
HAL Id: hal-02435522
https://hal.inria.fr/hal-02435522

Submitted on 10 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Detecting interference through graph reduction
Denis Roegel

To cite this version:
Denis Roegel. Detecting interference through graph reduction. [Research Report] Loria & Inria Grand
Est. 1997. �hal-02435522�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/288143946?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02435522
https://hal.archives-ouvertes.fr

Detecting interference through graph reduction

Denis Roegel∗

CRIN, BP 239, 54506 Vandœuvre-lès-Nancy cedex, France

Abstract

Parallel programs which run in a shared-memory
model have several threads that may interfere. There
are constraints between the threads and these con-
straints can be modelled by a net. We present TLA
nets, which are interesting for the representation of
concurrent executions. A reduction operation is de-
fined on these nets, in order to detect interferences.
These interferences can be eliminated by adding com-
ponents such as delays to the net. TLA nets are a
graphical tool to explore the constraints of parallel
programming.

Keywords: graphs, nets, reduction, rewriting, in-
terferences, concurrency, threads, TLA.

1 Introduction

When parallel programs run in a shared-memory
model, there are usually several threads and these
threads can interfere, thereby producing unwanted
side-effects. It is possible to describe the structure of
a program segment by a graph whose edges represent
the changes in the system, and such graphs will be
useful for detecting interferences at early stages. An
example of such a graph is given in figure 1.

In this graph, the wavy edges represent instruc-
tions, whereas the dashed lines represent dependen-
cies. The wavy edges are labelled by abstract rep-
resentations of the instructions, namely TLA [3] ac-
tions. The parallel branches represent independent
actions. All these concepts and notations will be de-
tailed in section 2.1.

First, the formalism of the nets will be precisely
presented. Then it will be shown how a network can
be reduced and how the reduction makes it possible
to detect interferences between different threads.

∗Email: roegel@loria.fr.

x′ = x+ 1

x′ = x+ y

y′ = y + 1

z′ = 2 ∗ y

y′ = z + 1

t′ = y

y′ = y2

∧ (x > 0)
∧ (x′ = y − x)

∧ (x ≤ 0)
∧ (x′ = y + x)

x′ = x2

z

v1

v2 v3

v4

v5 v6

v7 v8

v9

Figure 1: Example of a TNet

2 Nets of actions

The nets of TLA actions, the TNets (TLA Nets), are
defined here. The presentation is purely syntactic,
and the precise semantics is defined by the reduction
operation (see section 3). First, an intuitive seman-
tics is given.

TNets are graphs having vertices and edges. There
are two kinds of vertices and several kinds of edges.
Some edges are labelled by TLA actions, or more pre-
cisely, by contextual TLA actions. The vertices rep-
resent states of a system and the labelled edges are
its transitions.

The nets of interest to us will be finite nets: the
number of vertices and edges will be finite and the
loops will themselves be finite: by that it is meant
that there are only a finite number of loops in the
construction of the net, and that each of these loops
is traversed only a finite number of times during the
execution. In section 3, a procedure to eliminate the
nets which do not satisfy the constraint of a finite

1

loop execution (hence, nets which do not halt) will
be given.

Finally, all the considered TLA actions will be de-
terministic, that is, they will actually be functional
relations.

The structure of the TNets articulates around the
following concepts: sequence, concurrency, alterna-
tive, delay, synchronization, local variables.

The elements at our disposal to build a TNet make
it possible to construct a great many networks. How-
ever, only some of these networks are of interest to
us.

2.1 Elements of a TNet

The building blocks of a TNet are 1) the edge valued
by an action, that is, a relation between two consec-
utive states, and 2) the edge representing a waiting
state. A wavy edge represents an edge valued by an
action, the waving being an image of the activity, or
more precisely, of the fact that variables can change
their values in the corresponding action: . For
simplicity, an action will often be given as a short-
hand in place of an edge valued by an action. Actions
without primed variables, namely predicates, can be
represented by straight edges: . In general,
edges are labelled by an action as it is the case in
figure 1.

Each vertex represents a set of local states. A local
state is a valuation of a set of variables. A state can
actually be regarded as a control point.

