of

these communication interfaces. Nonetheless, the needs and

implementations of the message passing interfaces are ques-

tionable. In fact, extensions can already read/write web appli-

cations DOM. For extensions that absolutely need to exchange

messages with webpages, browser vendors may review the

current extensions system and allow messages only from code

injected by extensions in the context of webpages. In fact,

extensions can inject code directly in the context of webpages.

Currently, such code runs with the same privileges as codes

loaded by webpages themselves. We envision an architecture

in which the browser tracks the origin of messages received

in extensions. And if they are not sent by code injected by

extensions, the messages is not delivered to the extension.

There are surely ways an attacker can circumvent this solution,

but such attacker is exactly the one already discussed by

Carlini et al. [10] and Bandhakavi et al. [9].

C. Extensions Developers

Most of the issues we have found in extensions are im-

putable to extensions developers. The privileged APIs they

have access to must be used with care, as they can put at

serious risks, the security and privacy of users. Most of code

execution can be avoided by properly sanitizing messages

received from web applications. To avoid leaking user infor-

mation such as browsing history, extensions can manage them

in extension UI pages instead of using webpages and message

passing APIs to manage them, the reason being that an attacker

script may be present on the webpage. It also seems that

some of the SOP bypasses are the result of poor programming

practices where extensions allow SOP bypasses via message

passing for pages from their own domains in order to avoid

supporting mechanisms such as CORS [6]. Unfortunately, an

attacker script may also be present on these pages, or when

the extension is poorly programmed, the SOP bypass could be

inadvertently enabled for all web applications.

D. Extensions Users

For users, logging out of web applications and clearing

cookies and other browsing data may limit vulnerable ex-

tensions from leaking sensitive information. Ultimately and

until we have more trustworthy extensions APIs and tools that

provide security and privacy guarantees about extensions, one

may also disable extensions from browsers when interacting

with sensitive web applications.

VIII. RELATED WORK

The security and privacy implications of browser extensions

have been extensively studied. Barth et al. [8] analyzed the

Firefox XPCOM architecture and proposed a new extensions

architecture that has since been adopted by Google Chrome

and evolved into the Chrome Extensions API compatible

with the cross-browser WebExtensions API. Before them,

many authors had also shown the dangers of misusing the

powerful APIs provided to Firefox XPCOM extensions and

propose tools for discovering vulnerabilities and securing

extensions [7], [9], [11], [12]. Among other things, the per-

missions system in extensions was meant to reduce extensions

capabilities, and hence reduce the harms that attackers can

cause if they compromise an extension. However a good

number of studies have shown that many extensions still

request too many permissions [14], [15], [16].

In this work, we focused on the WebExtensions API, a

cross-browser extensions system compatible with Chrome,

Firefox, Opera and Microsoft Edge [1], [2], [3], [4]. Exten-

sions go through a review process where browser vendors

track and reject malicious ones. Jagpal et al. [17] discussed the

typical malicious patterns that were concerned with extensions

review process at Chrome. Nonetheless, studies have unveiled

many malicious extensions circumventing extensions review

processes to exfiltrate sensitive user data [15], [18], [19].

Guha et al. [14] proposed IBEX a cross-browser extensions

platform, supporting fine-grained access control policies with

tools for verifying the compliance with the security policies.

The work of Carlini et al. [10] on vulnerable extensions

has led to the ban of inline and HTTP scripts and eval-like

functions in extensions background pages. Different dynamic

analysis systems have been proposed for discovering malicious

extension such as Hulk [15] and Ex-Ray [18] based on the

concept of honey pages. Starov and Nickiforakis [19] found

many extensions leaking sensitive user information such as

browsing history, search queries, form data and extensions list.

Recently, many studies have demonstrated different techniques

for web applications to discover extensions installed in users’

browsers for fingerprinting purposes [22], [23], [24], [25].

Other threats considered in this paper have been discussed

outside of browser extensions [75], [76], [77], [78], [21], [79],

[21], [5], [61].

Calzavara et al. [13] were the first to show that message

passing interfaces could lead to privilege escalation and ex-

ploits by web applications. We discussed directly with the

authors of this work. Their goal was to formalize the privileges

that an opponent can escalate thanks to the message passing

APIs between web applications and extensions content scripts.

In the extensions system they considered, content scripts had

no privileges and direct interactions with background pages

were not possible. They had proposed a prototype implemen-

tation of their system named CHEN for developers to evaluate

the robustness of an extension against privilege escalation and

help them refactor their codes, but the tool is no more available

and it did not take into account long-term communications

(ports).

To the best of our knowledge, this work is the first large-

scale study on the security and privacy implications of the

communications between browser extensions and web applica-

tions, allowing the latter to benefit from extensions privileged

capabilities. We built a static analyzer for analyzing extensions

and identified a good number of them, demonstrating how

these extensions can be exploited by web applications to

benefit from extensions privileged capabilities and thereby

access sensitive user information.

IX. CONCLUSION

Browser extensions are third party code in browsers with

access to privileged APIs not accessible to web applications.

