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Abstract

Sparse interpolation refers to the exact recovery of a function as a short linear combination of basis
functions from a limited number of evaluations. For multivariate functions, the case of the monomial
basis is well studied, as is now the basis of exponential functions. Beyond the multivariate Chebyshev
polynomial obtained as tensor products of univariate Chebyshev polynomials, the theory of root systems
allows to define a variety of generalized multivariate Chebyshev polynomials that have connections to
topics such as Fourier analysis and representations of Lie algebras. We present a deterministic algorithm
to recover a function that is the linear combination of at most r such polynomials from the knowledge
of 7 and an explicitly bounded number of evaluations of this function.
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Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials

1 Introduction

The goal of sparse interpolation is the exact recovery of a function as a short linear combination of elements
in a specific set of functions, usually of infinite cardinality, from a limited number of evaluations, or other
functional values. The function to recover is sometimes refered to as a blackbox: it can be evaluated, but
its expression is unknown. We consider the case of a multivariate function f(x1,...,x,) that is a sum of
generalized Chebyshev polynomials and present an algorithm to retrieve the summands. We assume we know
the number of summands, or an upper bound for this number, and the values of the function at a finite set
of well chosen points.

Beside their strong impact in analysis, Chebyshev polynomials arise in the representation theory of simple
Lie algebras. In particular, the Chebyshev polynomials of the first kind may be identified with orbit sums
of weights of the Lie algebra sly and the Chebyshev polynomials of the second kind may be identified with
characters of this Lie algebra. Both types of polynomials are invariant under the action of the symmetric
group {1,-1}, the associated associated Weyl group, on the exponents of the monomials. In presentations
of the theory of Lie algebras (c.f., [11, Ch.5,§3]), this identification is often discussed in the context of the
associated root systems and we will take this approach. In particular, we define the generalized Chebyshev
polynomials associated to a root system, as similarly done in [27, 41, 43, 46]. Several authors have already
exploited the connection between Chebyshev polynomials and the theory of Lie algebras or root systems
(e.g., [18], [47], [57]) and successfully used this in the context of quadrature problems [38, 42, 44, 46] or
differential equations [53].

A forebear of our algorithm is Prony’s method to retrieve a univariate function as a linear combination of
exponential functions from its values at equally spaced points [51]. The method was further developed in a
numerical context [48]. In exact computation, mostly over finite fields, some of the algorithms for the sparse
interpolation of multivariate polynomial functions in terms of monomials bear similarities to Prony’s method
and have connections with linear codes [8, 3]. General frameworks for sparse interpolation were proposed
in terms of sums of characters of Abelian groups and sums of eigenfunctions of linear operators [19, 25].
The algorithm in [35] for the recovery of a linear combination of univariate Chebyshev polynomials does
not fit in these frameworks though. Yet, as observed in [5], a simple change of variables turns Chebyshev
polynomials into Laurent polynomials with a simple symmetry in the exponents. This symmetry is most
naturally explained in the context of root systems and Weyl groups and leads to a multivariate generalization.

Previous algorithms [5, 22, 30, 35, 49] for sparse interpolation in terms of Chebyshev polynomials of one
variable depend heavily on the relations for the products, an identification property, and the commutation
of composition. We show in this paper how analogous results hold for generalized Chebyshev polynomials of
several variables and stem from the underlying root system. As already known, expressing the multiplication
of generalized Chebyshev polynomials in terms of other generalized Chebyshev polynomials is presided over
by the Weyl group. As a first original result we show how to select n points in Q" so that each n-variable
generalized Chebyshev polynomial is determined by its values at these n points (Lemma 2.25, Theorem 2.27).
A second original observation permits to generalize the commutation property in that we identify points
where commutation is available (Proposition 3.4).