These states are not given in extenso, in that the
values of the variables are not given explicitely. On
the contrary, what defines the valuation of the vari-
ables in a state is the way this state is reached. Other
formalisms, in particular the very similar notation
of Lamport (predicate/action diagrams [4]), associate
predicates or assertions to the different control points.
The presence of assertions corresponds to an oper-
ational view, whereas its absence corresponds to a
denotational view.

The edges corresponding to actions are directed
and link two vertices of a TNet. Intuitively, this
means that the action represented by the edge allows
the passage from the first state to the second state.

Two vertices can be linked by more than one ac-
tion. Two cases are distinguished:

• The first case is parallelism: a and b occur simul-
taneously. The superior vertex is of type “AND”.

a b

• The second case represents an alternative: Here,
at most one of the two actions, a or b, can oc-
cur. It is possible that none of them is executed,
when one considers a fragment of a net made up
of two actions among three, for instance. The
top vertex is of type “OR” represented by “□”.
Hence, we always set ourselves in the case of a
deterministic choice.

a b

Delay and synchronization are indicated using sim-
ple and double dashed arrows. They introduce an
ordering constraint between two actions.
Some variables can be local to several actions. This

fact is represented by surrounding the set of con-
cerned actions by a dotted line labelled with the lo-
cal variable (see figure 1). We add as a constraint
that the intersection of two dotted areas is necessarily
one of these areas, which forbids nets where actions
bound by two different local variables overlap.

The graphs under consideration will always have a
source and a sink. This is natural since these con-
cepts correspond to the initial and final states of the
execution of a function.
However, many nets obtained by a combination of

the primitive elements will give rise to problems we
will try to detect and solve in section 3.

2.2 Formalization

The concepts that have been described in the previ-
ous section are formalized here.

Definition 1 (deterministic action) An action
A(x , x ′) is said to be deterministic if the relation
represented by A is functional, that is, if x ′ is a
function of x .

For instance, x ′ = x +1 (x ′ is the value of x in the
next state) is deterministic, but x ′ + y ′ = x + y is
not.

Definition 2 (set of actions) We assume Act to
be a set of deterministic TLA actions. This set will
not be defined formally.

2

Definition 3 (variables of an action) The set of
variables of an action is the union of the set of used
variables (unprimed) and the set of modified vari-

ables (primed): Var(a)
∆
= U(a) ∪M(a).

x ′ is always included in M(a) even if x is not mod-
ified. One can view M(a) as the set of variables con-
strained by a.

Definition 4 (set of variables) Let V be a set of
variables such that ∀a ∈ Act,Var(a) ⊆ V.

Definition 5 (set of values) We assume a set of
values Val.

We will see in section 3 that the environment of
the net must be taken into account for the reduction
of the nets. The interaction between a net and its
environment is based on the interaction between an
action and the environment. Henceforth, we will add
to each action some requirements with respect to the
environment. In return, this will allow us to deduce
properties that the net will guarantee. This will be
detailed later.

Definition 6 (contextual actions) Let CA =
(Act × P(V)) ∪ {⟨⊥,⊥⟩}; CA represents the set of
actions with a condition on the context; ⟨a, r⟩ ∈ CA
if r is a set of variables which must not be modified by
the environment. In general, ⟨a, r⟩ = ⟨a,U(a)⟩ where
U(a) is the set of variables used in a.

Definition 7 (set of dependencies) D = {⊥,!
, ,$} is the set of dependencies. The elements of
D must be distinct from the elements of Act. ⊥ will
represent the absence of any link between two vertices
of a net. ! and will represent the delay and $
the synchronization.

The nets can now be defined:

Definition 8 (net) A GTNet is a tuple
⟨V , br , edge, loc⟩ where:

• V is a finite set of vertices;

• br : V → {·,�} is the branching func-
tion: br(s) =“·” if s is an “AND” vertex and
br(s) =“�” if it is an “OR” vertex.

• edge : V 2 → (P(CA) ∪ D) is the “edge” func-
tion. edge(v1, v2) ∈ P(CA) if v1 and v2 are
connected by TLA actions. edge(v1, v2) ∈ D if
v1 and v2 are simply linked by dependencies, or
are not linked at all.

• loc : V → P(V × V × CA) is the function
which associates to each variable a set of edges
where this variable is local. The set of edges is
{(v1, v2, ar) ∈ V ×V ×CA/ar ∈ edge(v1, v2)}.
If loc(v1) and loc(v2) are the edges where v1

and v2 are local variables, then either loc(v1) ∩
loc(v2) = ∅, or loc(v1) ⊆ loc(v2), or loc(v1) ⊇
loc(v2). This constraint may make it necessary
to rename some variables.

