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Abstract. In this work, we present an optimal control formulation for the bidomain model in order to estimate
maximal conductances parameters in the physiological ionic model. We consider a general Hodgkin-Huxley for-
malism to describe the ionic exchanges at the microcopic level. We consider the parameters as control variables to
minimize the mismatch between the measured and the computed potentials under the constraint of the bidomain
system. The solution of the optimization problem is based on a gradient descent method, where the gradient is ob-
tained by solving an adjoint problem. We show through some numerical examples the capability of this approach to
estimate the values of sodium, calcium and potassium ion channels conductances in the Luo Rudy phase I model.

Keywords: parameters estimation, maximal conductance ionic parameters, bidomain model, optimal control with
PDE constraints, first order optimality conditions, physiological ionic model, cardiac electrophysiology.

1 Introduction

The bidomain equations are the state-of-the-art model to describe the propagation of the electrical wave in the heart.
This model is governed by a system of partial differential equations (PDEs) nonlinearly coupled to a set of non-
linear ordinary differential equations (ODEs) describing the dynamics of the cell membrane. These ODEs are usually
called the ionic model. The description of these models could be either physiological or phenomenological. In the
physiological case, they are in general built using a single cell preparation. Their use in multiscale modeling requires to
adjust the parameters. Of particular interest, the ion-channels conductances play an important role in the depolarization
rate, the conduction velocity, the repolarization times, ... etc. They are key parameters in order to proceed to the
personalization of a given model. Given the importance of these parameters, theoretical studies were carried out to
establish theoretical stability results for the inverse problem of identification of maximum conductances. Brandao et al.
are the first who studied the theoretical analysis and the controllability of the optimization using the FitzHugh-Nagumo
model [1]. Later, systematic analysis of the optimal control of monodomain and bidomain model is presented in [2,3,4].
A numerical study for optimal control of the monodomain and the bidomain model allowed to predict optimized shock
waveforms in 2D [4] and more recently for the optimal control of bidomain-bath model using Mitchell-Shaeffer model
in 3D geometries [5,6]. In those studies the control acts at the boundaries of the bath domain. In an other work [7],
authors propose a strategy to optimize a non differentiable cost function obtained from a fit of activation times map.
Recently, theoretical studies of the stability of the maximal conductances identification problem in the monodomain
[8] and bidomain [9] models have been carried out. Yan and Veneziani proposed a variational procedure for the
estimation of cardiac conductivities from measures of the transmembrane and extracellular potentials available at
some sites of the tissue [10]. Moreover, the identification from measurements of surface potentials has been tackled in
an optimization framework for numerical purposes [11,12]. Recently, drug doses optimization in stem cells preparation
has been subject of numerical study following an adjoint procedure [13].

In this study, we propose a variational procedure to the estimation of ionic maximal conductance parameters. The
optimal control approach which is based on the minimization of an appropriate cost functional that depends on the
maximal conductances and measurments of the transmembrane potentials available at the cardiac tissue. The paper
is organized as follows: First, we briefly recall the mathematical equations of the bidomain model describing the
electrical wave propagation. In section 3, we present the optimal control formulation approach, a formal derivation of
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the adjoint system and the first order optimality condition. The numerical approach to solve the optimality system is
explained in Sect 4. Finally, in Sect. 5, we show the numerical results with several test cases and different levels of
noise.

2 Mathematical model

Let Ω Ă Rd pd ě 1q be a bounded connected open set whose boundary Γ “ BΩ is regular enough, (Ω Ă R3 being
the natural domain of the hearth). Let T ą 0 be a fixed time horizon. We will use the notation Q “ Ω ˆ p0, T q and
Σ “ Γ ˆ p0, T q. We introduce a parabolic-elliptic system called bidomain model, coupled to a system of ODEs:
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CmBtv ` Iionp%̄, v,w, zq
˘