To provide a full algorithm, we revisit sparse interpolation in an intrinsically multivariate approach that
allows one to preserve and exploit symmetry. For the interpolation of sparse sums of Laurent monomials the
algorithm presented (Section 3.1) has strong ties with a multivariate Prony method [34, 45, 55]. Tt associates
to each sum of r monomials f(x) = ¥, aez®, where z* = 27 ...20" and a, in a field K, a linear form
Q: Kl[z,z7'] - K given by Q(p) = ¥, aap(Ca) where ¢, = (£%1,...,£%) for suitable £&. This linear form
allows us to define a Hankel operator from K[z,27!] to its dual (see Section 4.1) whose kernel is an ideal
I having precisely the (, as its zeroes. The (, can be recovered as eigenvalues of multiplication maps on
K[z,r7']/I. The matrices of these multiplication maps can actually be calculated directly in terms of the
matrices of a Hankel operator, without explicitly calculating I. One can then find the {, and the a, using
only linear algebra and evaluation of the original polynomial f(z) at well-chosen points. The calculation of
the (a1,...,ay) is then reduced to the calculation of logarithms.
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The usual Hankel or mixed Hankel-Toepliz matrices that appeared in the literature on sparse interpolation
[8, 35] are actually the matrices of the Hankel operator mentioned above in the different univariate polynomial
bases considered. The recovery of the support of a linear form with this type of technique also appears in
optimization, tensor decomposition and cubature [2, 9, 13, 15, 36, 37]. We present new developments to take
advantage of the invariance or semi-invariance of the linear form. This allows us to reduce the size of the
matrices involved by a factor equal to the order of the Weyl group (Section 4.3).

For sparse interpolation in terms of Chebyshev polynomials (Section 3.2 and 3.3), one again recasts this
problem in terms of a linear form on a Laurent polynomial ring. We define an action of the Weyl group on
this ring as well as on the underlying ambient space and note that the linear form is invariant or semi-invariant
according to whether we consider generalized Chebyshev polynomials of the first or second kind. Evaluations,
at specific points, of the function to interpolate provide the knowledge of the linear form on a linear basis
of the invariant subring or semi-invariant module. In the case of interpolation of sparse sums of Laurent
monomials the seemingly trivial yet important fact that (6%)* = (€%)# is crucial to the algorithm. In the
multivariate Chebyshev case we identify a family of evaluation points that provides a similar commutation
property in the Chebyshev polynomials (Lemma 3.4).

Since the linear form is invariant, or semi-invariant, the support consists of points grouped into orbits of
the action of the Weyl group. Using tools developed in analogy to the Hankel formulation above, we show
how to recover the values of the fundamental invariants (Algorithm 4.15) on each of these orbits and, from
these, the values of the Chebyshev polynomials that appear in the sparse sum. Furthermore, we show how
to recover each Chebyshev polynomial from its values at n carefully selected points (Theorem 2.27).

The relative cost of our algorithms depends on the linear algebra operations used in recovering the support
of the linear form and the number of evaluations needed. Recovering the support of a linear form on the
Laurent polynomial ring is solved with linear algebra after introducing the appropriate Hankel operators.
Symmetry reduces the size of matrices, as expected, by a factor the order of the group. Concerning evalu-
ations of the function to recover, we need evaluations to determine certain sunbmatrices of maximum rank
used in the linear algebra component of the algorithms. To bound the number of evaluations needed, we
rely on the interpolation property of sets of polynomials indexed by the hyperbolic cross (Proposition 4.5,
Corollary 4.12), a result generalizing the case of monomials in [55]. The impact of this on the relative costs
of the algorithms is discussed in Section 3.4.