Nevertheless, web applications and browser extensions can in-

teract with one another by exchanging messages. In this paper,

we built a static analyzer and applied it to Chrome, Firefox and

Opera extensions. We identified a good number of extensions

that can be exploited by web applications to benefit from

their privileged capabilities. In particular, some vulnerable

extensions allow web applications to bypass the Same Origin

Policy security mechanism and access user data on any web

application. Extensions also leaked user credentials (cookies),

browsing history, bookmarks, list of installed extensions, to

web applications or allowed them to download any file on

the user device, or store data in the extension storage for

tracking purposes. We showed how trivially, attackers can

exploit those threats, and discussed proposals as to mitigate

them. In particular we argued for a review process taking

into consideration the threats we have discussed, with the

help of tools such as our static analyzer, or changes in the

extensions system itself to ban or limit messages only to

extension injected scripts.

ACKNOWLEDGMENTS

We would like to thank the anonymous reviewers and the

PC for the quality of the comments and revision expectations

as they helped us improve the work. Special thanks to Nadege

Somé, Sadry Fievet, Nataliia Bielova, and Tamara Rezk for

proof-reading, support and insightful discussions, comments

and suggestions. The author is grateful to Inria Sophia An-

tipolis - Méditerranée ”Nef” computation cluster for providing

resources and support. This work was supported by the project

PIA ANSWER.

REFERENCES

[1] Chrome Extensions API. [Online]. Available: https://developer.chrome.
com/extensions

[2] Mozilla WebExtensions API. [Online]. Available: https://developer.
mozilla.org/en-US/Add-ons/WebExtensions

[3] Opera Extensions API. [Online]. Available: https://dev.opera.com/
extensions/

[4] Microsoft Edge Extensions API. [Online]. Available: https://docs.
microsoft.com/en-us/microsoft-edge/extensions

[5] Same Origin Policy. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Web/Security/Same-origin policy

[6] Cross-Origin Resource Sharing. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/HTTP/CORS

[7] M. T. Louw, J. S. Lim, and V. N. Venkatakrishnan, “Extensible
web browser security,” in Detection of Intrusions and Malware, and
Vulnerability Assessment, 4th International Conference, DIMVA 2007,
Lucerne, Switzerland, July 12-13, 2007, Proceedings, ser. Lecture
Notes in Computer Science, B. M. Hämmerli and R. Sommer,
Eds., vol. 4579. Springer, 2007, pp. 1–19. [Online]. Available:
https://doi.org/10.1007/978-3-540-73614-1 1

[8] A. Barth, A. P. Felt, P. Saxena, and A. Boodman, “Protecting
browsers from extension vulnerabilities,” in Proceedings of the
Network and Distributed System Security Symposium, NDSS 2010,
San Diego, California, USA, 28th February - 3rd March 2010. The
Internet Society, 2010. [Online]. Available: http://www.isoc.org/isoc/
conferences/ndss/10/pdf/04.pdf

[9] S. Bandhakavi, S. T. King, P. Madhusudan, and M. Winslett,
“VEX: vetting browser extensions for security vulnerabilities,” in
19th USENIX Security Symposium, Washington, DC, USA, August
11-13, 2010, Proceedings. USENIX Association, 2010, pp. 339–
354. [Online]. Available: http://www.usenix.org/events/sec10/tech/full
papers/Bandhakavi.pdf

[10] N. Carlini, A. P. Felt, and D. A. Wagner, “An evaluation of
the google chrome extension security architecture,” in Proceedings
of the 21th USENIX Security Symposium, Bellevue, WA, USA,
August 8-10, 2012, T. Kohno, Ed. USENIX Association, 2012,
pp. 97–111. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity12/technical-sessions/presentation/carlini

[11] K. Onarlioglu, M. Battal, W. K. Robertson, and E. Kirda, “Securing
legacy firefox extensions with SENTINEL,” in Detection of Intrusions
and Malware, and Vulnerability Assessment - 10th International
Conference, DIMVA 2013, Berlin, Germany, July 18-19, 2013.
Proceedings, ser. Lecture Notes in Computer Science, K. Rieck,
P. Stewin, and J. Seifert, Eds., vol. 7967. Springer, 2013, pp. 122–138.
[Online]. Available: https://doi.org/10.1007/978-3-642-39235-1 7

[12] K. Onarlioglu, A. S. Buyukkayhan, W. K. Robertson, and E. Kirda,
“SENTINEL: securing legacy firefox extensions,” Computers &
Security, vol. 49, pp. 147–161, 2015. [Online]. Available: https:
//doi.org/10.1016/j.cose.2014.12.002

[13] S. Calzavara, M. Bugliesi, S. Crafa, and E. Steffinlongo, “Fine-grained
detection of privilege escalation attacks on browser extensions,” in
Programming Languages and Systems - 24th European Symposium
on Programming, ESOP 2015, Held as Part of the European Joint
Conferences on Theory and Practice of Software, ETAPS 2015, London,
UK, April 11-18, 2015. Proceedings, 2015, pp. 510–534. [Online].
Available: https://doi.org/10.1007/978-3-662-46669-8 21