´ divpσi∇vq “ divpσi∇ueq `AmIapp in Q,

´divpσi∇v ` pσi ` σeq∇ueq “ 0 in Q,

Btw “ F pv,wq in Q,

Btz “ Gp%̄, v,w, zq in Q,

σi∇v.ν ` σi∇ue.ν “ 0 on Σ,

σi∇v.ν ` pσi ` σeq∇ue.ν “ 0 on Σ,

vpx, 0q “ v0pxq, wpx, 0q “ w0pxq, zpx, 0q “ z0pxq in Ω,

(2.1)

where v : Q Ñ R is the transmembrane potential, ue : Q Ñ R is the extracellular electric potential, and σi,σe :
Ω Ñ Rdˆd are respectively the intra- and extracellular conductivity tensors. w : Q Ñ Rk represent the gating
variables and z : QÑ Rm are the ionic intracellular concentration variables. Am is the surface to volume ratio of the
cardiac cells, and Cm ą 0 is the membrane capacitance per unit area. Iapp : QÑ R is the applied current source and
%̄ :“ t%̄iu1ďiďN represent a set of maximal conductance parameters. The ionic current Iion and the functions F and
G depends of the considered ionic model. In isolated heart conditions, no current flows out of the heart, as expressed
by the homogeneous Neumann boundary conditions.

2.1 Membrane models and ionic currents

Following the celebrated work by Hodgkin and Huxley [14], many models of Hodgkin-Huxley (HH) type have later
been developed for the cardiac action potential. In these models, the ionic current Iion through channels of the mem-
brane, has the following general structure [15]:

Iionp%̄, v,w, zq “
N
ÿ

i“1

%̄iyipvq
k
ź

j“1

w
pj,i
j pv ´ Eipzqq, (2.2)

where N is the number of ionic currents, %̄i :“ %̄ipxq is the maximal conductance associated with the ith current, yi
is a gating function depending only on the membrane potentiel v, pj,i are positive integers exponents and Ei is the
reversal potential for the ith current, which is the related equilibrium (Nernst) potential and is given by

Eipzq “ γi log

ˆ

ze
zi

˙

, z “ pz1, . . . , zmq, (2.3)

where γi is a constant and zi, i “ 1, . . . ,m, are the intracellular concentrations. The constant ze denotes an extra-
cellular concentration. For each action potential model, the dynamic of the gating variables w and the intracellular
concentrations z are described by a system of ordinary differential equations (ODEs). In this paper, we consider the
Luo-Rudy phase I model (LR1) [16] which extends the Beeler-Reuter model [17] to enhance the representation of
depolarization and repolarization phases and their interaction. The time course of the action potential (AP) is governed
by N “ 6 ionic currents:

Iion “ INa ` Isi ` IK ` IK1 ` IKp ` Ib, (2.4)
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which are fast sodium current (INa), slow inward calcium current (Isi), time dependent potassium current (IK), time
independent potassium current (IK1), plateau potassium current (IKp) and background current (Ib). The time depen-
dent currents INa, Isi and IK , depend on six activation and inactivation gates m,h, j, d, f, x, and one intracellular
concentration variable of Calcium rCa2`si, which are governed by ODEs of the form:

dw

dt
“ αwpvqp1´ wq ´ βwpvqw, for w “ m,h, j, d, f, x,

d

dt
rCa2`si “ ´10´4Isi ` 0.07p10´4 ´ rCa2`siq,

(2.5)

where αw and βw are two positive rational functions of exponentials in v. For details on formulation of those functions
and the parameters used in our computations, we refer to the original paper of LR1 model [16]. The existence and
uniqueness for the LR1 model and more general of the classical HH model of the couple pv, ueq, with ue has zero

average on Ω, i.e
ż

Ω

uedx “ 0, can be found in [18].

