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Micro-Macro limit of a non-local generalized Aw-Rascle type model

Felisia Angela Chiarello1,3 Jan Friedrich2 Paola Goatin1

Simone Göttlich2

January 16, 2020

Abstract

We introduce a Follow-the-Leader approximation of a non-local generalized Aw-Rascle-Zhang
(GARZ) model for traffic flow. We prove the convergence to weak solutions of the corresponding
macroscopic equations deriving L∞ and BV estimates. We also provide numerical simulations
illustrating the micro-macro convergence and we investigate numerically the non-local to local
limit for both the microscopic and macroscopic models.
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1 Introduction

The first macroscopic traffic model was introduced more than sixty years ago by Lighthill, Whitham
and Richards (LWR) in [22, 23]. Since then, different ways to describe traffic flow phenomena have
been developed, using microscopic, mesoscopic and macroscopic modelling approaches.

In this work, we will consider generalizations of the LWR model. This is a first-order macro-
scopic model consisting of one scalar hyperbolic equation, that expresses the conservation of mass.
One well-known extension is the Aw-Rascle-Zhang (ARZ) model [2, 26], that is a macroscopic
second-order model, consisting of two hyperbolic equations expressing the conservation of mass
and momentum. In contrast to first order traffic flow models, second-order models consider differ-
ent velocity curves for different drivers. The ARZ second-order model has been improved in recent
years by the generalized Aw-Rascle-Zhang (GARZ) model [13]. The GARZ model is characterized
by a general relation between the traffic density and the empty road velocity. In particular, unlike
the classical ARZ model, one can define this relation in such a way that all drivers have a unique
maximum density at which they stop.

Other extensions of the LWR model involve non-local speed dependencies. In recent years, non-
local conservation laws have become of interest in modelling traffic flow [3, 5, 6, 14]. These models
take into account the look-ahead distance of drivers, such that vehicles adapt their speed with
respect to the downstream traffic. In literature, two different modelling approaches are proposed:
either drivers react to the mean downstream traffic density [3, 6], or to the mean downstream
velocity [5, 14]. The well-posedness of these models is proved in [6, 14].
Besides, the corresponding non-local microscopic models are investigated in [7, 16, 24]. In particu-
lar, [16] provides a rigorous micro-macro convergence proof, while [7, 24] analyze the convergence
of travelling waves and stationary wave profiles to the macroscopic models.

Microscopic traffic flow models are based on modelling each individual vehicle trajectory via a
system of Ordinary Differential Equations (ODEs). First order microscopic models are considered
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in [9, 15] and a second order microscopic model is introduced in [1] with a formal proof of its limit.
The rigorous proofs of convergence of the microscopic models to their macroscopic equivalent have
been obtained more recently, see [18, 12] for the LWR model and [11] for the ARZ model.

In this paper, we introduce a microscopic second order model with non-local interaction, we
derive the corresponding non-local macroscopic equations, resulting in a non-local GARZ model,
and we prove rigorously the micro-macro convergence. The paper is organized as follows. In Section
2, we describe a non-local microscopic second order model and we provide some relevant estimates
and properties. After that, we derive the corresponding macroscopic model in Section 3. Then, in
Section 4, we prove the convergence of the microscopic model to the macroscopic one. Finally, we
provide numerical tests illustrating the micro-macro convergence and analyzing the limit models
(micro and macro) as the look-ahead distance tends to zero.

2 Non-local GARZ follow-the-leader model

Non-local microscopic traffic flow models were introduced in [16, 24]. In these non-local FtL (Follow-
the-Leader) models the speed of the i−th car depends on a weighted mean downstream velocity
or downstream density, where the average is computed over an interval of length η in front of the
i−th car. Here, we focus on the model with a weighted downstream velocity [24], which readsẋi(t) =

∑Nη−1
j=0 γi,j(t)v

(
1

N(xi+j+1(t)−xi+j(t)

)
, i = 0, . . . , N − 1

ẋN (t) = vmax,
(2.1)

where xi(t) represents the position of the i-th car at time t, N + 1 is the total amount of cars and
1/(N + 1) can be interpreted as the length of each car. In addition, v(·) ∈ C2 is a velocity function
satisfying

v(0) = vmax, v(ρmax) = 0 and v′(ρ) < 0 for ρ ∈ [0, ρmax].

Formally the microscopic model (2.1) corresponds to the following macroscopic equation:

∂tρ+ ∂x

(
ρ

∫ x+η

x
Kη(y − x)v(ρ(t, y))dy

)
= 0,

for η > 0 and the following assumptions on the kernel function Kη:

K ′η(x) ≤ 0 and continuous on ]0, η[,

∫ η

0
Kη(x)dx = 1, Kη(x) = 0 ∀x /∈ [0, η]. (2.2)

The relation between the microscopic weights γi,j and the kernel function Kη is expressed by the
following equation:

γi,j(t) :=


∫ xi+j+1(t)

xi+j(t)
Kη(y − xi(t))dy, if i+ j ≤ N − 1,∫ xi(t)+η

min{xN (t),xi(t)+η}Kη(y − xi(t))dy, if i+ j = N,

0, if i+ j > N,

(2.3)

with the abuse of notation that
∫ a
a Kη(y)dy = 0. In addition Nη in (2.1) is chosen in such a way

that xi+Nη − xi ≥ η, e.g. Nη can be the smallest integer such that Nη ≥ (N + 1)η. Note that the
weights can be zero for j large (even if i+ j ≤ N).
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Our aim is to extend the first order microscopic model (2.1) and to derive a second order
model. Therefore we introduce the Lagrangian marker ω for each individual as a new variable into
the velocity function. The Lagrangian marker can be interpreted as an empty road velocity, which
might differ depending on individual driver types [13]. Here the classical Aw-Rascle-Zhang (ARZ)
model is extended by choosing a more general velocity function, obtaining the so called generalized
ARZ (GARZ) model.