Definition 9 (source of a net) v is a source if
v ∈ V and ∀u ∈ V : edge(u, v) ̸∈ P(CA).

Definition 10 (sink of a net) v is a sink if v ∈ V
and ∀u ∈ V : edge(v , u) ̸∈ P(CA).

Definition 11 A TNet is a GTNet with a unique
source and a unique sink. The sink v is such that
br(v) = ·.

Definition 12 (action escaping from a vertex)
The action a is said to escape a vertex s if

∃r ∈ P(V) : ⟨a, r⟩ ∈
∪
u∈V

edge(s, u)

2.3 Example of a formal representa-
tion of a net

Consider figure 1. This net has nine vertices denoted
by v1, v2, . . . , v9. We have:

• V = {v1, v2, v3, v4, v5, v6, v7, v8, v9}.

• ∀i ̸= 5 : br(v i) = · and br(v5) = □.

• edges: edge(v1, v2) = {⟨x ′ = x + 1, {x}⟩},
edge(v2, v3) = , edge(v5, v7) = {⟨(x > 0) ∧
(x ′ = y − x), {x , y}⟩, ⟨(x ≤ 0) ∧ (x ′ = y +
x), {x , y}⟩}, etc.

• loc(z) = {(v3, v4, ⟨z ′ = 2 ∗ y , {y}⟩), (v4, v6, ⟨y ′ =
z + 1, {z}⟩)}

• v1 is the source and v9 is the sink.

3 Reduction of a net

A TNet reduction will replace a complex net by a
net composed of a unique edge which is equivalent
to it (in some sense). In other words, the reduction
associates a TLA action to a net. This operation
modifies the granularity of a net.

3

Moreover, the reduction makes it possible to sepa-
rate the nets into two categories: those that can be
reduced into an action and those that cannot. The
case of nonreducible nets will be studied in more de-
tail.
Underspecified nets have also to be completed. For

instance

x′ = x+ 1

y′ = x+ z

poses problems because it is not known how the
value of z changes. The solution is twofold:

• All unprimed variables1 in the second action
must appear in the first action, in their primed
form, possibly meaning the identity.

• If an action uses a variable x , it must also men-
tion x ′.

If these conditions are not respected, the reduction
of these two actions is unknown by convention, and
is denoted by ⊥.
These rules will be formalized in the next section.

3.1 Formalization

The previous section explained intuitively how the
net reduction is worked out, and the need to intro-
duce additional constraints if we want the net to be
reduced in a specific way.
From now on, TLA actions will no longer be ma-

nipulated. Instead, contextual actions (cf. §2.2) are
used in order to handle these constraints.
The operations ∧c , ∨c and •c are defined on the

elements of CA, the set of contextual actions. They
are the contextual equivalents of ∧, ∨ and •.

Definition 13 (contextual conjunction)
⟨a1, r1⟩ ∧c ⟨a2, r2⟩ is defined as follows:

• if a1 = ⊥ or a2 = ⊥, then ⟨a1, r1⟩∧c ⟨a2, r2⟩
∆
=

⟨⊥,⊥⟩ (failure propagation)

• if M(a1) ∩ r2 = ∅ and M(a2) ∩ r1 = ∅, then

⟨a1, r1⟩ ∧c ⟨a2, r2⟩
∆
= ⟨a1 ∧ a2, r1 ∪ r2⟩

• otherwise, ⟨a1, r1⟩ ∧c ⟨a2, r2⟩
∆
= ⟨⊥,⊥⟩

1These variables can also occur as primed variables in the
second action, of course.

As soon as a reduction yields ⟨⊥,⊥⟩, the reduction
of the whole TNet is undefined. The result of the ex-
ecution is ignored: the TNet must be better specified.