The paper is organized as follows. In Section 2, we begin by describing the connection between univariate
Chebyshev polynomials and the representation theory of traceless 2 x 2 matrices. We then turn to the mul-
tivariate case and review the theory of root systems needed to define and work with generalized Chebyshev
polynomials. The section concludes with the first original contribution: we show how an n-variable Cheby-
shev polynomial, of the first or second kind, is determined by its values on n special points. In Section 3 we
show how multivariate sparse interpolation can be reduced to retrieving the support of certain linear forms
on a Laurent polynomial ring. For sparse interpolation in terms of multivariate Chebyshev polynomials of
the first and second kind, we show how we can consider the restriction of the linear form to the ring of in-
variants of the Weyl group or the module of semi-invariants. In addition, we discuss some of the costs of our
algorithm as compared to treating generalized Chebyshev polynomials as sums of monomials. In Section 4
we introduce Hankel operators and their use in determining algorithmically the support of a linear form
through linear algebra operations. After reviewing the definitions of Hankel operators and multiplication
matrices in the context of linear forms on a Laurent polynomial ring, we extend these tools to apply to linear
forms invariant under a Weyl group and show how these developments allow one to scale down the size of
the matrices by a factor equal to the order of this group. Throughout these sections we provide examples to
illustrate the theory and the algorithms. In Section 5 we discuss the global algorithm and point out some
directions of further improvement.

Acknowledgment: The authors wish to thank the Fields institute and the organizers of the thematic program on
computer algebra where this research was initiated. They also wish to thank Andrew Arnold for discussions on sparse
interpolation and the timely pointer on the use of the hypercross in the multivariate case.
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Sparse Interpolation in Terms of Multivariate Chebyshev Polynomials

2 Chebyshev polynomials

In this section we first discuss how the usual Chebyshev polynomials arise from considerations concerning
root systems and their Weyl group. This approach allows us to give higher dimensional generalizations of
these polynomials [27, 46]. We review the results about root systems and representation theory allowing us
to define the generalized Chebyshev polynomials of the first and second kind. This section concludes with
the first original result in this article necessary to our purpose: we show how one can determine the degree
of a Chebyshev polynomial from its values at few well chosen points.

2.1 Univariate Chebyshev polynomials
The univariate Chebyshev polynomials of the first and second kind arise in many contexts; approximation
theory, polynomial interpolation, and quadrature formulas are examples. A direct and simple way to define

these polynomials is as follows.

Definition 2.1 1. The Chebyshev polynomials of the first kind, {Tn(x) | n=0,1,2,...}, are the unique
monic polynomials satisfying

-1 n -n
T, (cos(0)) =cos(nf) or T, (I +2;z: ) -2 +23:

2. The Chebyshev polynomials of the second kind, {U,(z) | n = 0,1,2,...}, are the unique monic poly-
nomials satisfying
_sin((n+1)0)

Un(cos(ﬂ))—w or U,

(:C + 1,1) ~ x(n+1) _ l.—(nJrl) 9 9m Y
1 .

= ="+ i+
2 Tr—x”

The second set of equalities for T,, and U,, are familiar when written in terms of x = %

since cosnf =
%(eme + e’me) and sin(nf) = %(em(’ - e’m&). We introduced these equalities in terms of x for a clearer

connection with the following sections.

These polynomials also arise naturally when one studies the representation theory of the Lie algebra sla(C)
of 2 x 2-matrices with zero trace [18, 57]. Any representation 7 : sla(C) — gl,(C) is a direct sum of
irreducible representations. For each nonnegative integer n, there is a unique irreducible representation
7 ¢ 8la(C) — gl,,,1(C) of dimension n + 1 (see [56, Capitre IV] for a precise description). Restricting
this representation to the diagonal matrices {diag(a,-a) | a € C}, this map is given by 7, (diag(a, —a)) =
diag(na, (n-2)a, ..., (2-n)a, -na). Each of the maps diag(a, —a) » ma, form=n,n-2,...,2-n, -n
is called a weight of this representation. The set of weights appearing in the representations of sla(C) may
therefore be identified with the lattice of integers in the one-dimensional vector space R. The group of
automorphisms of this vector space that preserves this lattice is precisely the two element group {id,o}
where id(m) =m and o(m) = -m. This group is called the Weyl group W.