3 Optimal control problem

In this section, we set the optimal control problem, for which the numerical experiments were carried out. Suppose
that vmeas is the desired state solution at the cardiac domain, we look for the set/vector of parameters %̄ that solves the
following minimization problem.

pPq
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min
%̄PCad

Ip%̄q “ 1

2

`

ε1

ż

Q

|vp%̄q ´ vmeas|
2
dxt` ε2

ż

Ω

|%̄|
2
dx

˘

,

subject to the coupled PDE system (2.1), and %̄ P Cad,
(3.1)

where I is the quantity of interest, ε1 and ε2 are the regularization parameters, v is the state variable and
ż

Ω

|%̄|
2
dx

denotes a Tikhonov-like regularization term used to weigh the impact of the regularization in the minimize procedure.
Cad is the admissible domain for control given by

Cad “ t%̄ P L8pΩqN : %̄pxq P rm,M sN , @x P Ωu. (3.2)

3.1 Optimal conditions and dual problem

In this paragraph, we formally derive the optimality system associated to (3.1). Let’s denote by J the function

J p%̄, vq “ 1

2

`

ε1

ż

Q

|v ´ vmeas|
2
dxt` ε2

ż

Ω

|%̄|
2
dx

˘

.

If vp%̄q is solution of (2.1), then we immediately have J p%̄, vp%̄qq “ Ip%̄q. We follow a Lagrangian approach and
introduce the following Lagrange functional:

Lpv, ue,w, z, %̄, λ˚q “ J p%̄, vq ´
ż

Q

pAm
`

CmBtv ` Iionp%̄, v,w, zq ´ Iapp
˘

dxdt

´

ż

Q

p
`

´ divpσi∇vq ´ divpσi∇ueq
˘

dxdt´

ż

Q

q
`

´ divpσi∇v ` pσi ` σeq∇ueq
˘

dxdt

´

ż

Q

r.
`

Btw ´ F pv,wq
˘

dxdt´

ż

Q

s.
`

Btz´Gp%̄, v,w, zq
˘

dxdt,

(3.3)
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where λ˚ :“ pp, q, r, sqpx, tq denote the Lagrange multipliers. The first order optimality system is given by the
Karusch-Kuhn-Tucker (KKT) conditions which result from equating the partial derivatives of L with respect to the
state variables equal to zero. We then obtain the following governing system of the Lagrange multipliers:
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´AmpCmBtp´ pBvIionq ´ divpσi∇pq ´ divpσi∇qq ´ pBvF qTr ´ pBvGqTs “ ε1pv ´ vmeasq in Q,

´divpσi∇p` pσi ` σeq∇qq “ 0 in Q,

´Btr `AmpBwIion ´ pBwF q
Tr ´ pBwGq

Ts “ 0 in Q,

´Bts`AmpBzIion ´ pBzGq
Ts “ 0 in Q,

(3.4)

with the terminal conditions
ppx, T q “ 0, rpx, T q “ 0, spx, T q “ 0 in Ω, (3.5)

and the boundary conditions for the adjoint states
$

&

%

´σi∇p.ν “ σi∇q.ν on Σ,

´σe∇q.ν “ 0 on Σ.
(3.6)

In addition, we introduce the compatibility condition for the adjoint variable:
ż

Ω

qptqdx “ 0, for all t P p0, T q.

Based on the adjoint equations, The gradient of the quantity of interest Ip%̄q with respect to %̄ reads as follows:

ă
DI
D%̄

, δ%̄ ą“ă
BL
B%̄
, δ%̄ ą“ ε2

ż

Ω

%̄.δ%̄dx´

ż

Q

Amp
B

B%̄
Iion.δ%̄dxdt`

ż

Q

p
BG

B%̄
qTs.δ%̄dxdt, (3.7)

where p
BG

B%̄
qT denotes the transpose of the Jacobian matrix ofG P Rm in point %̄ P RN .

4 Numerical approximation

In this section, we give a brief overview of the space and time discretization techniques to solve the primal (2.1) and
adjoint (3.4) equations numerically. We use a finite element method (FEM) for the spatial discretization and a semi-
implicit Euler scheme for the temporal discretization. We solve the optimal control problem (3.1) using the gradient
descent method.