We consider the following assumptions on the velocity function V (ρ, ω), as in [13]:

V (ρ, ω) ≥ 0, V (0, ω) = ω, V (ρ, 0) = 0, (2.4a)

for Q(ρ, ω) = ρV (ρ, ω) we have
∂2Q

∂ρ2
(ρ, ω) < 0 for ω > 0, (2.4b)

∂V

∂ω
(ρ, ω) > 0. (2.4c)

As stated in [13], the first assumption in (2.4a) ensures that vehicles never travel backwards,
while the second one shows why ω can be interpreted as the empty road velocity. (2.4b) implies
∂V
∂ρ (ρ, ω) < 0 for ω > 0, if V is a C2 function in ρ, see also [13, Lemma 1]. The assumption (2.4c)
means that a faster empty road velocity results in a faster velocity for all possible densities.

The main reason of introducing this more general velocity functions is to overcome a shortcoming
of the ARZ model. In fact, this latter model has a family of velocity curves and there is not a unique
maximum density at which the velocities are zero. Since the maximum density is a property of the
road, it should not depend on the velocity assumed by drivers. The GARZ model generalizes the
relations between density, Lagrangian marker and velocity, in order to ensure a unique maximum
density. In this way, we can choose a velocity function, for which there exists a unique maximum
density R, such that all cars stop at this density independently of their empty road velocity, i.e.

∃ R > 0 : V (R,ω) = 0, ∀ω > 0. (2.5)

During our work we will assume (2.4) and instead of (2.5) a weaker assumption, namely

∀ω > 0 ∃ Rω > 0 : V (Rω, ω) = 0. (2.6)

Inspired by the first order microscopic equations in (2.1) and introducing a constant in time La-
grangian marker for each individual driver ωi (see also [11]), we consider the following microscopic
equations for N + 1 vehicles to recover a second order model:{

ẋi(t) =
∑Nη−1

j=0 γi,j(t)Vi,j(t), i = 0, . . . , N,

ω̇i(t) = 0, i = 0, . . . , N,
(2.7)

where we define the velocity Vi,j as follows

Vi,j(t) =

V
(

1
N(xi+1+j(t)−xi+j(t)) , ωi+j(t)

)
, for i+ j ≤ N − 1

V
(
0, ωN−1(t)

)
= ωN−1(t), for i+ j > N − 1,

with the weights defined as in (2.3) and the assumptions (2.4) and (2.6) on V . For some strictly
positive constants ω0, . . . , ωN , we can write the model also as follows

ẋi(t) =

Nη−1∑
j=0

γi,j(t)Vi,j(t), i = 0, . . . , N (2.8)
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and the velocity Vi,j simplifies to

Vi,j(t) =

V
(

1
N(xi+1+j(t)−xi+j(t)) , ωi+j

)
, for i+ j ≤ N − 1

ωN−1, for i+ j > N − 1.

In the following we will show some properties of the microscopic model (2.8). These properties
are necessary to prove the convergence to the macroscopic model derived in Section 3.

2.1 Construction of initial positions

In order to solve the microscopic equation (2.7) (and also (2.1)) initial vehicle positions x0(0) <
· · · < xN (0) have to be prescribed. We define x0

i := xi(0).
Since we are interested in the convergence to a macroscopic model we describe how to create the
initial positions for a given initial density ρ0(x). We assume that the initial datum satisfies

ρ0(x) ∈ BV (R), ρ0(x) ≤ R, supp(ρ0) compact and connected. (2.9)

For simplicity, we normalize the total initial mass so that∫
R
ρ0(x) dx = 1.

Now we define moving vehicles, which follow our micro dynamics (2.7). Therefore, we set [x0
min, x

0
max]

as the closed convex hull of supp(ρ0) and for a fixed integer N we split up this interval into N
smaller intervals, such that the integral of ρ0 over each interval equals 1/N , i.e. x0

0 = x0
min and

x0
N = x0

max and we define recursively

x0
i = sup

{
x ∈ R :

∫ x

x0i−1

ρ0(x)dx <
1

N

}
, i = 1, . . . , N − 1.

The initial Lagrangian marker for each driver is obtained from an initial condition ω0(x) by

ω0
i = ess sup

[x0i ,x
0
i+1]

(ω0), i = 0, . . . , N − 1.

2.2 Weak Maximum Principle for the GARZ non-local micro-model

Let us denote byRi the solution to V (Ri, ωi) = 0 for a given positive constant ωi. Due to assumption
(2.6), Ri exists and can be interpreted as the individual maximum discrete density at which driver i
comes to stop. In addition, we denote by Li := 1

NRi
the individual minimum distance each car

keeps to the car in front of it. We will now prove that cars cannot overtake each other.

Proposition 1. Consider a sequence x0
0 < x0

1 < ... < x0
N and denote with x(t) = (x0(t), ..., xN (t))

the solution of (2.8). Let us assume (2.2) and (2.4). If x0
i+1− x0

i ≥ Li for all i = 0, ..., N − 1, then
it holds xi+1(t)− xi(t) ≥ Li for all times t > 0.

Proof. We prove that if for some t > 0 there holds xi+1(t) − xi(t) = Li and xj+1(t) − xj(t) ≥ Lj
for j > i, then ẋi+1(t)− ẋi(t) ≥ 0. If i = N − 1, we have

ẋN−1 = γN−1,0V (
1

N(xN (t)− xN−1(t))
, ωN−1) + (1− γN−1,0)ωN−1 ≤ ωN−1 = ẋN ,
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since V (ρ, ω) ≤ ω. If i < N − 1, observing that Vi+1,j(t) = Vi,j+1(t), we have

ẋi+1(t)− ẋi(t) =

Nη−1∑
j=0

γi+1,j(t)Vi+1,j(t)−
Nη−1∑
j=0

γi,j(t)Vi,j(t)

=

Nη−1∑
j=1

(
γi+1,j−1(t)− γi,j(t)

)
Vi,j(t)− γi,0(t)Vi,0(t) + γi+1,Nη−1(t)Vi,Nη(t).