[14] A. Guha, M. Fredrikson, B. Livshits, and N. Swamy, “Verified security
for browser extensions,” in 32nd IEEE Symposium on Security and
Privacy, S&P 2011, 22-25 May 2011, Berkeley, California, USA.
IEEE Computer Society, 2011, pp. 115–130. [Online]. Available:
https://doi.org/10.1109/SP.2011.36

[15] A. Kapravelos, C. Grier, N. Chachra, C. Kruegel, G. Vigna,
and V. Paxson, “Hulk: Eliciting malicious behavior in browser
extensions,” in Proceedings of the 23rd USENIX Security
Symposium, San Diego, CA, USA, August 20-22, 2014.,
K. Fu and J. Jung, Eds. USENIX Association, 2014, pp.
641–654. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity14/technical-sessions/presentation/kapravelos

[16] S. Heule, D. Rifkin, A. Russo, and D. Stefan, “The most dangerous code
in the browser,” in 15th Workshop on Hot Topics in Operating Systems,
HotOS XV, Kartause Ittingen, Switzerland, May 18-20, 2015, G. Candea,
Ed. USENIX Association, 2015. [Online]. Available: https://www.
usenix.org/conference/hotos15/workshop-program/presentation/heule

[17] N. Jagpal, E. Dingle, J. Gravel, P. Mavrommatis, N. Provos,
M. A. Rajab, and K. Thomas, “Trends and lessons from three
years fighting malicious extensions,” in 24th USENIX Security
Symposium, USENIX Security 15, Washington, D.C., USA, August
12-14, 2015., J. Jung and T. Holz, Eds. USENIX Association, 2015,
pp. 579–593. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/jagpal

[18] M. Weissbacher, E. Mariconti, G. Suarez-Tangil, G. Stringhini,
W. K. Robertson, and E. Kirda, “Ex-ray: Detection of history-
leaking browser extensions,” in Proceedings of the 33rd Annual
Computer Security Applications Conference, Orlando, FL, USA,
December 4-8, 2017. ACM, 2017, pp. 590–602. [Online]. Available:
http://doi.acm.org/10.1145/3134600.3134632

[19] O. Starov and N. Nikiforakis, “Extended tracking powers: Measuring
the privacy diffusion enabled by browser extensions,” in Proceedings
of the 26th International Conference on World Wide Web, WWW
2017, Perth, Australia, April 3-7, 2017, R. Barrett, R. Cummings,
E. Agichtein, and E. Gabrilovich, Eds. ACM, 2017, pp. 1481–1490.
[Online]. Available: http://doi.acm.org/10.1145/3038912.3052596

[20] Cross-Origin Communications. [Online]. Available: https://developer.
mozilla.org/en-US/docs/Web/API/Window/postMessage

[21] Session Hijacking Attack. [Online]. Available: https://www.owasp.org/
index.php/Session hijacking attack

[22] A. Sjösten, S. V. Acker, and A. Sabelfeld, “Discovering browser
extensions via web accessible resources,” in Proceedings of the Seventh
ACM on Conference on Data and Application Security and Privacy,
CODASPY 2017, Scottsdale, AZ, USA, March 22-24, 2017, G. Ahn,
A. Pretschner, and G. Ghinita, Eds. ACM, 2017, pp. 329–336.
[Online]. Available: http://doi.acm.org/10.1145/3029806.3029820

[23] O. Starov and N. Nikiforakis, “XHOUND: quantifying the
fingerprintability of browser extensions,” in 2017 IEEE Symposium on
Security and Privacy, SP 2017, San Jose, CA, USA, May 22-26, 2017.
IEEE Computer Society, 2017, pp. 941–956. [Online]. Available:
https://doi.org/10.1109/SP.2017.18

[24] I. Sánchez-Rola, I. Santos, and D. Balzarotti, “Extension
breakdown: Security analysis of browsers extension resources
control policies,” in 26th USENIX Security Symposium, USENIX
Security 2017, Vancouver, BC, Canada, August 16-18, 2017.,
E. Kirda and T. Ristenpart, Eds. USENIX Association, 2017,
pp. 679–694. [Online]. Available: https://www.usenix.org/conference/
usenixsecurity17/technical-sessions/presentation/sanchez-rola

[25] G. G. Gulyás, D. F. Somé, N. Bielova, and C. Castellucia, “To extend or
not to extend: on the uniqueness of browser extensions and web logins,”
in To appear in the Proceedings of the 2018 ACM on Workshop on
Privacy in the Electronic Society, WPES@CCS 2018, Toronto, Canada,
October 15 - 19, 2018, 2018.

[26] Document Object Model (DOM). https://developer.mozilla.org/en-US/
docs/Web/API/Document Object Model.

[27] Extensions and the add-on ID. [Online].
Available: https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/
WebExtensions/WebExtensions and the Add-on ID

[28] Browsing Contexts. https://www.w3.org/TR/html51/browsers.html.