Definition 14 (contextual disjunction)
⟨a1, r1⟩ ∨c ⟨a2, r2⟩ is defined as follows:

• if a1 = ⊥ or a2 = ⊥, then ⟨a1, r1⟩∨c ⟨a2, r2⟩
∆
=

⟨⊥,⊥⟩ (failure propagation)

• if a1 ⇒ ¬a2 then

⟨a1, r1⟩ ∨c ⟨a2, r2⟩
∆
= ⟨a1 ∨ a2, r1 ∪ r2⟩

(the dependencies are determined statically)

• otherwise, ⟨a1, r1⟩ ∨c ⟨a2, r2⟩
∆
= ⟨⊥,⊥⟩

(exclusion of non-determinism)

Definition 15 (contextual sequentialization)
Finally, ⟨a1, r1⟩ •c ⟨a2, r2⟩ is defined as follows:

• if a1 = ⊥ or a2 = ⊥, then ⟨a1, r1⟩ •c ⟨a2, r2⟩
∆
=

⟨⊥,⊥⟩ (failure propagation)

• if ¬(U(a1) ⊆ M(a1)) then ⟨a1, r1⟩ •c ⟨a2, r2⟩
∆
=

⟨⊥,⊥⟩

• if ¬(U(a2) ⊆ M(a2)) then ⟨a1, r1⟩ •c ⟨a2, r2⟩
∆
=

⟨⊥,⊥⟩

• if M(a1) ̸= U(a2) then ⟨a1, r1⟩ •c ⟨a2, r2⟩
∆
=

⟨⊥,⊥⟩

• otherwise ⟨a1, r1⟩•c ⟨a2, r2⟩
∆
= ⟨a1•a2, r1∪r2⟩

Theorem 1 (Associativity of ∧c, ∨c and •c)
The three operations ∧c, ∨c and •c are associative.
The proofs are given in [6].

Theorem 2 (Commutativity of ∧c and ∨c)
Obvious.

3.2 Reduction rules

Reduction rules in which the actions are accompa-
nied by an hypothesis on the environment (require-
ment) are stated here. Each action is therefore a
pair ⟨guarantee, rely ⟩, made of an hypothesis that
the environment must satisfy (rely) and of an action
(guarantee) which is satisfied if the first hypothesis is
true. These pairs will be manipulated in a composi-
tional manner, in that the pair of a complex net will
be obtained from the pairs corresponding to its parts.
Reference [1] gives other approaches of this paradigm
for the construction of larger scale specifications.

4

The rules enable us to handle the interferences oc-
curing when actions are composed.
The rules are given in table 1.

The rules involve the contextual composition oper-
ations •c , ∧c and ∨c . Each rule has a non-contextual
counterpart, obtained by replacing •c by •, ∧c by ∧
and ∨c by ∨.
The rules R1 to R4 have a very simple expression,

in spite of the fact that they take into account the
possible interferences. These interferences are han-
dled by the contextual connectives on the contextual
actions. Some of the rules are explicited below.

• Rule R1 :

if ∃s1, s2 ∈ V , ar1, ar2 ∈ edge(s1, s2) such that
br(s1) = ·, then

– for all sa , sb : edge ′(sa , sb)
∆
=

edge(sa , sb) if sa ̸= s1 or sb ̸= s2;

– edge ′(s1, s2)
∆
= (edge(s1, s2) \

{ar1, ar2}) ∪ {ar1 ∧c ar2}

• Rule R5 :

Condition : no contextual action other than a is
supposed to escape from the “AND” node.

• Rule R6 : “repeat until”

if ∃s1, s2, s3 ∈ V such that

1. edge(s1, s2) = {⟨a, ra⟩},
2. edge(s2, s3) = {⟨b, rb⟩},
3. edge(s2, s1) = {⟨c, rc⟩}
4. br(s2) = �
5. ∀s : (edge(s1, s) ∈ P(CA)) ⇒ ((s = s2) ∧

edge(s1, s) = {⟨a, ra⟩})
(No action other than a can escape from a
top node)

6. Pred(c) (c is a predicate)

7. U(c) ⊆ M(a) (the variables of c must
be primed in a)

8. c ⇒ ¬b
9. b ∨ c

and if (with [7]’s notations for the denotational
semantics)

1. repeat σ
∆
= (E [[¬c]]σ → σ, repeat(C[[a]]σ))

2. ru(a, c)(σ)
∆
= C[[repeat a until ¬c]]σ =

repeat(C[[a]]σ) where ru(a, c)(σ) = ⊥ if the
loop diverges;

then:

– edge ′(s2, s1) = ⊥
– edge ′(s1, s2) = D(⟨a, r⟩, c) where

∗ if ∀σ, ru(a, c) ̸= ⊥, then

D(⟨a, r⟩, c) ∆
= ⟨ac, r⟩ with

ac
∆
= σ′ = ru(a, c)(σ)

∗ if ∃σ, ru(a, c) = ⊥, (case of divergence)

then D(⟨a, r⟩, c) ∆
= ⟨⊥,⊥⟩

D(a, c) is the relation associated to the
function ru(a, c).