Under our hypothesis all coefficients of Vi,j(t) are positive and also the velocities. In addition, we
have

Vi,0(t) = V

(
1

NLi
, ωi

)
= V (Ri, ωi) = 0

so that we can conclude that
ẋi+1(t)− ẋi(t) ≥ 0.

Remark 1. If we assume in addition to (2.2) and (2.4) also (2.6), the previous proposition implies
that the micro model has a unique maximum density R.

2.3 BV estimates for the GARZ non-local micro-model

Since we consider microscopic interactions between vehicles, it might be reasonable to assume that
the initial density is greater than zero in the interval between the position of the first vehicle and
the last one. We need this assumption to prove uniform BV bounds.

Assumption 1. We assume there exists ρmin > 0 such that ρ0(x) ≥ ρmin for all x ∈ supp(ρ0).

Lemma 1. Under Assumption 1, we obtain

N(xi+1(0)− xi(0)) ≤ 1

ρmin
.

Proof. From the definition of the initial conditions, following the computations in [10]

xi+1(0) = sup

{
x ∈ R :

∫ x

xi(0)
ρ0(x)dx <

1

N

}

≤ sup

{
x ∈ R :

∫ x

xi(0)
ρmin dx <

1

N

}

≤ sup

{
x ∈ R : (x− xi(0))ρmin =

1

N

}
=

1

Nρmin
+ xi(0).

This gives the desired estimate.

We want to obtain a bound on the distance between two consecutive cars by using Gronwall’s
inequality. For readability, let us define

R = max
i=0,...,N−1

Ri, vmax = max
i=0,...,N−1

ωi.
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Lemma 2. The following estimate holds for every t > 0:

xi+1(t)− xi(t) ≤
(
xi+1(0)− xi(0)

)
exp

(
tvmaxKη(0)

)
, i = 0, . . . , N − 1. (2.10)

Proof. We have

ẋi+1(t)− ẋi(t) =

Nη−1∑
j=1

(γi+1,j−1(t)− γi,j(t)︸ ︷︷ ︸
≥0

)Vi,j(t)− γi,0(t)Vi,0(t) + γi+1,Nη−1(t)Vi,Nη(t)

≤ vmax

Nη−1∑
j=1

(γi+1,j−1(t)− γi,j(t)) + γi+1,Nη−1(t)


= vmax

Nη−1∑
j=0

γi+1,j(t)−
Nη−1∑
j=1

γi,j(t)


= vmax

(
1− (1− γi,0)

)
= vmaxγi,0

= vmax

∫ xi+1(t)

xi(t)
Kη(y − xi(t))dy

≤ vmaxKη(0)
(
xi+1(t)− xi(t)

)
,

where we used the monotonicity of the kernel function. Applying Gronwall’s inequality, we get the
statement.

An immediate consequence of the two lemmas above are the following bounds:

N
(
xi+1(t)− xi(t)

)
≤ exp

(
tvmaxKη(0)

)
ρmin

, (2.11)

N
(
ẋi+1(t)− ẋi(t)

)
≤ Kη(0)vmax

exp
(
tvmaxKη(0)

)
ρmin

. (2.12)

Let us now define the microscopic density as

ρNi (t) :=
1

N(xi+1(t)− xi(t))
, i = 0, . . . , N − 1, (2.13)

and the corresponding piece-wise constant function

ρN (t, x) :=

N−1∑
i=0

ρNi (t)χ[xi(t),xi+1(t)[(x). (2.14)

Proposition 2. Let ρ0 satisfy (2.9) and Assumption 1. Then, for every N ∈ N one has

TV(ρN (t, ·)) ≤ TV(ρ0) exp

(∫ t

0
C(τ)dτ

)
,

where C(t) = vmaxKη(0)R
exp (tvmaxKη(0))

ρmin
, for T > 0.
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Proof. To simplify the notation, we will drop the index N in ρNi (t). Following the computations in
[10], the total variation is given by

TV (ρN (t, ·)) =ρ0(t) + ρN−1(t) +
N−2∑
i=0

|ρi+1(t)− ρi(t)|

=

N−2∑
i=1

ρi(t)
(
sgn(ρi(t)− ρi−1(t))− sgn(ρi+1(t)− ρi(t)

)︸ ︷︷ ︸
=:µi(t)

+

ρ0(t)
(
1− sgn(ρ1(t)− ρ0(t))

)︸ ︷︷ ︸
=:µ0(t)

+ρN−1(t)
(
1 + sgn(ρN−1(t)− ρN−2(t)

)︸ ︷︷ ︸
=:µN−1(t)

.

Therefore, we obtain

d

dt
TV (ρN (t, ·)) =

N−2∑
i=1

µi(t)ρ̇i(t) + µ0(t)ρ̇0(t) + µN−1(t)ρ̇N−1(t).

By (2.13), we get ρ̇i(t) = −Nρi(t)2
(
ẋi+1(t)− ẋi(t)

)
. Obviously, we have

µ0(t) =

{
0, if ρ1(t) > ρ0(t)

2, if ρ1(t) < ρ0(t).