[29] Chrome Extensions - Message Passing. [Online]. Available: https:
//developer.chrome.com/extensions/messaging

[30] Opera - Passing Messages in Extensions. [Online]. Available:
https://dev.opera.com/extensions/message-passing/

[31] A. Hidayat. ECMAScript Parsing Infrastructure. [Online]. Available:
https://www.npmjs.com/package/esprima

[32] B. Newman. JavaScript Syntax Tree Transformer. [Online]. Available:
https://www.npmjs.com/package/recast

[33] HTML Parser Implemented in JavaScript. [Online]. Available: https:
//www.npmjs.com/package/jsdom

[34] SlimerJS - A scriptable browser for Web developers. [Online].
Available: https://slimerjs.org/

[35] Abstract Syntax Tree. [Online]. Available: http://esprima.readthedocs.
io/en/4.0/syntax-tree-format.html#expressions-and-patterns

[36] ECMAScript 2017 Internationalization API Specification (ECMA-402,
4th Edition, June 2017). https://www.ecma-international.org/ecma-402/
4.0/.

[37] Window . [Online]. Available: https://developer.mozilla.org/en-US/docs/
Web/API/Window

[38] JavaScript scope. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Glossary/Scope

[39] JavaScript Object Property Access - Dot and Array Notation.
[Online]. Available: https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference/Operators/Property Accessors

[40] R. Wu. CRX Extension Source Viewer For Chrome, Opera, and
Firefox. [Online]. Available: https://robwu.nl/crxviewer/

[41] Browser Console. https://developer.mozilla.org/en-US/docs/Tools/
Browser Console.

[42] eEail.in Chrome extension. [Online]. Available: https://chrome.google.
com/webstore/detail/erailin/aopfgjfeiimeioiajeknfidlljpoebgc

[43] Chrome Extensions. [Online]. Available: https://chrome.google.com/
webstore/category/extensions?hl=en-US

[44] Opera Add-ons. [Online]. Available: https://addons.opera.com/en/
extensions/

[45] Firefox Add-ons. [Online]. Available: https://addons.mozilla.org/en-US/
firefox/

[46] XPCOM Interfaces. [Online]. Available: https://developer.mozilla.org/
en-US/docs/Mozilla/Tech/XUL/Tutorial/XPCOM Interfaces

[47] Ringostat dialer. [Online]. Available: https://chrome.google.com/
webstore/detail/ringostat-dialer/pfofjhnkanlacmgfgjohncmgemffkldl

[48] StartHQ. [Online]. Available: https://chrome.google.com/webstore/
detail/starthq/ilcpdgfepihaomggobhmfiimflngbcoh

[49] SalesforceIQ CRM. [Online]. Available: https://chrome.google.com/
webstore/detail/salesforceiq-crm/jpcebpeheognnbogfkpllmmdnimjffdb

[50] MegaTest - - Opera Extension. [Online]. Available: https:
//addons.opera.com/en/extensions/details/megatest-uznat-rezultat/

[51] ModernDeck - Opera Extension. [Online]. Available: https://addons.
opera.com/en/search/?query=lkdpdiepahdagdknbbjgnadholcdgfib

[52] ModernDeck - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/moderndeck/
pbpfgdgddpnbjcbpofmdanfbbigocklj

[53] IWASSA - Opera Extension. [Online]. Available: https://addons.opera.
com/en/search/?query=bmjcngclkmgpfbjcmnbidognkoocpllm

[54] Iwassa - Chrome Extension. [Online]. Available: https://chrome.google.
com/webstore/detail/iwassa/hnkmipajjgbclkombnmigfnpekddlhlh

[55] LinkClicker - Opera Extension. [Online]. Available: https://addons.
opera.com/en/search/?query=jnmcfakfglphcmgokeeoihifcenjjcgg

[56] LinkClicker - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/linkclicker/
hoobpdoclliidciecjifpikpnopjpmkh

[57] GureTV: To watch television - Firefox Extension. [Online]. Available:
https://addons.mozilla.org/en-US/firefox/addon/guretv-ver-tv/

[58] LinkedIn Sales Navigator - Chrome Extension.
[Online]. Available: https://chrome.google.com/webstore/detail/
linkedin-sales-navigator/hihakjfhbmlmjdnnhegiciffjplmdhin

[59] renren-markdown - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/renren-markdown/
iiabjaofopjooifoclbpdmffjlgbplod

[60] Telerik Test Studio Chrome Playback 2014.1.
[Online]. Available: https://chrome.google.com/webstore/detail/
telerik-test-studio-chrom/pkkbbimilpjmghfhhppamgigileopnkc

[61] Http cookies. [Online]. Available: https://developer.mozilla.org/fr/docs/
HTTP/Cookies

[62] multiDownloader - Chrome Extension. [Online].
Available: https://chrome.google.com/webstore/detail/multidownloader/
dnohbnpecjinmdpeikpnmheeepnapfci

[63] repl.it download - Chrome Extension. [Online].
Available: https://chrome.google.com/webstore/detail/replit-download/
pgmcojeijjhacgkkjaakdafmloncpema