4.1 Space and time discretization:

The semi-discretization of the primal equations in space results in the differential algebraic system as follows:

AmCmM
B

Bt
V “ ´AiV ´AiU `AmM

`

Iapp ´ Iionp%̄,V ,W
pjq,Zpj

1
q
q
˘

, (4.1)

AieU “ ´AiV , (4.2)

M
B

Bt
W pjq

“ F pjqpV ,W pjq
q, (4.3)

M
B

Bt
Zpj

1
q
“ Gpj

1
qp%̄,V ,W pjq,Zpj

1
q
q, (4.4)

along with initial conditions for V ,W pjq and Zpj
1
q, where Aie “ tă pσi ` σeq∇ωi,∇ωj2 ąuMi,j2“1 and Ai “

tă σi∇ωi,∇ωj2 ąuMi,j2“1 are the stiffness matrices, M “ tă ωi, ωj2 ąuMi,j2“1 is the mass matrix, and tωiuMi“1
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denote the basis functions, with M is the number of nodal points at the tissue domain. Analogously, the following
semi-discrete form of the dual equations is obtained:

´AmCmM
B

Bt
P `AmMpBV Iionq

TP “ ´AiP ´AiQ`MpBV F pjq
qTRpjq `MpBV Gpj

1
q
qTSpj

1
q

` ε1MpV ´ Vmeasq, (4.5)
AieP “ ´AiQ, (4.6)

´
B

Bt
Rpjq ´ pBW pjqF pjq

qTRpjq “ ´AmpBW pjqIionq
TP ` pBZpj1qGpjqqTSpj

1
q, (4.7)

´
B

Bt
Spj

1
q
´ pBZpj1qGpj

1
q
qTSpj

1
q
“ ´AmpBZpj1qIionq

TP , (4.8)

with terminal conditions P pT q “ RpjqpT q “ Spj
1
qpT q “ 0, @j “ 1, . . . , k, @j1 “ 1, . . . ,m.

As concerns the time discretization of the primal problem, we start by computing the ODE system in a semi-
implicit way: We use a fourth order Runge-Kutta scheme for the computation W and Z while V is kept constant
between t and t` dt. Then we solve the PDE system V and U sequentially, using a first order semi-implicit scheme
where V is taken at time t in the expression of Iion as in [19]. As concerns the dual equations, although the retrograde
problem is fully linear, we use a semi-implicit first order scheme to solve it. The reason is that we separate the ODE
system variables R and S from the PDE variables P and Q. We also solve the bidomain problem sequentially, we
first compute P and then we computeQ. This follows the same scheme developed for the primal problem in [19].

4.2 Optimization algorithm

Given an initial guess of maximal conductance parameters %̄guess, we solve the optimization problem using the fol-
lowing algorithm based on a gradient descent method.

Algorithm 1 Optimization of the maximal conductance parameters %̄
%̄ “ %̄guess,
Solve state problem,
Solve adjoint problem,
while Ip%̄q ą εFunc & }

DI
D%̄
} ą εGrad & iter ďMaxIterNumber do

%̄ “ %̄´ αˆ DI
D%̄

.
Solve state problem,
Solve adjoint problem,
Compute the cost function and its gradient,

end while
%̄opt “ %̄.

Here, εFunc and εGrad are positive constants defining the desired tolerance on the cost function and its gradient
respectively. The coefficient α is positive and could be fixed or updated at each iteration andMaxIterNumber stands
for the maximal number of iterations in the optimization procedure.

5 Numerical results

In this section, numerical results on the basis of two different test are presented. In all tests, the computational domain
Ω “ r0, 1s ˆ r0, 1s Ă R2 of size 0.1ˆ 0.1 cm2 is fixed and a triangular discretization is used with the mesh parameter
h « 25µm which consists of 11508 elements and 5835 nodes. The stimulation current is imposed in the right bottom
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corner of the geometry its magnitude is Iappptq “ 80µA{cm2 and its duration is 1ms. During the simulations, we fix
the time step length ∆t “ 0.1ms. The termination of the optimization algorithm is based on the following condition:

εFunc “ 10´8 and εGrad “ 10´6. (5.1)

Moreover, if these conditions are not satisfied, the algorithm terminates within a prescribed number of iterations.
Here the maximum number of iteration parameter is MaxIterNumber “ 20. For all the following tests, the desired
transmembrane potential vmeas are simulated with the physiological Luo Rudy phase I model with its original control
parameters. There are six ionic currents in the Luo Rudy phase I model INa, Isi, IK1, IK , IKp and Ib. Each of the
currents has its corresponding maximal ion-channel conductance %̄Na, %̄si, %̄K1, %̄K , %̄Kp and %̄b. In what follows, we
will consider to optimize three of them %̄Na, %̄si, %̄K1 representing three different ion channels: sodium, calcium and
potassium, respectively.