In addition, recalling the definition of γ0,0 given by (2.3) and the monotonicity of the kernel function

ρ̇0(t) = −Nρ0(t)ρ0(t)
(
ẋ1(t)− ẋ0(t)

)
= ρ0(t)

1

x1(t)− x0(t)

Nη−1∑
j=1

(
γ0,j(t)− γ1,j−1(t)

)︸ ︷︷ ︸
≤0

V0,j(t) + γ0,0(t)V0,0(t)− γ1,Nη−1(t)V0,Nη(t)


≤ ρ0(t)

1

x1(t)− x0(t)
γ0,0(t)V0,0(t)

≤ ρ0(t)Kη(0)vmax.

Similarly, we have

µN−1(t) =

{
0, if ρN−1(t) < ρN−2(t)

2, if ρN−1(t) > ρN−2(t),

and

ρ̇N−1(t) = −NρN−1(t)ρN−1(t)
(
ẋN (t)− ẋN−1(t)

)
=

ρN−1(t)

xN (t)− xN−1(t)

(
γN−1,0(t)VN−1,0(t) + (1− γN−1,0(t))ωN−1 − ωN−1

)
=

ρN−1(t)

xN (t)− xN−1(t)
γN−1,0(t)

(
VN−1,0(t)− ωN−1

)
≤ ρN−1(t)Kη(0)vmax.

Finally,
N−1∑
i=1

µi(t)ρ̇i(t) =

N−2∑
i=1

µi(t)ρi(t)
(
−ρi(t)N

(
ẋi+1(t)− ẋi(t)

))
︸ ︷︷ ︸

=:Ii

.
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Following the computations above and applying (2.11) and (2.12), we obtain

|Ii| ≤ RiN
∣∣ẋi+1(t)− ẋi(t)

∣∣
≤ RiKη(0)vmaxN

(
xi+1(t)− xi(t)

)
≤ RiKη(0)vmax

exp
(
tvmaxKη(0)

)
ρmin

,

which gives
d

dt
TV (ρN (t, ·)) ≤ C(t)TV (ρN (t, ·))

with

C(t) = vmaxKη(0)R
exp

(
tvmaxKη(0)

)
ρmin

. (2.15)

Applying Gronwall’s inequality, we get the desired BV estimate.

Remark 2. The proof of the maximum principle and the BV estimates are also valid in the case
ωi = ω ∀i = 0, . . . , N − 1. This case corresponds to the first order setting of [24]. Therefore,
following the proof in section 4, an analogous convergence result can be obtained for the first order
non-local microscopic model (2.1).

Before giving the rigorous convergence proof in section 4, we derive the corresponding macro-
scopic model.

3 Formal derivation from microscopic equations

In the following, we formally derive the macroscopic system corresponding to the microscopic
dynamics (2.7). We will refer to the resulting macro model as “non-local GARZ model”. This is
given by ρt +

(
ρ
(
Kη ∗ V (ρ, ω)

))
x

= 0

ωt +
(
Kη ∗ V (ρ, ω)

)
ωx = 0,

(3.1)

where Kη ∗ V (ρ, ω)(t, x) :=
∫ x+η
x Kη(y − x)V (ρ(t, y), ω(t, y))dy.

Setting q = ρω, the model can be written in conservative form for ρ 6= 0 as
ρt +

(
ρ

(
Kη ∗ V

(
ρ, qρ

)))
x

= 0

qt +

(
q

(
Kη ∗ V

(
ρ, qρ

)))
x

= 0,

(3.2)

where the convolution product is defined as above.
Since the derivation of such macroscopic equations is not unique and straightforward, we present
our approach below, following mainly the ideas presented in [4, 19].
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3.1 From microscopic model to macroscopic model in Lagrangian coordinates

In addition to the microscopic density (2.13), we define

yi(t) =
1

ρi(t)
= N

(
xi+1(t)− xi(t)

)
.

Now let us consider the weights defined in (2.3) for the case i+ j ≤ N − 1, where we have

γi,j(t) =

∫ xi+j+1(t)−xi(t)

xi+j(t)−xi(t)
Kη(y)dy.

By having a closer look at the difference of xi+j and xi we obtain

xi+j(t)− xi(t) =

j−1∑
k=0

xi+j−k(t)− xi+j−k−1(t) =

j−1∑
k=0

1

Nρi+j−k−1(t)
.

Now we define the discretization for z, the Lagrangian coordinate, as zi = i
N ∈ [0, 1], i = 0, . . . , N ,

and the mapping

ρ(t, z) =

N−1∑
i=0

ρi(t)χ[zi,zi+1[(z),

in order to derive the limit of this piecewise constant function as in [19]. In this setting, z represents
the continuous number of a car and so ρ(t, z) the density at the car z. In addition ρ(t, z) = 0 for
z ≥ 1. Therefore, we have

j−1∑
k=0

1

Nρi+j−k−1(t)
=

j−1∑
k=0

∫ zi+(j−k) 1
N

zi+(j−k−1) 1
N

1

ρ(t, z)
dz =

∫ zi+j
1
N

zi

1

ρ(t, z)
dz.

We define now the Lagrangian marker and the velocity with respect to the Lagrangian coordinate
z, i.e.

ω̃(t, z) =

{
ω(t, x(t, z)) if z ∈ [0, 1[,

ω(t, x(t, 1)), if z ≥ 1,
Ṽ (t, z) =

{
V (ρ(t, z), ω(t, z)) if z ∈ [0, 1[,

V (0, ω(t, 1)), if z ≥ 1.

Using this we obtain

Nη−1∑
j=0

γi,j(t)Vi,j(t) =

min{N−1−i,Nη−1}∑
j=0

γi,j(t)Vi,j(t) + γi,N−i(t)Vi,N−i(t).