We now make the connection between Lie theory and Chebyshev polynomials. Identify the weight corre-
sponding to the integer m with the weight monomial ™ in the Laurent polynomial ring Z[x,27'] and let
the generator o of the group W act on this ring via the map o - 2™ = (™). For each weight monomial
™, m >0, we can define the orbit polynomial

Op(z)=am™+a2™

and the character polynomial

En(z) =™ +2™ 2+ 4t

Friday 24*" January, 2020 5



E. Hubert & M.F. Singer

Note that for each m, both of these polynomials lie in the ring of invariants Z[z,z71]" = Z[x + 271] of
the Weyl group. Therefore there exist polynomials T},(X) and U, (X) such that ©,(z) = T,,(z + 27') and
Z,(x) = Uy(z + 271). The Chebyshev polynomials of the first and second kind can be recovered using the
formulas

T (X) = %Tn(QX) and T, (X) = U (2X).

The previous discussion shows how the classical Chebyshev polynomials arise from representation of a
semisimple Lie algebra and the action of the Weyl group on a Laurent polynomial ring. As noted above, this
discussion could have started just with the associated root system and its Weyl group and weights. This is
precisely what we do in Section 2.3 and 2.4 where we define a generalization of these polynomials for any
(reduced) root system.

2.2 Root systems and Weyl groups
We review the definition and results on root systems that are needed to define generalized Chebyshev
polynomials. These are taken from [11, Chapitre VI],[26, Chapter 8] or [56, Chapitre V] where complete

expositions can be found.

Definition 2.2 Let V be a finite dimensional real vector space with an inner product {-,-) and R a finite
subset of V. We say R is a root system in V if

1. R spans V and does not contain 0.

2. If p,p e R, then s,(p) € R, where s, is the reflection defined by s,(v) = -2 E%p; p, YeV.
P, p
3 Forall p.peR, 2322 ¢ 7.
{p.p)

4. If pe R, and ce R, then cp € R if and only if ¢ = +1.

The definition of s, above implies that (s,(u),s,(v)) = (u,v) for any p,v e V.

In many texts, a root system is defined only using the first three of the above conditions and the last condition
is used to define a reduced root system. All root systems in this paper are reduced so we include this last
condition in our definition and dispense with the adjective “reduced”. Furthermore, some texts define a root
system without reference to an inner product (c.f. [11, Chapitre VI],[56, Chapitre V]) and only introduce an
inner product later in their exposition. The inner product allows one to identify V with its dual V* in a
canonical way and this helps us with many computations.

Definition 2.3 The Weyl group W of a root system R in V' is the subgroup of the orthogonal group, with
respect to the inner product (-,-), generated by the reflections s,, p € R.

One can find a useful basis of the ambient vector space V' sitting inside the set of roots :
Definition 2.4 Let R be a root system.

1. A subset B={p1,...,pn} of R is a base if

(a) B is a basis of the vector space V.

(b) Every root u € R can be written as = q1p1+...+Qppn OF 4 = —Q1p1 —. . . — Qi Py, for some o € N™.

6 Friday 24*" January, 2020
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2. If B is a base, the roots of the form = a1p1 + ...+ aynpn for some o € N are called the positive roots
and the set of positive roots is denoted by R*.

A standard way to show bases exist (c.f. [26, Chapter 8.4],[56, Chapitre V,§8]) is to start by selecting a
hyperplane H that does not contain any of the roots and letting v be an element perpendicular to H. One
defines R* = {p e R | {v,p) > 0} and then shows that B={p e R* | p # p’ + p” for any pair p’,p"” € R*}, the
indecomposable positive roots, forms a base. For any two bases B and B’ there exists a o € W such that
o(B) = B’. We fix once and for all a base B of R.

The base can be used to define the following important cone in V.

Definition 2.5 The closed fundamental Weyl chamber in V' relative to the base B = {p1,...,pn} is M =
{veV | (v,p;) >0}. The interior of M is called the open fundamental Weyl chamber.