5.1 Test 1: Optimize the maximal conductance parameter of the fast inward sodium current %̄Na:

In this test, we present a numerical results of the estimation of the parameter %̄Na. Since this parameter is mainly
important in the depolarization phase, we consider the cost function in the time window r0ms, 20mss of the simulation.
The exact value %Na is equal to 23. We generate the measurement vmeas by solving the forward problem using

the exact value of %Na and we start our optimization procedure using a guess value %Na,guess “
1

2
%Na “ 11.5.

Since the cost function depends on the parameters ε1 and ε2 used to make a balance between the function of interest
`

ż

Q

|vp%Naq ´ vmeas|
2
dxt

˘

and the regularization term
`

ż

Ω

|%Na|
2
dx

˘

, we first run the optimization procedure with

ε1 “ 1 and we vary ε2 from 0.05 to 0.001. As shown in Fig 1, for both cases the optimization algorithm converges to
the desired control value. But the accuracy is better with ε2 “ 0.001 than ε2 “ 0.05 as shown in Table1. From now on
we fix ε1 “ 1 and ε2 “ 0.001.

Optimization iterations
0 2 4 6 8 10 12 14 16 18

ρ
N
a

10

11.5

15

20

23

25
Optimal control values of ρNa

ρNa exact

ǫ2 =0.05, and 0% noise of vmeas

ǫ2 =0.001, and 0% noise of vmeas

ǫ2 =0.001, and 5% noise of vmeas

ǫ2 =0.001, and 10% noise of vmeas

ǫ2 =0.001, and 15% noise of vmeas

Fig. 1: The optimal control solution for the optimization of
%Na for different values of ε2 and different levels of noise.

ε2 Noise on vmeas (%)
}%Na,exact ´ %Na}

}%Na,exact}
ˆ 102

0.05 0 % 1.117 %

0.001 0 % 0.195 %

0.001 5 % 0.196 %

0.001 10 % 0.22 %

0.001 15 % 1.58 %

Table 1: Relative error for all cases.



Maximal conductances ionic parameters estimation in cardiac electrophysiology multiscale modelling 7

Optimization iterations
0 2 4 6 8 10 12 14 16 18

lo
g
1
0
J
(
ρ
N
a
)

10-5

10-4

10-3

10-2

10-1

100
The minimum value of the cost functional J(ρNa)

ǫ2 =0.05, and 0% noise of vmeas

ǫ2 =0.001, and 0% noise of vmeas

ǫ2 =0.001, and 5% noise of vmeas

ǫ2 =0.001, and 10% noise of vmeas

ǫ2 =0.001, and 15% noise of vmeas

Optimization iterations
0 2 4 6 8 10 12 14 16 18

lo
g
1
0
||
∇
J
(
ρ
N
a
)
||
2

10-6

10-4

10-2

100 The gradient value of the cost functional

ǫ2 =0.05, and 0% noise of vmeas

ǫ2 =0.001, and 0% noise of vmeas

ǫ2 =0.001, and 5% noise of vmeas

ǫ2 =0.001, and 10% noise of vmeas

ǫ2 =0.001, and 15% noise of vmeas

Fig. 2: Left: Log scale plot of the cost function Ip%̄Naq. Right: Log scale plot of the norm of its gradient during the
optimization procedure.

In order to test the robustness of the algorithm, we add different levels of gaussian noise to the measured data vmeas,
and we solve the optimization problem following Algorithm 1 for each value of noise. As shown in Fig 1, the algorithm
converges for all levels of noise. Table1 shows that the accuracy is altered with the noise. But for 15% of noise, the
relative error on the estimated value of %̄Na is under 2%. Figure 2 shows the evolution of the cost function Ip%̄Naq
and the norm of its gradient with respect to the optimization iterations for different regularization parameter values ε2
and noise levels on the measured potential.