We note that if N − i ≥ Nη, then N − i ≥ ηN and therefore xN (t) − xi(t) ≥ η and γi,N−i(t) = 0.
Now we will deal with the first term:

min{N−1−i,Nη−1}∑
j=0

γi,j(t)Vi,j(t)

=

min{N−1−i,Nη−1}∑
j=0

Ṽ

(
t, zi + j

1

N

)∫ ∫ zi+(j+1) 1
N

zi
1

ρ(t,z)
dz

∫ zi+j 1
N

zi
1

ρ(t,z)
dz

Kη(y)dy

9



=

min{N−1−i,Nη−1}∑
j=0

Ṽ

(
t, zi + j

1

N

)∫ zi+(j+1) 1
N

zi+j
1
N

1

ρ(t, y)
Kη

(∫ y

zi

1

ρ(t, s)
ds

)
dy

=

∫ min{1,zi+Nη}

zi

1

ρ(t, y)
Kη

(∫ y

zi

1

ρ(t, s)
ds

)
Ṽ (t, y)dy,

where zi+Nη is defined as above as zi+Nη =
i+Nη
N , so it can be greater 1 and represents the number

of the car, which is at least η away, if such a car exists. The second term can be written as

γi,N−i(t)Vi,N−i(t) =

∫ η

min{x(t,1)−x(t,zi),η}
Kη(y)dy Ṽ

(
t, zi +

N − i
N

)
=

∫ η

min{x(t,1)−x(t,zi),η}
Kη(y)Ṽ (t, 1)dy

=

∫ η

min{x(t,1)−x(t,zi),η}
Kη(y)V (0, ω(t, y(t, 1)))dy,

where x is the corresponding Eulerian coordinate of car z.
From the microscopic system (2.7), it follows that{

ẏi(t) = N
∑Nη−1

j=0

(
γi+1,j(t)Vi+1,j(t)− γi,j(t)Vi,j(t)

)
,

ẇi(t) = 0.

Passing to the limit N → +∞, we obtain that this is only a rough semi-discretization of the
following 

∂ty(t, z) = ∂z

(∫ min{1,zη}
z

1
ρ(t,y)Kη(

∫ y
z

1
ρ(t,s)ds)V (ρ(t, y), ω(t, y))dy

+
∫ η

min{x(t,1)−x(t,zi),η}Kη(y)V (0, ω(t, y(t, 1)))dy
)
,

∂tw(t, z) = 0.

Using again the substitution rule and recalling that for an initial condition of compact support the
density is zero outside and the Lagrangian marker should be constant to its last value, when the
compact support of ρ ends, we get∂ty(t, z) = ∂z

∫ x(t,z)+η
x(t,z) Kη(y − x(t, z))V (ρ(t, z(t, y)), ω(t, z(t, y)))dy,

∂tw(t, z) = 0,
(3.3)

where we used the following relation for the substitution

∂zx =
1

ρ(t, z)
.

3.2 From Lagrangian to Eulerian coordinates

For brevity, let us define ν := Kη ∗ u. We can transform the macroscopic system (3.3) that we
obtained in Lagrangian coordinates (t, z) to Eulerian coordinates (t′, x) with

∂zx = y, ∂zt
′ = 0, ∂tx = ν, ∂tt

′ = 1.

Then, we obtain

∂ty(t′, x) = ∂t′y ∂tt
′ + ∂xy ∂tx = ∂t′y + ∂xy ν,

10



∂zv(t′, x) = ∂t′ν ∂zt
′ + ∂xν ∂zx = ∂xν y,

∂tω(t′, x) = ∂t′ω ∂tt
′ + ∂xω ∂tx = ∂t′ω + ∂xω ν.

Observing that

ρ(t′, x)(∂t′ω + ∂xω ν) + ω(t′, x)(∂t′ρ+ ∂x(ρν)) = ∂t′(ρ(t′, x)ω(t′, x)) + ∂x(ρ(t′, x)ν(t′, x)ω(t′, x))

and t′ = t, we get the following Eulerian system{
∂tρ+ ∂x(ρν) = 0,

∂t(ρω) + ∂x(ρων) = 0.
(3.4)

which is equivalent to (3.2).

4 Convergence

In the following we show that the micro dynamics (2.7) converges to a weak solution of the macro-
scopic equation (3.2). Weak solutions are intended in the following sense.

Definition 1 (Weak solutions). Let (ρ0, q0) ∈ BV(R). We say that a couple (ρ, q) of functions
ρ, q ∈ L∞([0,+∞[×R) ∩ C([0,∞[; L1(R)) is a weak solution of (3.2) if, for any test function
ϕ ∈ C∞c ([0,+∞[×R;R) and η > 0, it satisfies

∫
R+

∫
R

ϕt +

(
Kη ∗ V

(
ρ,
q

ρ

))
ϕx

 ·(ρ
q

)
dx dt+

∫
R
ϕ(0, x) ·

(
ρ0

q0

)
dx =

(
0
0

)
. (4.1)

In addition to the microscopic density (2.14) let us define analogous functions for the Lagrangian
marker and the conserved variable q:

ωN (t, x) =

N−1∑
i=0

ωiχ[xi(t),xi+1(t)[(x) and qN (t, x) =

N−1∑
i=0

ωi ρi(t)χ[xi(t),xi+1(t)[(x). (4.2)

Theorem 1. For any N ∈ N, let (ρN , qN ) be defined as in (2.14) and (4.2) and let η > 0 be a
fixed value independent of N . Then (ρN , qN ) converges up to a subsequence in C([0,+∞[; L1(R))
to a weak solution (ρ, q) of (3.2) coupled with an initial datum (ρ0, q0) ∈ BV(R).