Of course, different bases have different open fundamental Weyl chambers. If L; is the hyperplane perpendic-
ular to an element p; in the base B, then the connected components of V —Uj%; L; correspond to the possible
open fundamental Weyl chambers. Furthermore, the Weyl group acts transitively on these components.

The element

oo P

(p;p)

that appears in the definition of s, is called the coroot of p. The set of all coroots is denoted by RY and
this set is again a root system called the dual root system with the same Weyl group as R [11, Chapitre VI,
§1.1],[26, Proposition 8.11]. If B is a base of R then BY is a base of R.

A root system defines the following lattice in V', called the lattice of weights. This lattice and related concepts
play an important role in the representation theory of semisimple Lie algebras.

Definition 2.6 Let B ={p1,...,p,} the base of R and BY = {pY,...,p,;} its dual.

1. An element p of V' is called a weight if

oty =2 2P) g
(Pmpz‘)

fori=1,...,n. The set of weights forms a lattice called the weight lattice A.
2. The fundamental weights are elements {w1,...,wy,} such that (wi, p}) = 0;,i,5=1,...,n.

3. A weight p is strongly dominant if (u, p;) >0 for all p; € B. A weight p is dominant if (u,p;) >0 for
all p; € B, i.e., e M.

Weights are occasionally referred to as integral elements, [26, Chapter 8.7]. In describing the properties of
their lattice it is useful to first define the following partial order on elements of V' [29, Chapter 10.1].

Definition 2.7 For vi,vs € V, we define vy > vy if v1 — v IS a sum of positive roots or vy = vg, that is,
v) —vg = Yoy ngp; for some n; € N.

The following proposition states three key properties of weights and of dominant weights which we will use
later.

Proposition 2.8 1. The weight lattice A is invariant under the action of the Weyl group W.

2. Let B={p1,...,pn} be a base. If p is a dominant weight and o € W, then > o(u). If p is a strongly
dominant weight, then o(u) = p if and only if o is the identity.
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1 n
3. 0= 3 z p is a strongly dominant weight equal to Zwi.
peR* i=1

4. If py and po are dominant weights, then (puy, u2) > 0.

PROOF: The proofs of items 1., 2., and 3. may be found in [29, Section 13.2 and 13.3]. For item 4. it
is enough to show this when py and py are fundamental weights since dominant weights are nonnegative
integer combinations of these. The fact for fundamental weights follows from Lemma 10.1 and Exercise 7 of
Section 13 of [29] (see also [26, Proposition 8.13, Lemma 8.14]). m

Example 2.9 The (reduced) root systems have been classified and presentations of these can be found in
many texts. We give three examples, Aj, As, By, here. In most texts, these examples are given so that the
inner product is the usual inner product on Euclidean space. We have chosen the following representations
because we want the associated weight lattices (defined below) to be the integer lattices in the ambient
vector spaces. Nonetheless there is an isomorphism of the underlying inner product spaces identifying these
representations.

Ay. This system has two elements [2],[-2] in V = R'. The inner product given by (u,v) = fuv. A base is

given by py = [2]. The Weyl group has two elements, given by the matrices [1] and [—1].

As. This system has 6 elements :t[2 —l]T, :!:[—1 2]T, :t[l 1]T € R? when the inner product is given by

(u,v) = u"Sv where
112 1

A base is given by p1 = [2 —l]T and po = [—1 Q]T. We have (p;, p;) = 2 so that p; = p; for i = {1,2}.
The Weyl group is of order 6 and represented by the matrices

1R | R P ey L

Ay Ag

where A1 and Ay are the reflections associated with p; and ps. We implicitly made choices so that
the fundamental weights are wi = [1 O]T and wy = [O 1]T. The lattice of weights is thus the integer
lattice in R? and orbits of weights are represented in Figure 2.1.

Bs. This system has 8 elements i[Q —2]T, :I:[—l Q]T, :i:[O Q]T, :I:[l O]T when the inner product is given
by {u,v) = u"Sv where
1(2 1
5-1 [1 1].