The semantics of a loop is an action if the num-
ber of loops is finite.

• Rule R8 :

Conditions:

1. the contextual actions a2 and b2 escaping
from the intermediate vertices are the only
ones escaping from these vertices.

2. a1 and b2 do not interfere.

3.3 Confluence

It will be shown that the rewriting system made of
rules R1 to R9 is confluent. First, a few notions useful
for the proof are introduced.

3.3.1 Complexity of a net

The complexity comp(R) of a net R is defined by

comp(R) = na + n∨ + n$ + 2 · n! + n l

where na is the number of edges representing actions,
n∨ is the number of “OR” vertices, n$ is the number
of double dependencies, n! is the number of simple
dependencies and n l is the number of localities. The
weights are different for n$ and n! because rule R8

does not diminish the number of edges.
Notice that there exists a net of complexity n, for

any n > 0. It is also obvious that each reduction rule
decreases the complexity of a net. For instance, for
(1 ≤ i ≤ 9) ∧ (i ̸= 6), comp(Ri(R)) = comp(R) − 1.
And comp(R6(R)) = comp(R)− 2.
Since the nets under consideration are finite, the

reduction process ends. It now remains to show that
the reduction is confluent.

5

R1 : a b a ∧c bR−→ R2 :

a

b

a •c bR−→

R3 : a b a ∨c bR−→ R4 :

a

b

a •c bR−→

R5 : a aR−→ R6 :

⟨a, ra⟩

⟨b, rb⟩

⟨c, rc⟩ ⟨D(a, c), ra⟩

⟨b, rb⟩
R−→

R7 : ⟨a, r⟩ ⟨∃v : a, r\{v}⟩R−→v R8 : R−→

a1 b1

a2 b2

a1 b1

a2 b2

R9 : R−→

a1 b1

a2 b2

a1 b1

a2 b2

Table 1: Reduction rules

3.3.2 Confluence

Let →∗ be the reflexive transitive closure of some
binary relation →.

Definition 16 (Normalization) A net G is nor-
malizable if there exists a reduction G →∗ G ′ where
G ′ is not reducible.

Definition 17 (Confluence) The rewriting rela-
tion → is confluent in x , if for all x 1, x 2, if x →∗ x 1

and x →∗ x 2, there exists x ′ such that x 1 →∗ x ′ and
x 2 →∗ x ′.

Theorem 3 (Unicity of normal form) A net G
has a unique normal form.

The proof is based on the locality of the rewriting
rules and the permutability of the rules in some cases.
The proof is by induction on the complexity of the
net. See [6].

The unicity of the normal form is true even for nets
which do not reduce to actions.

Theorem 4 (Confluence) The rewriting relation
R−→ is confluent.

This is an immediate consequence of the unicity of
the normal form.

Since the
R−→ relation is confluent, a new rewriting

relation
R∗−→ can be defined. It represents the iterated

relation of the
R−→ relation.

Definition 18 (Confluence rewriting)

N 1
R∗−→N 2 if ∃M 1, . . . ,M n such that N 1 = M 1,

N 2 = M n , M i
R−→M i+1 and ¬∃M p such that

M n
R−→M p.

3.4 Observational semantics of a TNet

The observational semantics of a TNet is defined in
the following way:

6

Definition 19 (Observational semantics) [[.]] :
Net → CA
where

• [[N]]
∆
=

R∗−→(N) if
R∗−→(N) ∈ CA

• [[N]]
∆
= ⟨⊥,⊥⟩ otherwise; (this case occurs

when none of the rules can be applied)

and

• CA is a set of contextual actions (see defini-
tion 6).

• Net is the set of nets.

Because of its global aspect, the observational se-
mantics is of course similar to the denotational se-
mantics.

3.5 Non-reducible nets

The rules seen in section 3.2 make it possible to re-
duce a net when the rules are read from left to right.
However, if they are read from right to left, they rep-
resent construction rules.

The RTNets are defined as TNets whose reduction
is a TLA action.

