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Efficient time-domain numerical analysis of
waveguides with tailored wideband pulses

Jonathan Viquerat

Abstract—A simple procedure for the generation of accurate
polychromatic sources in waveguides taking into account mode
dispersion is presented. It allows for an efficient use of time-
domain solvers in the analysis of guided modes, and can be used
wether the mode dispersion and field distribution are known
analytically or numerically. This method is implemented in the
DIOGENES Discontinuous Galerkin Time-Domain (DGTD) solver
(http://diogenes.inria.fr), and is validated on a waveguide mode
converter.

Index Terms—Discontinuous Galerkin Time-Domain (DGTD)
methods, optical waveguides, mode dispersion, wide-band source.

I. INTRODUCTION

THE numerical analysis of optical devices with time-
domain methods usually allows the use of polychromatic

sources (dipole, plane wave, etc), thus characterizing the
structure response in a single simulation. For waveguides,
however, the existence of modes brings the task of building
wide-band sources to a higher level of complexity [1]. More
precisely, two main obstacles must be overcome: (i) for a
given mode, the effective index neff depends on ω, and (ii)
the frequency-domain 2D mode field distribution Ê2D also
depends on ω.

The bootstrapping method, proposed in [1], is an effective
yet computationally-expensive way to overcome these prob-
lems. An erroneous source is injected and propagated in an
extended version of the considered waveguide. Along the prop-
agation, the exact mode establishes in the waveguide, while the
remaining energy is scattered towards the surrounding PML
regions. At the edge of the waveguide, a probe plane is used
to record passing fields, providing an accurate source for future
computations.

In [2], the authors propose another workaround, in which a
wide-band source made from the sum of several polychromatic
pulses. Each of them is centered around a given frequency
and holds an appropriate 2D field distribution associated
to this frequency. In this method, the sampling of the 2D
field distribution and that of the effective mode index are
concurrently made at the selected frequencies, which are most
often limited to a handful.

In this paper, we propose a straightforward polychromatic
source formulation for waveguide analysis based on an inverse
Fourier transform of the frequency-domain solution, incorpo-
rating both the variations of the 2D field distribution and that
of the mode index. The knowledge of both these quantities can
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be either analytic or numeric (i.e. computed in a third-party
solver or read from a file). Additionally, we describe the way
to impose of such a source through a Total-Field/Scattered-
Field (TF/SF) interface in the DGTD framework, as well as
how to compute figures of merit such as transmission, overlap
or mode conversion efficiency. The accuracy of this approach
is first tested on a textbook case, before being applied to a
waveguide mode converter.

II. DESCRIPTION OF THE SOURCE

A. Source construction

Assuming that Ê2D and neff are known, we remind that the
corresponding monochromatic time-domain source propagat-
ing in direction z+ at angular frequency ω0 is obtained as
follows:

E(t) = <
[
Ê2D(ω0)e−jβ(ω0)zejω0t

]
,

where β(ω) is the mode propagation constant:

β(ω) =
ωneff(ω)

c0
. (1)

For plane wave analysis, polychromatic signals are most
often obtained by modulating a sine or a cosine function
at angular frequency ω0 with the derivative of a gaussian
bump centered on ω0 and with well-suited variance parameter
σ. Then, taking the Inverse Fourier Transform (IFT) of the
frequency-domain signal yields the desired time-domain pulse.
One can follow the same procedure here, taking into account
the effective index of the mode:

E(t) = <
[∫ +∞

−∞
Ê2D(ω)σe−

(ω−ω0)2σ2

2 e−j(β(ω)z−ωt)
]

(2)

Most often, the latter IFT is not analytic and must be numer-
ically computed using an Inverse Discrete Fourier Transform
(IDFT):

φ(t) '
nω∑
k=1

φ̂(ωk)ejωkt∆ω, (3)

where ∆ω is the chosen frequency step:

ωk = ωmin + (k − 1)∆ω,

and nω is the number of frequency samples:

nω =
ωmax − ωmin

∆ω
+ 1.
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B. Sampling and the reciprocal Shannon theorem
The choice of nω (or equivalently of ∆ω) will have a major

impact on the accuracy and efficiency of the procedure. Indeed,
if it is chosen too high, the frequency-domain expression under
the integral in (3) will be over-sampled, and its evaluation will
be uselessly expensive. On the opposite, if it is chosen too
low, the obtained time-domain signal will suffer from aliasing,
resulting in overlapping incident wave trains. In order to select
an adequate value for nω , we make use of the reciprocal
Shannon theorem [3], stating that the sampling rate ∆ω used
to compute (3) should meet the following criterion:

∆ω ≤ 2π

T
,

where T is the total duration of the transformed time-domain
signal. Although in most cases, T might not be known, in
our case it can be well approximated thanks to the Gaussian
envelope of the frequency-domain expression (2). To do so,
we introduce a parameter ε, such that fields with amplitudes
smaller than ε are considered to be zero. Then, we seek the
width of the gaussian enveloppe for which the signal level is
equal to ε. A few lines of calculus yield:

∆ω =
2π

σ
√

8 ln(1
ε )
. (4)

In the following, we choose ε = 1× 10−3, and therefore:

∆ω ' 0.845

σ
. (5)

C. Total-Field/Scattered-Field injection plane
The discretization of the electric and magnetic fields in

the DGTD framework is naturally discontinuous, meaning
that the unknowns are duplicated on each face joining two
cells of the mesh [4]. The consistency of the approximation
is re-established through the imposition of a numerical flux
(E∗,H∗) at the interface, which handles the information
exchange between cells (the reader is referred to [4] and [5]
for a thorough development of the DGTD method). As a
consequence, it is possible to define separate areas in the mesh,
in which the numerical unknowns either hold the total fields
(Etot,Htot) or the scattered fields (Esca,Hsca). The interface
between these regions is the so-called TF/SF interface. At this
interface, the fluxes are modified in order to inject the incident
field in the TF region, and to subtract it in the SF region (see
figure 1). With this method:
• It is possible to access both the TF and the SF fields in

their regions of interest simultaneously;
• Incident fields can be imposed virtually anywhere in the

mesh;
• Accessing both the TF and SF fields at the same place

(i.e. on the TF/SF interface) allows for the computation
of multiple figures of merit with a single computation;

• In the present case, if a mode is properly imposed and
propagated through the TF region of an unperturbed
waveguide, the fields in the SF regions should be identi-
cally zero, making it a reliable method to test the source
described in the last section.

Esca

Etot

TF
/S
F

E∗ + E*,inc

E∗ − E*,inc

Fig. 1. Field injection with the TF/SF method. In the TF zone (in gray),
the incident field is added to the numerical flux, whereas in the SF zone, it
is substracted.

D. Figures of merit

A brief word must be said about the figures of merit that will
be used in this paper, namely the transmission T , the overlap
OM and the mode conversion efficiency ηM .. These quantities
are based on the computation of the averaged Poynting vector
π :

π (x, ω) =
1

2
<
(

Ê (x, ω)× Ĥ
∗

(x, ω)
)
. (6)

In expression (6), the frequency-domain fields are evaluated
on control surfaces (here, the TF/SF surfaces) with an on-
the-fly Fourier transform during the time-domain computation.
Thanks to the discontinuous nature of the DG field discretiza-
tion, these quantities can be evaluated either on the total-field
or the scattered-field side of the TF/SF faces, allowing to
compute the transmission as:

T (ω) =

∫
So

πtot · n∫
Si

πinc · n
, (7)

where πtot is computed on the total-field side of the exiting
TF/SF surface So, πinc is computed using the incident field
only on the total-field side of the inputting TF/SF surface Si,
and n is the unit normal. As such, the transmission computes
the normalized transmitted power from the input to the output
plane, ranging from 0 to 1. The overlap, also ranging from 0
to 1, measures the similarity of the transmitted fields Ê and
Ĥ
∗

to that of a given mode ÊM and Ĥ
∗
M :