[64] HD Wallpapers from fliptab.io. [Online]. Available: http://www.fliptab.
io/

[65] Atavi - bookmark manager. [Online]. Available:
https://chrome.google.com/webstore/detail/atavi-bookmark-manager/
jpchabeoojaflbaajmjhfcfiknckabpo

[66] Browser History. [Online]. Available: https://chrome.google.com/
webstore/detail/browser-history/bpkphnbpiagbpinglgejckickdgaghjo

[67] Boomerang for Gmail - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/boomerang-for-gmail/
mdanidgdpmkimeiiojknlnekblgmpdll

[68] ISOGG Y-Tree AddOn - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/isogg-y-tree-addon/
cfnjeahambijfdljfacldifapdcklhnj

[69] PhyloTreeMT AddOn - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/phylotreemt-addon/
ilpkhojfiejdbkgcjbmllngjebdoehim

[70] jianlibao - Chrome Extension. [Online]. Avail-
able: https://chrome.google.com/webstore/detail/jianlibao/
fimckmjeammfdcpldmcigeojkkmeeian

[71] HTTP Commander - Chrome Extension.
[72] VisualSP Training for Office 365 - Chrome Exten-

sion. [Online]. Available: https://chrome.google.com/webstore/detail/
visualsp-training-for-off/ohdihpdgfenligmhnmldmiabdhflokkh

[73] Space Galaxy HD Wallpapers - Chrome Exten-
sion. [Online]. Available: https://chrome.google.com/webstore/detail/
space-galaxy-hd-wallpaper/dkpndikhfepllbpaafgcelembimabofo

[74] N. Nikiforakis, L. Invernizzi, A. Kapravelos, S. V. Acker, W. Joosen,
C. Kruegel, F. Piessens, and G. Vigna, “You are what you include:
large-scale evaluation of remote javascript inclusions,” in the ACM
Conference on Computer and Communications Security, CCS’12,
Raleigh, NC, USA, October 16-18, 2012, T. Yu, G. Danezis, and
V. D. Gligor, Eds. ACM, 2012, pp. 736–747. [Online]. Available:
http://doi.acm.org/10.1145/2382196.2382274

[75] F. Roesner, T. Kohno, and D. Wetherall, “Detecting and defending
against third-party tracking on the web,” in Proceedings of the 9th
USENIX Symposium on Networked Systems Design and Implementation,
NSDI 2012, San Jose, CA, USA, April 25-27, 2012, S. D. Gribble and
D. Katabi, Eds. USENIX Association, 2012, pp. 155–168. [Online].
Available: https://www.usenix.org/conference/nsdi12/technical-sessions/
presentation/roesner

[76] J. R. Mayer and J. C. Mitchell, “Third-party web tracking: Policy
and technology,” in IEEE Symposium on Security and Privacy,
SP 2012, 21-23 May 2012, San Francisco, California, USA.
IEEE Computer Society, 2012, pp. 413–427. [Online]. Available:
http://dx.doi.org/10.1109/SP.2012.47

[77] S. Englehardt and A. Narayanan, “Online tracking: A 1-million-site
measurement and analysis,” in Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security, Vienna, Austria,
October 24-28, 2016, E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C.
Myers, and S. Halevi, Eds. ACM, 2016, pp. 1388–1401. [Online].
Available: http://doi.acm.org/10.1145/2976749.2978313

[78] A. Lerner, A. K. Simpson, T. Kohno, and F. Roesner, “Internet
jones and the raiders of the lost trackers: An archaeological
study of web tracking from 1996 to 2016,” in 25th USENIX
Security Symposium, USENIX Security 16, Austin, TX, USA,
August 10-12, 2016., T. Holz and S. Savage, Eds. USENIX
Association, 2016. [Online]. Available: https://www.usenix.org/
conference/usenixsecurity16/technical-sessions/presentation/lerner

[79] M. Johns, “Session hijacking attacks,” in Encyclopedia of Cryptography
and Security, 2nd Ed., H. C. A. van Tilborg and S. Jajodia,
Eds. Springer, 2011, pp. 1189–1190. [Online]. Available: https:
//doi.org/10.1007/978-1-4419-5906-5 661