Definition 20 (generated nets) RTNets = {t ∈
TNets/

R∗−→(t) ∈ Act}

Figure 2: Non reducible net

It is easy to find TNets which are not reducible,
and thus, which are not RTNets. Almost all TNets
are not reducible, which is easily understood, since
a program written randomly is very unlikely to do
something meaningful (or, let us say, interesting).
For instance, the net of figure 2 cannot be reduced

to an action and can therefore not be generated by
the inverse rules.

4 Related work

A net formalism has often been employed in order
to represent and analyze concurrent systems. Rabi-
novich [5] presents ideas which have much in common
with ours. He introduces a notion of nets made from
two kinds of vertices: circles which represent places
and squares which represent ports. The edges are
called channels. Ports correspond to data or vari-
ables and places to operations on these data.

Rabinovich considers such nets where a function is
associated to each place output. These functions take
the data from input ports and compute the output. If
the ports and internal places of the net are hidden, a
solution to the equations determined by the functions
is a function determining the outputs in terms of the
inputs. This is what Rabinovich calls the observable
relation. The places can also be labelled by relations.

The TNets are different from Rabinovich nets in
that all vertices in TNets represent states, corre-
sponding therefore to ports in Rabinovich’s formal-
ism. The edges of a TNet correspond to the functions
labelling Rabinovich places. Furthermore, the TNets
have two kinds of branching at the vertices and have
notions of dependencies and local variables.

The “reduction” of a Rabinovich net is a solution
to the functional or relational equations defined by
the places. These equations are not conditional, as in
the TNets, since there are no dependencies or choices.
Moreover, there is no possibility in Rabinovich’s nets
to have two branches in parallel, that is to have a
port which would be obtained from two functions.
So, there is no notion of interference, as is the case
with the TNets, but there might be no solutions to the
equations defined by the net. Rabinovich doesn’t give
a rewriting system, but could define the reduction of
a system in that way.

In [4], Lamport defines the predicate/action dia-
grams which are graphs labelled by a property (pred-
icate) [2] and represent the states satisfying this prop-
erty, and whose edges are actions. A predicate/action
diagram denotes a TLA formula. The purpose of this
formalism is to give a graphical view of some compo-
nents of a system, for instance by restricting ourselves
to the behaviour of some variables.

The formalism is hence very close to the TNets’ for-
malism, but Lamport does not study the reduction of
these nets. In the TNets, the vertices are not labelled
by predicates because we are not interested by a local
study of the net, but by a global study.

7

5 Conclusion

The reduction of TLA nets proves to be interesting for
the detection of interferences in parallel executions.
The reduction is based on a few rewriting rules and
is confluent. Hence, a well-defined net has a clear
semantics which is its reduction. The use of a graph-
ical representation helps linking the net with a real
execution.

References

[1] Pierre Collette and Cliff B. Jones. Enhancing the
Tractability of Rely/Guarantee Specifications in
the Development of Interfering Operations. Tech-
nical Report UMCS-95-10-3, Department of Com-
puter Science, University of Manchester, 1995.

[2] Leslie Lamport. Control Predicates are Better
than Dummy Variables for Reasoning about Pro-
gram Control. Technical Report 11, DEC-SRC,
Palo Alto, California, USA, 1986.

[3] Leslie Lamport. The Temporal Logic of Actions.
ACM Transactions on Programming Languages
and Systems, 16(3):872–923, May 1994.

[4] Leslie Lamport. TLA in Pictures. In Guy E. Blel-
loch, K. Mani Chandy, and Suresh Jagannathan,
editors, Specification of Parallel Programs: Pro-
ceedings of the DIMACS Workshop, number 18
in DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, pages 293–307.
American Mathematical Society, 1994.

[5] Alexander Rabinovich. Modularity and Express-
ibility for Nets of Relations, 1996.

[6] Denis Roegel. Étude de la sémantique de
programmes parallèles « réels » en TLA.
Thèse d’université, Université Henri Poincaré
— Nancy 1, 1996. Defended on Novem-
ber 7, 1996. Also CRIN reports 96-T-214
(french) and 97-R-125 (english). Available at
http://www.loria.fr/˜roegel.

[7] R. D. Tennent. The Denotational Semantics of
Programming Languages. Communications of the
ACM, 19(8):437–453, August 1976.

8