Proof. For readability, we introduce the notation D+hi = hi+1 − hi. Observe that ρN is in L1(R),
since it is positive and

d

dt

∫
R
ρN (t, x) dx =

N−1∑
i=0

d

dt

∫ xi+1(t)

xi(t)
ρi(t) dx =

N−1∑
i=0

d

dt

((
xi+1(t)− xi(t)

)
ρi(t)

)
= 0,

due to the definition of ρi in (2.13).
Let ϕ = ϕ(t, x) be a smooth test function with compact support in [0,+∞[×R. Defining ϕ(t, xi) =
ϕi(t), we can compute∫

R+

∫
R
ρN (t, x)ϕt(t, x) dx dt+

∫
R
ρN (0, x)ϕ(0, x) dx

11



=

∫
R+

N−1∑
i=0

ρi(t)

∫ xi+1(t)

xi(t)
ϕt(t, x) dx dt+

∫
R
ρN (0, x)ϕ(0, x) dx

=

∫
R+

N−1∑
i=0

ρi(t) d
dt

(∫ xi+1(t)

xi(t)
ϕ(t, x) dx

)
− ρi(t)D+

(
ẋi(t)ϕi(t)

) dt+

∫
R
ρN (0, x)ϕ(0, x) dx

= −
∫
R+

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρ̇i(t)ϕ(t, x) dx−

N−2∑
i=0

D+
(
ρi(t)

)
ẋi+1(t)ϕi+1(t)

+ ρN−1(t)ẋN (t)ϕN (t)− ρ0(t)ẋ0(t)ϕ0(t)

 dt. (4.3)

Observing that ρ̇i(t) = −ρ2
i (t)N

(
ẋi+1(t)− ẋi(t)

)
, we can write

(4.3) =

∫
R+

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρ2
i (t)N

(
ẋi+1(t)− ẋi(t)

)
ϕ(t, x) dx

+
N−2∑
i=0

D+
(
ρi(t)

)
ẋi+1(t)ϕi+1(t)− ρN−1(t)ẋN (t)ϕN (t) + ρ0(t)ẋ0(t)ϕ0(t)

 dt. (4.4)

We note that for ϕ(t, x) with compact support in ]0,+∞[×R the above equation simplifies to∫
R+

∫
R
ρN (t, x)ϕt(t, x) dx dt = (4.4).

Choosing ϕ(t, x) = χ[t1,t2](t)ψ(x) for 0 < t1 < t2 < +∞ and a smooth test function ψ with |ψ| ≤ 1,
let ψi+1 = ψ(xi+1), using (4.3)-(4.4), we can write∣∣∣∣∫

R
(ρN (t2, x)− ρN (t1, x))ψ(x) dx

∣∣∣∣
=

∣∣∣∣∣∣
∫ t2

t1

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρ2
i (t)N

(
ẋi+1(t)− ẋi(t)

)
ψ(x) dx+

N−2∑
i=0

D+
(
ρi(t)

)
ẋi+1(t)ψi+1

− ρN−1(t)ẋN (t)ψN + ρ0(t)ẋ0(t)ψ0

 dt
∣∣∣∣∣∣

≤
∫ t2

t1

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρ2
i (t)N

∣∣ẋi+1(t)− ẋi(t)
∣∣ |ψ(x)| dx+

N−2∑
i=0

|D+
(
ρi(t)

)
| |ẋi+1(t)| |ψi+1|

+ ρN−1(t)|ẋN (t)| |ψN |+ ρ0(t) |ẋ0(t)| |ψ0|

 dt
≤
∫ t2

t1

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρ2
i (t)N

∣∣ẋi+1(t)− ẋi(t)
∣∣ dx+

N−2∑
i=0

|D+
(
ρi(t)

)
| |ẋi+1(t)|

+ ρN−1(t)|ẋN (t) + ρ0(t)|ẋ0(t)|

 dt
12



≤
∫ t2

t1

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρi(t)C(t) dx+ vmax

N−2∑
i=0

|D+
(
ρi(t)

)
|+ ρN−1(t) + ρ0(t)

 dt
≤
∫ t2

t1

C(t) + vmaxTV (ρN (t, )̇) dt

≤

C(t2) + vmaxTV (ρ0) exp

(∫ t2

0
C(τ)dτ

) (t2 − t1),

where C(t) is given by (2.15), see also (2.12), and we applied Proposition 2 to estimate the total
variation.
Approximating the characteristic function χ[t1,t2] with a smooth function, and taking the limit, we
still obtain the above estimate. This implies∥∥∥ρN (t1, x)− ρN (t2, x)

∥∥∥
L1(R)

= sup
|ψ|≤1

∫
R

(ρN (t2, x)− ρN (t1, x))ψ(x) dx ≤ (t2 − t1)

C(t2) + vmaxTV (ρ0) exp

(∫ t2

0
C(τ)dτ

) .

Now we can apply [17, Theorem A.8] to conclude that there exists a sequence {Nj}+∞j=1, Nj → +∞
as j → +∞, and a function ρ such that

ρNj → ρ in C([0,+∞[; L1(R)), as j → +∞ in L1
loc. (4.5)

In order to prove the limit lim
N→+∞

qN = q ∈ C([0,+∞[; L1(R)), in L1
loc, we have to observe that

according to [11, Proposition 1], we have

ωN (t, x)→ ω ∈ L∞loc(R+ × R) as N → +∞, in L1
loc.

In particular, this holds for every subsequence. In this way, considering (4.5), we can conclude that

qNj = ωNjρNj → q = ωρ in C([0,+∞[; L1(R)), as j → +∞ in L1
loc.

Therefore, the convergence of (ρN , qN ) to (ρ, q) up to a subsequence is ensured. Now we are left to
show that the limit is a weak solution of (3.2). Let us define with some abuse of notation

(Kη ∗ V )N (t, x) :=
N−1∑
i=0

Nη−1∑
k=0

γi,j(t)Vi,j(t)χ[xi(t),xi+1(t)[(x).