A base is given by p; = [2 —Q]T and psy = [—1 2]T. We have {p1,p1) = 2 and (p2,p2) = 1. Hence
py = p1 and py =2 py. The Weyl group is of order 8 and represented by the matrices

1 0 -1 0 1 1 1 1 -1 -1 -1 -1 1 0 -1 0
o112 1|lo -1|f-2 1|2 1|]o 1|]-=2-1]]o0o 1]
We implicitly made choices so that the fundamental weights are wy = [1 OT and wy = [0 1]T. The

lattice of weights is thus the integer lattice in R? and orbits of weights are represented in Figure 2.1.
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Convention: We will always assume that the root systems are presented in such a way that the associated
weight lattices are the integer lattice. This implies that the associated Weyl group lies in GL,,(Z).

We may assume that there is a matrix S with rational entries such that < v,w >=v"Sw. This is not obvious
from the definition of a root system but follows from the classification of irreducible root systems. Any root
system is the direct sum of orthogonal irreducible root systems ([29, Section 10.4]) and these are isomorphic
to root systems given by vectors with rational coordinates where the inner product is the usual inner product
on affine space [11, Ch.VI, Planches I-IX]. Taking the direct sum of these inner product spaces one gets an
inner product on the ambient space with S having rational entries. For the examples we furthermore choose
S so as to have the longest roots to be of norm 2.

[ ]
oo
[ ]
oooao 15
| | [ ] | |
oooooao
EEEROEREDR
a oo a
EEEEOERENN
ooDOoOoDOoOooD
EeoeENEEROEREDRN | |
o oo
u °
a a
LR 2R 4 ® 600 99 -
L NG 2R 2R 2N BR 2 €34
L 2R JNOIR 2% 2% 4 L 2K JAONK 2R 2
L 2R 4 LR 69 & L 4
L 2R 2R 2R 2 LR S EETONE SR 2% 2R 2 o 6
¢ m 66w O & m d44 = e EEmE ° EEE
L 2R 2 LR 2R IR 2R <% L 2 IR 2R 4 ooooooé9OooDoOOOnDOaO
* * L L IR JNOR LICEE S BE 25 2% 2% 2R 2 smsEn eEomNEERETSR
O o0 o445 Ooo0oago ooo
L 2R 2R 4 ®EO0PmOeOem SOoO EmEém-ermemmm
OO oo o
‘9‘8§7&§‘4‘302‘lll% R XN RER R [ ] EEEOEEEGOR
* * *E D EOOE OO O O oooooooo
LR L IR 2R 5T IR 2R ST L IR AR 2 clopmEREeRREESR
a oo a
L LR 2R 2N VION N ) O LI 4 aEmmoemmnm
® 6 Oo5) m OO [O28 2% 2% 2% 4 oooooo
® 469 o L IR 4 * EEmennm
L 2R FER 2R 2% 4 L 2K JNORE 2R 2 -15 oooao
P ¢S omee OO 'D
-9 ¢ ¢ L 2R 2R 2R 4 .

Figure 2.1: As-orbits and Bs-orbits of all a € N? with |a| < 9. Elements of an orbit have the same shape
and color. The orbits with 3, or 4, elements are represented by circles, the orbits with 6, or 8, elements by
diamonds or squares. Squares and solid disc symbols are on the sublattice generated by the roots.

2.3 Generalized Chebyshev polynomials of the first kind

As seen in Section 2.1, the usual Chebyshev polynomials can be defined by considering a Weyl group acting on
the exponents of monomials in a ring of Laurent polynomials. We shall use this approach to define Chebyshev
polynomials of several variables as in [27, 46]. This section defines the generalized Chebyshev polynomials
of the first kind. The next section presents how those of the second kind appear in the representations of
simple Lie algebras.

Let A and W be the weight lattice and the Weyl group associated to a root system. With wy,...,w, the
fundamental weights, we identify A with Z" through w — « = [a1,...,a,]" where w = ajwi + ... + QpWwy.