OM (ω) =

<

ΠSo

(
Ê, Ĥ

∗
M

)
ΠSo

(
ÊM , Ĥ

∗)
ΠSo

(
Ê, Ĥ

∗)


<
(

ΠSi

(
ÊM , Ĥ

∗
M

)) , (8)

with:

ΠS

(
Ê, Ĥ

∗)
=

∫
S

Ê× Ĥ
∗ · n.
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Fig. 2. Mesh of the rectangular waveguide. Light green faces correspond
to PEC boundaries, while yellow ones are for ABC. The pink inner faces
correspond to the TF/SF interfaces. The TF cells (not shown) are between
the two TF/SF interfaces, while the SF cells (not shown) are on the left and
the right of them. The PML cells terminate the mesh on the edges (in dark
green).

Finally, the mode conversion efficiency, which computes the
normalized transmitted power that has been coupled to a given
mode M , is easily defined as:

ηM (ω) = T (ω)OM (ω).

III. NUMERICAL EXPERIMENTS

A. Straight rectangular waveguide

We consider a rectangular waveguide of lateral dimensions
a = 10.16 mm and b = 22.86 mm with PEC (Perfect Electric
Conductor) walls. The goal of this section is to propagate a
TE01 mode in it, and to assess the efficiency and accuracy of
the procedure described above. The operating frequency range
is [8, 10] GHz. We exploit a high-order DGTD method [5] on
an adequately-refined tetrahedral mesh. The incident field is
imposed on a Total-Field/Scattered-Field interface, separating
a total field region (in the center of the numerical domain)
from a scattered field region (before the input and after the
output). The mesh, shown in figure 2, is terminated on both
ends with a Perfectly-Matched Layer (PML) region to absorb
outgoing field.

As a first experiment, we consider the propagation of an
uncorrected polychromatic pulse, where frequency dependence
of Ê2D and β is not taken into account. Both the quantities are
approximated by their evaluation at the central frequency fc =
9 GHz. To evaluate the quality of the numerical treatment,
we simply consider the evaluation of the Ey component of
the electric field at a chosen probe point in the SF region.
Thanks to the use of TF/SF interfaces, for an unperturbed
waveguide the field should be identically equal to 0 in the
SF regions. In figure 3, we show a 3D snapshot of the field
during computation: the presence of field in the right SF region
indicates a mismatch between the numerical solution and the
expected exact solution. Such a result was to be expected, since
most frequencies in the pulse were numerically transported
with an erroneous propagation constant.

We now consider the ω dependence of the quantities in-
volved. The effective index of the mode is plotted in figure 4,
along with the resulting spectral power of the incident pulse.

In figure 5, we conduct the same experiment as before,
but using expression (2) for the omega-dependent quantities.
Using expression (4) gives nω = 24 for this computation.
A 3D snapshot of the computed electric field is shown in
figure 5. For a better comparison, we plot in figure 6 a
comparative time-domain plot of Ey in the right SF region,

Fig. 3. Snapshot of the Ey field during computation for an uncorrected
polychromatic pulse. The presence of field in the right SF region indicates
a mismatch between the numerical solution and the expected exact solution.
The field discontinuity at the interface between TF and SF regions is a natural
consequence of the TF/SF injection method. Field values are scaled in the
range [−1, 1] V/m.
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Fig. 4. TE01 mode index spectral power of the incident pulse in the
uncorrected and corrected approaches.

with and without the IDFT correction. As can be seen, taking
into account the ω dependance of the incident field and index
greatly improves the mode mismatch. The maximal L2 errors
on the electric field observed in the right SF region, with
and without mode correction, are shown in table I, along
with the corresponding CPU times. The computed error is 60
times lower with the mode correction, while the CPU times is
increased by 34%, thus confirming the interest of this method.