We compute∫ +∞

0

∫
R
ρN (t, x)

(
1

ωN (t, x)

)
(Kη ∗ V )Nϕx(t, x) dx dt

=

∫ +∞

0

N−1∑
i=0

ρi(t)

(
1
ωi

)
ẋi(t)

∫ xi+1(t)

xi(t)
ϕx(t, x) dx dt

=

∫ +∞

0

N−1∑
i=0

ρi(t)

(
1
ωi

)
ẋi(t)D

+
(
ϕi(t)

)
dt
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= −
∫ +∞

0

N−2∑
i=0

D+

ρi(t)( 1
ωi

)
ẋi(t)

ϕi+1(t)

− ρN−1(t)

(
1

ωN−1

)
ẋN−1ϕN (t) + ρ0(t)

(
1
ω0

)
ẋ0(t)ϕ0(t)

 dt
= −

∫ +∞

0


N−2∑
i=0

∫ xi+1(t)

xi(t)

ρ2
i (t)

(
1
ωi

)
ND+

(
ẋi(t)

)
ϕi+1(t)

+ ρi(t)ND
+

ρi( 1
ωi

) ẋi+1 ϕi+1(t)

 dx
− ρN−1(t)

(
1

ωN−1

)
ẋN−1(t)ϕN (t) + ρ0(t)

(
1
ω0

)
ẋ0(t)ϕ0(t)

 dt.

Following the calculations we used to obtain (4.4), we similarly get

∫ +∞

0

∫
R
ρN (t, x)

(
1

ωN (t, x)

)
ϕt(t, x) dx dt+

∫
R
ρN (0, x)

(
1

ωN (0, x)

)
ϕ(0, x) dx

=

∫ +∞

0

N−1∑
i=0

∫ xi+1(t)

xi(t)
ρ2
i (t)

(
1
ωi

)
N
(
ẋi+1(t)− ẋi(t)

)
ϕ(t, x) dx

+
N−2∑
i=0

D+

ρi(t)( 1
ωi

) ẋi+1(t)ϕi+1(t)− ρN−1(t)

(
1

ωN−1

)
ẋN (t)ϕN (t) + ρ0(t)

(
1
ω0

)
ẋ0(t)ϕ0(t)

 dt.
Then adding up both equations gives us∣∣∣∣∣∣
∫ +∞

0

∫
R

(
ρNϕt + ρN (Kη ∗ u)Nϕx(t, x)

)( 1
ωN

)
dx dt+

∫
R
ρN (0, x)

(
1

ωN (0, x)

)
ϕ(0, x) dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
∫ +∞

0

N−1∑
i=0

ρ2
i

(
1
ωi

)
N
(
ẋi+1(t)− ẋi(t)

) ∫ xi+1(t)

xi(t)

(
ϕ(t, x)− ϕ(t, xi+1)

)
dx

 dt
∣∣∣∣∣∣∣.

Now we observe that∣∣∣∣∣
∫ xi+1(t)

xi(t)

(
ϕ(t, x)− ϕ(t, xi+1)

)
dx

∣∣∣∣∣ ≤ ‖ϕx(t, ·)‖∞
(
xi+1(t)− xi(t)

)2
.

Using this we obtain∥∥∥∥∥∥
∫ +∞

0

∫
R

(
ρNϕt + ρN (Kη ∗ u)Nϕx

)( 1
ωN

)
dx dt+

∫
R
ρN (0, x)

(
1

ωN (0, x)

)
ϕ(0, x) dx

∥∥∥∥∥∥
≤
∫ +∞

0

N−1∑
i=0

max{1, vmax}
N2

C(t)
∥∥ϕx(t, ·)

∥∥
∞dt ≤

max{1, vmax}
N

TC(T ) sup
t∈[0,T ]

∥∥ϕx(t, ·)
∥∥
∞,
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where T > 0 is such that supp(ϕ) ⊂ [0, T ]×R. Obviously the right hand side converges to zero as
N → +∞. In this way, we can conclude that (ρ, q) is a weak solution.

Remark 3. We note that we have not only shown that the micro model (2.7) converges (up to a
subsequence) to a weak solution of (3.2), but also existence of weak solutions of the macro model.

5 Numerical simulations

5.1 Numerical schemes

We shortly present the numerical tools used to solve the microscopic equations (2.7) and the macro-
scopic system (3.2).
Since the microscopic equations (2.7) are just a system of ordinary differential equations we solve
this systems by solvers provided by MATLAB, e.g. ode45.
For the macroscopic equations, we recall that the system (3.2) is given by

ρt +

(
ρ
(
Kη ∗ V (ρ, qρ)

))
x

= 0

qt +

(
q
(
Kη ∗ V (ρ, qρ)

))
x

= 0.

Therefore, the two equations are only coupled via the non-local term, which has to be computed
for each time step. The two equations can then be approximated separately. This leads to consider
the upwind-type scheme introduced in [14]. The upwind flux is given by

Fn
j+ 1

2

= V n
j

(
ρnj
qnj

)
,

where

V =
j

bη/∆xc−1∑
k=0

γkV

(
ρj+k+1,

n
qnj+k+1

ρnj+k+1

)
and γk =

∫ (k+1)∆x

k∆x
Kη(y − x)dy.

The complete scheme is then given by(
ρn+1
j

qn+1
j

)
=

(
ρnj
qnj

)
− λ

(
Fn
j+ 1

2

− Fn
j− 1

2

)
. (5.1)

We note that this scheme is also in line with the Roe scheme presented in [25].
As CFL condition we choose an adaptive step size control determined by the maximum non-local
velocity, i.e. ∆tn ≤ ∆x/maxj V

n
j .