5.2 Test 2: Optimize the maximal conductance parameter of the slow inward-calcium related current %̄si:

In this test, we present a numerical results for the optimization of the parameter %̄si. Since this parameter acts on
the plateau phase, we performed the optimization on a time window [0ms, 400ms]. We consider the initial guess

value %̄si,guess “
3

2
%̄si,exact “ 0.135. Fig 3 (left) shows the evolution of the parameter %̄si during the optimization

procedure. The table in Fig 3 (right) shows the relative error of the obtained solution with respect to the 0%, 5%
and 10% noise levels. We can see that it converge from the fourth iteration and the accuracy of the obtained optimal
solution of %̄si seems to be less sensitive to noise compared to optimal solution of %̄Na.

Optimization iterations
0 2 4 6 8 10 12 14 16 18

ρ
s
i

0

0.05

0.1

0.15
Optimal control values of ρsi

ρsi exact

ǫ2 =0.001, and 0% noise of vmeas

ǫ2 =0.001, and 5% noise of vmeas

ǫ2 =0.001, and 10% noise of vmeas

ε2 Noise on vmeas (%)
}%si,exact ´ %si}

}%si,exact}
ˆ 102

0.001 0 % 3.26e-7 %

0.001 5 % 6.7928e-4 %

0.001 10 % 2.3660e-4 %

Fig. 3: Left: The evolution of the optimal control solution %̄si during the optimization iteration. Right: Relative errors
of the optimal control solution for different noise levels.
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5.3 Test 3: Optimize the maximal conductance parameter of the time-independent potassium current %̄K1:

In this test, we present a numerical results for the optimization of the parameter %̄K1. Since this parameter acts on the
repolarization phase, we performed the optimization on a time window [0ms, 400ms]. The initial guess considered is

%̄K1,guess “
3

2
%̄K1,exact “ 0.90705. Fig 4 (left) shows the evolution of the parameter %̄K1 during the optimization

procedure. The table in Fig 4 (right) shows the relative error of the obtained solution with respect to the noise level.
The results in the table show that the optimal solution of %̄K1 is more sensitive to the noise than %̄si and less sensitive
to noise than %̄Na.

Optimization iterations
0 2 4 6 8 10 12 14 16 18

ρ
K
1

0.5

0.6

0.7

0.8

0.9

1
Optimal control values of ρK1

ρK1 exact

ǫ2 =0.001, and 0% noise of vmeas

ǫ2 =0.001, and 5% noise of vmeas

ǫ2 =0.001, and 10% noise of vmeas ε2 Noise on vmeas (%)
}%K1,exact ´ %K1}

}%K1,exact}
ˆ 102

0.001 0 % 0.0019 %

0.001 5 % 0.0042 %

0.001 10% 0.0832 %

Fig. 4: Left: The evolution of the optimal control solution %̄K1 during the optimization iterations. Right: Relative errors
of the optimal control solution for different noise levels.

6 Discussion and conclusions

In this paper, we have presented an approach for the estimation of maximal conductance parameters of the Luo Rudy
phase I model. We formulated the problem as an optimization procedure in an optimal control problem where the cost
function represents the misfit between the measured signals and the model. Our numerical results shows the capability
of this method to estimate the maximal conductance parameter %̄Na (respectively, %̄si, %̄K1 ) of the fast sodium current
(respectively, slow inward and potassium currents). This study shows also that the optimization procedure is robust
with respect of noise. Although, results show also that the optimization of %̄Na is more sensitive to noise than it is for
%̄si and %̄K1. The challenge is to explore the capability of this method to estimate these physiological parameters when
dealing with real life measurement. Finally, we have to say that this study is preliminary and that we didn’t explore all
of the potential of the optimal control approach. The method here presented allows multiple parameter estimation. It
also allows the estimation of space dependent parameters. This would be subject of our future research.
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