TABLE III: Extensions with the same code base which gives

*.fliptab.io access to browsing history (get/delete), bookmarks

(get), extensions (get/enable/disable/uninstall) and storage

bddmmehmgpjhhmbbmngdjhlednmkbken, cajmbfbhhfelhgolhldhhodkclpakcfe
cepmfckfppjpbkjgnpokojedlngflnca, clkodoejadlbjaopcjoijihebbgipjff
dekpebffaadijeaogggfhjemdbjgbcao, dkpndikhfepllbpaafgcelembimabofo
eeiedbnahjonkmimigblgchlefcklhok, efdddbobcofamdjmekphjlhgmcnhobbp
ehmhopjniedignnkdeijmpmodhcppgif, eilbnnflfpkhhfmhmlhflhecceajpkcj
fieoemdbopiialnojhifcndkenhjkbmm, fkpmpnljocdllgmplhnmjhjmmilbnofj
gfgchcclfmppnfoakdlhgdhnolbpiedf, glfbbjdfmmlanpikdedpjoeimlijjcjj
hmbedbiicehadpbhbipafffieolpjolh, hocncjdhccalpmblkpagbmjebkfkibbm
iamlligjelallbdddajmbojjjhadkmcf, jcffnpjkbahanenhcnhhdfopkjlpflfm
jokpapkhjeahjbkemfjfhjgcogmbcpoi, kkejopfphkmldfpdmcljfoinfcljijjf
klfeojnepdoehgddffbcjiamcjjahmgj, lbfidebeingoondbmpeapjoeeoloanak
lgphbplfjpemcghfcoajehcmikflcbbd, lmbcpiodajlbgmjbiajgcjdalgbofcbn
loggojfoonblkkhkjpijapeheoogagki, lpkfidfkgflpbakdnhpojiejlpdanknh
mgmodhbknbfmpjmilankiffnjbelcipo, mibaeahdcconphmdndbeipegldkkbcjh
odpiaedkmdpcheddbkilnkelhhocoenn, pfdaccgdljiifplhfnjcacapfedngonb
afddmpnodjaifgjibafjcbfaplnoipei

TABLE IV: Extensions with the same code base for trig-

gering downloads from vk.com, *.vimeo.com, *.coub.com,

*.kinopoisk.ru

nfhipbkhabgmkhahoaagkcgppcjikjgl idenapkfefkbknhbmfgeaclpcpbhcnbe
fnnlocjimhjpmgfjhjamdkjhemfhkhjo lmlnplkfbiihcpkghkkmfefjdaccmbcc
kbiocjbkoohjjkkeaafiemjeidgalllh dccmnjciogmmahaogjgkocongokmieog
ekfkljjojhnnhfedepfnbhhfjklagngk hhfgpbjpilbbaomjmdpnfchbpipehiif
pgajmafmbajahclonccaoaoleghhnpam ipeeopcjpgcbgnfogjlickeilmkbonen
jfpmehlefcchhhmlmennihbbihaolabk kcollknpphnodcjdkcmgpjmlbaenabao
backekeabechifnekobfachchocbmjag mfpbgndgoogfplejodpbhnfmaibnalkf
ojhheobonaamlhlcdngacakdcigpeokl mienmjdbnnpaigifneeiifdbjkdgelha
amaobfendgcolppeioeageanmillkmkc

TABLE V: Extensions with the same code base which leaks

topsites, history and/or bookmarks to *.atavi.com, *.atavi.test

iglbnbabjdfaobglhonmnlkdbommiebd, knflcnelciofoghldagpknelepafjeif
lamnafpjcnoclihgpefhdbefcmjikhaj, jffjjdoccjiflmckicphblggbppfgklk
ofmacdiceehcibkfednmgpkhgfhpacgi, jpchabeoojaflbaajmjhfcfiknckabpo

TABLE VI: Extensions with the same code base, provided by

Fabasoft, which give access to the current tab cookies

ajlbdflhaaflcepndpkdgejimggjcpnm, ngbcdblbfdpjgpmgfagkfofcjbnggfgn
pdhjoolhbkmlgjfedckdhiknnoabbnkk, hiejidhjgjpelfgldfhmnaoahnephhfg
icjlkccflchmagmkfidekficomdnlcig

TABLE VII: Extensions which give access to their storage to

any application

eljhpoopiapggnlfcilpbihgbgbpnkgd, akhamklknibionleflabebgeikdookmp
hebabhddakflgmlhgefakkfkciijliie, ilgdjidfijkaengnhpeoneiagigajhco
ohdihpdgfenligmhnmldmiabdhflokkh, abenhehmjmoifipfpjeaejpbeeihnokp
ackpndpapmikcoklmcbigfgkiemohddk, ceogcehidijhepckebfifkpfogkajdkg
cgijoonmpaboophnagdckdcekmpfokel, dhcfokhhmhenbfmeflifppiedabfggkj
dhcmolikocplmafolinkncghmahimooh, eamjolanjdmgochipodfokkfjaeifhon
efhbachoakbcmbcmfffdgphbpcbldjac, fecipnolpdcmoidbjbnakpjgfikbnaik
gnnagpehbmfalanfjadamobejlldgedo, ijdfpccaiklfhpnamolipbjjijilmhli
khjhfgcimhcnaimdbgjbnbhcojkoceoc, niceocbendibobemckcagggppphheomc
okcfiidnmioajibmhhjpiomgejajiafa, pjjceionkajpednnegoanjjdlhbgkkpc
pjojmkmdealampgchopkfbejihpimjia,