5.2 Micro to macro convergence

In this section we will numerically analyze the convergence of the micro dynamics (2.7) to the
macro model (3.2).
Here and in the following we will restrict ourselves to the velocity function V (ρ, ω) = ω−P (ρ) with
P (ρ) = 6ρ. Therefore, we analyze a non-local version of the ARZ model. The initial conditions are
Riemann initial conditions with the discontinuity being at x = 0 and

ρl = 0.05, ρr = 0.05, ωl = 0.35, ωr = 0.8.
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Figure 1: Solution of the microscopic for different N and macroscopic model at T = 1

Table 1: L1 errors and convergence rate (c.r.) to a reference solution for the density ρ

n 0 1 2 3 4 5 6

L1-error 3.30e-03 4.90e-04 3.16e-04 2.05e-04 1.31e-04 8.09e-05 4.52e-05
c.r. - 2.75 0.63 0.62 0.65 0.70 0.84

This test case corresponds to one of the examples presented in [1, 11].
We consider a linear kernel function and η = 0.1 for our test cases. We are interested in the solution
at the final time T = 1.
In Figure 1, we can see the solution in the interval [−1, 1] for different numbers of vehicles and the
macroscopic solution obtained by the scheme (5.1) for ∆x = 10−3. The number N corresponds to
the number of vehicles initially distributed in the interval [−1.5, 1.5]. In order to compare it to the
macroscopic model, we consider a zoom on the interval [−1, 1]. In addition, we set the velocity of
the leading vehicle equal to V (0.05, 0.8), such that the leading car has the velocity given by the
Riemann problem. As we can see the micro model converges to the solution of the macro model.

In addition, we analyze the convergence of the macroscopic scheme. Therefore, we compute a
fine reference solution with ∆x = 10−2 · 2−8 and determine the experimental order of accuracy in
the L1 norm for ∆x = 10−2 · 2−n, n = 0, . . . , 6. Due to the discontinuity of the Lagrangian marker
we restrict ourselves to the density. The error terms can be seen in Table 1 and demonstrate that
the numerical scheme (5.1) converges. In addition this justifies that we only consider the macro
solution for a fixed and small ∆x in the micro to macro convergence above.

5.3 Limits of the look ahead distance

For non-local traffic flow models the limit for η → 0 is of special interest, since the question of
convergence to classical traffic flow models is still unanswered, see [8]. For first order traffic flow
models, numerical examples suggest this convergence, see e.g. [14], but no general results can be
proven, since the BV estimates blow up (see [20] for a proof in the case of monotone initial data).
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Figure 2: Convergence for η → 0 of the microscopic model

Similarly, in the microscopic model, the estimate of Proposition 2 blows up for η → 0. On the other
hand for η < 1/N the convergence is obvious since the non-local microscopic model is equivalent
to the corresponding local model. For this reason, we consider η > 1/N and η → 0 for a fixed
N in the following and compare it to the local model. In addition, we show the behavior of the
macroscopic model for η → 0.
We consider N = 500, ∆x = 10−4 and η ∈ {0.4, 0.2, 0.1, 0.05, 0.025}. Figures 2 and 3 show the
results for the microscopic and macroscopic model, respectively. As can be seen in Figure 2, the
convergence can be observed for both the Lagrangian marker and the density for η → 0. The
solution of the microscopic ARZ model is computed by using the atomization scheme presented in
[11, Section 3]. In order to obtain the solution of the ARZ model, we use the Godunov scheme
presented in [21]. Similarly to the microscopic case, the macroscopic model seems to converge to
the solution of the ARZ model, see Figure 3.

Another interesting limit is the case η → +∞ as analyzed in [6] for a first order model. In
contrast to the limit η → 0, the BV estimates in Proposition 2 are still valid. Especially the C(t)
in (2.15) converges to 0 for η → +∞, such that the classical estimate is obtained. In order to study
the convergence, we consider now an initial condition with compact support, i.e.

ρ0(x) = 0.05 · 1[−0.5,0.5](x).

Due to the high computational cost, we consider ∆x = 10−2 and N = 100 for the simulations. The
empty road speed outside the compact support of the density is assumed to be the velocity of the
leading vehicle.
The Lagrangian marker exhibits the same discontinuity as in the examples above. In the first order
case, non-local traffic flow models tend to a classical LWR equation with maximum velocity. A very
similar convergence result can be obtained for both the microscopic (Figure 4) and macroscopic
level (Figure 5). We note that, in Figures 4 and 5, the x-axis are different, since the microscopic
density cannot be computed outside the compact support of the solution. In order to get more
meaningful figures, we zoom in for the microscopic solution. We obtain that the model converges
to the transport equation with the velocity given by the Lagrangian marker for x > 0, i.e. ωr = 0.8.
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Figure 3: Convergence for η → 0 of the macroscopic model
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Figure 4: Convergence for η →∞ of the microscopic model

6 Conclusion

Inspired by a first order microscopic model for non-local traffic flow and by the second order macro-
scopic GARZ traffic model, we derived a second order microscopic non-local traffic model. This
model inherits a maximum principle. Under suitable assumptions on the initial condition, we
proved that the corresponding discrete density function has bounded total variation. Therefore,
we could prove the convergence to a weak solution of a new macroscopic non-local second order
GARZ model, for which we thus prove existence of weak solutions. Numerical examples sustain the
theoretical results about the micro to macro convergence. In addition, we show the behavior of the
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Figure 5: Convergence for η → +∞ of the macroscopic model

micro and macros models when the look-ahead distance goes to zero. Similarly to the first order
case, the model seems to converge to the corresponding local model. If the look-ahead distance
goes to infinity under suitable assumptions on the Lagrangian marker, the model seems to converge
to the solution of two linear transport equation.
Future works will include a deeper analysis of the second order non-local GARZ model and exten-
sions to networks.
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