An arbitrary weight w = ajwi +... + a,w, € A is associated with the weight monomial x® = x{* ... 28",
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In this way one sees that the group algebra Z[A] can be identified with the Laurent polynomial ring
Z[zy1,. .., on, 27 .. 2] = Z[z,271]. The action of W on A makes us identify W with subgroup of GL,,(Z).

* n

Let K be a field of characteristic 0 and denote K \ {0} by K*. The linear action of W on K[z*] =
K[z, ..., Tn, 27", ..., ;'] is defined by

: WxK[z*] - K[z*] . (2.1)
(A, %)  —» A-z*=z4°

We have (A- f)(z) = f(2). One can see the above action on K[z*] as induced by the (nonlinear) action
on (K*)™ defined by the monomial maps:

W ®)r > (K 1 ) ) (2.2)
(A, Q) = AxC=[Cr..s Gt :[<A37.__7<A;,]

where A7! is the i-th column vector of A™*. Such actions are sometimes called multiplicative actions [39,
Section 3.

For a group morphism x : W - C*, «, 8 € Z" we define

TX = x(B " (2.3)
Bew

One sees that A- WX = U% = x(A) UX. Two morphisms are of particular interest: y(A) =1 and x(A4) =
det(A). In either case (x(A))? =1 for all AeW. In the former case we define the orbit polynomial ©,. In
the latter case we use the notation Y.

On= ). B and T, = > det(B) 2P, (2.4)
Bew Bew

where we used the simplificaion det(B™!) = det(B).
Proposition 2.10 We have

O @B = Z ®a+Bﬁ7 Tao 96 = Z TOH—BB) To TB = Z det(B) ®a+B,B-
Bew Bew Bew

PROOF: This follows in a straightforward manner from the definitions. m

Note that O, is invariant under the Weyl group action: ©, = A- 0O, = © 44, for all A € W. The ring of all
invariant Laurent polynomials is denoted Z[x,271]"Y. This ring is isomorphic to a polynomial ring for which
generators are known [11, Chapitre VI, §3.3 Théoréme 1].

Proposition 2.11 Let {w1,...,w,} be the fundamental weights.

1. {O,,,...,0., } is an algebraically independent set of invariant Laurent polynomials.

2. Z[z,z™ 'V = Z[Oy,,...,0.,]

We can now define the multivariate generalization of the Chebyshev polynomials of the first kind (cf. [27],
[41], [43], [46])

Definition 2.12 Let o € N" be a dominant weight. The Chebyshev polynomial of the first kind associated
to « is the polynomial T,, in K[X]=K[Xy,...X,,] such that O, = T,(Oy,,...,Ou, ).
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We shall usually drop the phrase “associated to «” and just refer to Chebyshev polynomials of the first kind
with the understanding that we have fixed a root systems and each of these polynomials is associated to a
dominant weight of this root system.

Example 2.13 Following up on Example 2.9.

Ai : As we have seen in Section 2.1, these are not the classical Chebyshev polynomials strictly speaking,
but become these after a scaling.

Ao+ We can deduce from Proposition 2.10 the following recurrence formulas that allow us to write the
multivariate Chebyshev polynomials associated to Ay in the monomial basis of K[ X,Y]. We have

To,0 = 6; Tio=X, To1=Y; 4Ty, = XY - 12;
and for a,b >0
2T 02,0 =XTo410-4T4 1, 2T0,p42 =Y Ty — 4T p;
2Ta+1,b =X Ta7b - 2T1<J,,l)+1 - 2T‘a,b—h 2T‘a,b+1 = YTa,b - 2T‘a-*—l,b—l - 2T‘a—l,b—1~