TABLE VIII: Extensions which give access to their storage to

specific applications

lpkhcobfjeidpkllbeagkkmmjgbmpfch mail.google.com
eggdmhdpffgikgakkfojgiledkekfdce mail.google.com
jmllflbhbembffempimjdbgnaodpoihh mail.google.com
jmlnhlclbpfcbkaoaegfigepaffoankc *.google.com,
gaoiiiehelhpkmpkolndijhiogfholcc netflix.com
ghldlmcbffbcnoofadgcapodmpiimflj netflix.com
jpgadigdffhcjldfkanacncocacekkie netflix.com/watch/
peiajekggpiihnhphljoikpjeaahkdcn beam.pro
bnfboihohdckgijdkplinpflifbbfmhm plug.dj
aclhfmpoahihmhhacaekgcbjaeojnifa wordix.io,
hcdfoeppbchkbbpplllggbjkkfokifej *.vk.com/feed/
hddnlanhlmifafibmlabomkkkobcmchj thankscoin.org
lhjajgnfmiliphkioedlmbfcdkhdhnkc *.service-now.com
bmdlalnebjigindhobniianfmhakfelf robertsspaceindustries.com,
dadggmdmhmfkpglkfpkjdmlendbkehoh openvideo.droppages.com
pbpfgdgddpnbjcbpofmdanfbbigocklj tweetdeck-enhancer
ilpkhojfiejdbkgcjbmllngjebdoehim *.phylotree.org
cfnjeahambijfdljfacldifapdcklhnj isogg.org
cjkbjhfhpbmnphgbppkbcidpmmbhaifa *.player.me
ddiaadobgihkgefcaajmkjgmnjakiamn auth.digitalkeyway.com
dienbdhbgkpddlgaceopelifcjpmkeha *.gestionderesidencias.es
dnpdkejhfeeipmklhlkdjaoakbkjkkjn datalane.io
gmjdaaahidcimfaipifeoekglllgdllb chat.stackexchange.com
kfodnoaejimmmphonklghkimhnhhgbce overlayBI.com

TABLE IX: Chrome, Firefox and Opera extensions which give web applications access to privileged APIs

Extension unique identifier or name Web applications to
send messages from

Target web applica-
tions to access

Permissions (accessible privileged API)

Chrome Browser
fimckmjeammfdcpldmcigeojkkmeeian * * eval, host, storage, downloads
fidaihkgnbcbkkdaoebdionfjenegede * * eval, host, storage
hnkmipajjgbclkombnmigfnpekddlhlh * * eval, host, storage
fajjnmbcianlnhmngmabhgkmgdindlha * * eval, host, storage
efajnkcfjjkcodbhkhaigkffdleomnag * * eval, host
hoobpdoclliidciecjifpikpnopjpmkh * * eval, host
kjfjdocojijlledbaanbhpcnkoimghal * * eval, host
pfofjhnkanlacmgfgjohncmgemffkldl app.ringostat.com * eval, host, cookies, storage
gooecknlakggnppmhfpopneedjconjjp lionlock.com, * eval, host, storage
bdiogkcdmlehdjfandmfaibbkkaicppk *.delfa.com.br * eval, host, storage
pgbjjemkcflenaakhiehfdmcdnlnlpbl www.seejay.cloud * eval, host, storage
hdanmfijddamndfaabibmcafmnhhmebi *.hirogete.com, * eval, host
hpmeebiiihmjelpjmmemlihhcacflflc *.valleyge.com * eval, host
oejnkhmeilmiplpmenkegjaibnjbappo search.lilo.org, * eval, host
jkoegdibpkleifbkojmplebjhfllkckn search.uselilo.org, * eval, host
aopfgjfeiimeioiajeknfidlljpoebgc * * host, cookies
hlagecmhpppmpfdifmigdglnhcpnohib * * host
kpgdinlfgnkbfkmffilkgmeahphehegk * * host
bjjpnhdlhpfdebcbhdlmecafnokpjpce * * host
bmiedopcajpcehbbfglefijfmmndcaoa * * host
jegnjmcegcpodciadcoeneecmkiccfgi * * host
jnhibbjmekoijdjaopflcjbjieamifhh * * host
jpkfmllgncphdgojhkbcjidgeabaible * * host
ilcpdgfepihaomggobhmfiimflngbcoh starthq.com, * host, history
jpcebpeheognnbogfkpllmmdnimjffdb mail.google.com, * host, management
cnkgdfnjmgamkcpjdljdncfjcegpgcdg mail.google.com, * host, management
cfddhmlokgokhcmepddjooekhmgmgfld *.ok.ru * host, downloads
efhgmgomhamkkmjbgmcpgjnabcfpnaek *.ok.ru * host, downloads
djhfcchmdelggndcpkgbanfhnpbbijdb *.ok.ru * host, downloads
fhlkioimlijffnblckmdikkadobdmlgn *.apistop.com * host
angncidddapgcmohkdmhidfleomhmfgi logincat.com, * host
lndhlcaobijohmgoikmgpgbhepkbhpkl oneom.tk * host
olpheomfiimdonpboopcailehdagfhaa .g3user.com, * host
idkghekmllmjgnmbohakcddgcclanlca ln.io * host
mhdhcccejcjfanablmohbpdbepdkokkj *.gvt.com.br, * host
plfffminkgohddbooidppccppgelajfp mp.weixin.qq.com, * host
cboekbiaoabkhgjdclenjpipclabkdga *.apiary.io, * host
ekeefjfdbaakgbfbagacmckiedkmakem *.salesmate.io, mail.google.com, host
lbjbbkhljiimahdeknpckaoiinopofhl *.appspot.com mail.google.com, host
ijmbknjhacbaeeoamjajoolgjgdbpkko *.aliexpress.com, *.google.com, host
hihakjfhbmlmjdnnhegiciffjplmdhin mail.google.com linkedin.com, host
cfbodcmobhpfbjhbennacnanbmpbcfkd *.aliexpress.com, appfreaker.com host
ommfijfafanajffiijecdlfjlbgpmgpl *.treesnetwork.com, docs.google.com, host
okgfglgogpkomipfflpajohdkaflndoh ouramazinghome.com www.google.com host
iiabjaofopjooifoclbpdmffjlgbplod blog.renren.com *.github.com host
mcdjehgaflnlmilhefigdkldfdnembhk *.spotsetter.com *.amazonaws.com host
lfekjajdgncmkajdpiadkkhhpblngnlc sub.watch, zooqle.com, host
gkfpnohhmkonpkkpdbebccbgnajfgpjp squares.io/fetch, www.nytimes.com host
pkkbbimilpjmghfhhppamgigileopnkc * * cookies
5 Fabasoft extensions (See Table VI) * current tab cookies
emiplbkkiabideffmpogkbbogkmofgph * - downloads
17 extensions (See Table IV) vk.com, - downloads
eadbjnlpeabhbllkljhifinhfelhimha ok.ru - downloads
ngegklmoecgejlbkiieccocmpmpmfhim *.tribecube.com - downloads
iogibhaacmieogkdgebfbjgoofdlcmgb *.shutterstock.com - downloads
ooeealgadmhdnhebkhhbbcmckehpomcj animevost.org - downloads
dnohbnpecjinmdpeikpnmheeepnapfci vtop.vit.ac.in - downloads
pgmcojeijjhacgkkjaakdafmloncpema repl.it - downloads
hacopcfnbokiahlppemnlneooamldola hypem.com - downloads
bpkphnbpiagbpinglgejckickdgaghjo amer...matrix.com - history
fheihcbdclkdoeadmjfggiamjgkippli .my-lucky-star.net - topSites