B. TE01-TE02 mode converter

We now consider a TE mode converter, as presented in
[6]. The converter is composed of a bent rectangular PEC
waveguide of dimensions a = 22.15 mm and b = 47.55 mm.
The bending is tailored for a theoretical power conversion of
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Fig. 5. Snapshot of the Ey field during computation with a corrected
polychromatic pulse. The absence of field in the right SF region indicates
that the transported numerical solution and the expected exact solution match.
Field values are scaled in the range [−1, 1] V/m.
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Fig. 6. Time-domain plots of the Ey field in the right SF region with a
corrected and an uncorrected pulse. We observe a very small residual error
with the corrected approach, due to the inaccuracies in the Inverse Discrete
Fourier Transform (IDFT).

100% at f = 8.5 GHz. The goal of this section is to assess the
converter efficiency in the [7.5, 8.5] GHz frequency range in a
single run, using the technique presented above. The effective
indices of the two modes in the selected frequency range are
shown in figure 7. As it shall be useful later, we also plot in
the latter figure the effective index of the TE10, which is the
only other mode which effective index is real in the frequency
range of interest. Following the results of the previous section,
nω is set to 24 for this experiment. The mode conversion
efficiency from TE01 to TE02 is computed following the details
of section II-D, and is shown in figure 8 for both pulses. As
expected, a peak efficiency of 1 is found for f = 8.5 GHz in
both cases, while it decays for lower frequencies. However, the
uncorrected approach overestimates the conversion rate from
roughly 2.5 % at the minimal frequency. The obtained results
are in line with what was found in [6]. Similarly to the previous
section, the CPU time is increased by roughly 30.5% when
using the mode-corrected source.

Snapshots illustrating the mode conversion are shown in
figure 9. The TE01 mode pulse is incoming from the left,
before being converted in a TE02 that leaves the computational

TABLE I
MAXIMAL L2 ERRORS AND CPU TIMES WITH AND WITHOUT MODE

CORRECTION.

Non-corrected Corrected

CPU time (s.) 101 135

Max. error 1.71× 10−1 2.83× 10−3
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Fig. 7. TE01, TE02 and TE10 modes effective indices. The selected
frequency range is indicated in light blue.
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Fig. 8. Computed mode conversion efficiency from TE01 to TE02 in the
selected frequency range with the uncorrected and the corrected pulses. As
expected, the same conversion efficiency is observed for f = 8.5 GHz. The
mode mismatch at the lowest frequency induces a 2.5% discrepancy in the
computed conversion rate.

domain from the right (full mesh is not shown here). To
complete the study, we compute the conversion efficiencies
ηTE01

and ηTE10
, i.e. the normalized amount of energy coupled

from the TE01 mode at the input to the TE01 and TE10

modes at the output. Results, presented in figure 10, show
that for lower frequencies, a non-negligible part of the pulse
is not converted to the TE02 mode. On the other hand, the
conversion rate to TE10 mode is identically 0. It should be
noted that a very low level of backscattering was observed in
the computations, hence it is not plotted here.

IV. CONCLUSION

In this paper, we provided a simple expression for the
computation of accurate polychromatic sources in waveguides.
Details about its practical use were also discussed, such
as the minimal frequency-domain sampling or the use of
TF/SF faces to impose it in the computational domain. The
computation of relevant figures of merit was also sketched.
The described procedure was then validated on a microwave-
regime rectangular waveguide, on which significantly low error
levels were observed. Finally, the method was applied to a real-
life mode converter, allowing to assess the device response on
a large bandwidth in a single computation.
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Fig. 9. Successive Ex field snapshots during the conversion of a
polychromatic TE01 mode to a TE02 mode. Full mesh is not shown here.
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Fig. 10. Computed mode conversion efficiency from TE01 at the input
to TE01, TE02 and TE10 modes at the output.
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