TABLE IX: Chrome, Firefox and Opera extensions which give web applications access to privileged APIs

Extension unique identifier or name Web applications to
send messages from

Target web applica-
tions to access

Permissions (accessible privileged API)

Chrome Browser
llelondjpcjljnjihdflhpclcpbiaiba *.msn.com - topSites
6 Atavi Extensions (See Table V) atavi.com, - history, bookmarks, topSites
31 HD Wallpapers (See Table III) fliptab.io - history, bookmarks, management,

storage
pnbfclligibfgdknphcodpbcejnkhffp * - bookmarks
eihbcgffjehfcgafjljohecmadcefoji app.launch.menu - bookmarks
empgohlokhdhhchkenknobacofijiffg app.launch.menu - bookmarks
aefmgkhgcmdljpfijlohmbhkhflmbmfi openoox.com - bookmarks
dhjhphjhpcelebeagllljbfpipdfkhgi .azurewebsites.net - bookmarks
jeabbgpkliknjiacfkfglknajloappkh yeahap.com, - bookmarks
22 Extensions (See Table VII) * - storage
24 Extensions (See Table VIII) mail.google.com, ... - storage

Firefox Browser
guretv-ver-tv * * eval, host, storage
buxenger * * eval, host
bitbucket-server * * host
logincataddon logincat.com, * host
facebook-photo-zoom-easy www.facebook.com * host
facebook-photo-zoom www.facebook.com * host
markanabak-eklentisi *.markanabak.com, *.wipo.int, host
skimdaddy * skimdaddy.com host
the-trees-network *.treesnetwork.com, docs.google.com, host
assina-me * - downloads
liber-capital * - downloads
video-downloader-1 * - downloads
openvost animevost.org - downloads
youtube-video-download-convert *.youtube.com - downloads
openvideo droppages.com - storage
vgis *.vonage.com - storage

Opera Browser
bmjcngclkmgpfbjcmnbidognkoocpllm * * eval, host, storage
jnmcfakfglphcmgokeeoihifcenjjcgg * * eval, host
pmpnemphhmmpkcafgpdjanghiaadfbef *.ok.ru * host
mpaghnpkgmnikepcgjddhckcedapomkp *.ok.ru, *.vk.com, * host
bcabkcaakkjfdlodkolfagbdejhhkigp *.lazyrobin.ru * host
bidjmocompdljmeglljcoecikgogfjbb sub.watch, zooqle.com, host
aghgmcnoiflhcnfjkckofmjbeinjkena vk.com, - downloads
mhjbdafcpnoapkglmldoofhhbpnogehk vk.com, - downloads
hajlecmoacenahambneialopbpleihjn * - storage
lkdpdiepahdagdknbbjgnadholcdgfib tweetdeck-enhancer - storage

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