For instance
Too=3X?-2Y, Ty1=31YX-3 Too=31Y>-2X;
_1v3 3 71 2 1v2 1 _1 2 1"y2 1 _1vy3 3 .
T3yo—2X —55/)(‘"67 TQ}l—gX Y—§Y —§X, leQ—gXY _EX —g)/, TO’3_ZY —EYX+6,
Tuo=2X*'-X°Y+Y?+4X, Tou=1Y"'-XY?+X?+4Y,
_ 1 3 3 2 1 v2,5 _ 1 3 3 2 1v2, 5
Ts1=1 XY -3XY?-1X?+2Y, Tis=LVY’X-2X°Y-1V?+2X,
Top=+XY?-2X°-1y?+YX -3

By : Similarly we determine

To,0 = 8; Tio=X, To1=Y;
Too=3X>-Y?+4X+8, Ti1=3YX-Y, Too=1Y?>-2X-8

Ts0=%X"-3XV?+3X°+9X, Tos=1Y’-2XY -3Y,
Toa=iX?Y+2XY -1v343Y, =1 Xy2-1x%-3X;
Tyo=2 X' -2 X?Y?+2X% 410X -2XY?+ 1V -4Y?+16 X +8 Tpa=1Y'-XVY?-2Y?+X?+8X +38,
Ton= XY+ 5 XV = G XV XY =3V +3Y7, Tia= g VPX -3 XY - XY +Y,
Too=XY?+ L X?Y? -2y 4+ 2y? - 1X3-3X°-10X-8.

2.4 Generalized Chebyshev polynomials of the second kind

We now describe the role that root systems play in the representation theory of semisimple Lie algebras
and how the Chebyshev polynomials of the second kind arise in this context [12, Chapitre VIII, §2,6,7], [20,
Chapter 14], [26, Chapter 19].

Definition 2.14 Let g c gl,,(C) be a semisimple Lie algebra and let h be a Cartan subalgebra, that is, a
maximal diagonalizable subalgebra of g. Let 7 : g — gl(W') be a representation of g.

1. An element v € b* is called a weight of m if W, = {w ¢ W | w(h)w = v(h)w for all h € b} is different
from {0}.
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2. The subspace W, of W is a weight space and the dimension of W, is called the multiplicity of v in .

3. veb” is called a weight if it appears as the weight of some representation.

An important representation of g is the adjoint representation ad : g — gl(g) given by ad(g)(h) = [g,h] =
gh—hg. For the adjoint representation, b is the weight space of 0. The nonzero weights of this representation
are called roots and the set of roots is denoted by R. Let V be the real vector space spanned by R in h*. One
can show that there is a unique (up to constant multiple) inner product on V such that R is a root system
for V in the sense of Section 2.2 The weights of this root system are the weights defined above coming from
representations of g so there should be no confusion in using the same term for both concepts. In particular,
the weights coming from representations form a lattice. The following is an important result concerning
weights and representation.

Proposition 2.15 [56, §VII-5, Théoréme 1;§VII-12, Remarques] Let g c gl, (C) be a semisimple Lie algebra
and 7 : g —» gl(W) be a representation of g. Let E = {u1,...,u-} be the weights of m and let n; be the
multiplicity of ;.

-
1. The sum Z n;; € A is invariant under the action of the Weyl group.
i=1

2. If w is an irreducible representation then there is a unique p € E such that p > p; fori=1,...,r. This
weight is called the highest weight of m and is a dominant weight for R. Two irreducible representations
are isomorphic if and only if they have the same highest weight.

3. Any dominant weight 1 for R appears as the highest weight of an irreducible representation of g.
Note that property 1. implies that all weights in the same Weyl group orbit appear with the same multiplicity
and so this sum is an integer combination of Weyl group orbits.

In the usual expositions one denotes a basis of the group ring Z[A] by {e* | u € A} [12, Chapitre VIII, §9.1]
or {e(u) | peA} ([29, §24.3]) where e -e* = e#** or () -e()\) = e(u + X). With the conventions introduced
in the previous section, we define the character polynomial and state Weyl’s character formula.

Definition 2.16 Let w be a dominant weight. The character polynomial associated to w is the polynomial

in Z[z, 2] 5 R
S = nAL
v e,

where A, is the set of weights for the irreducible representation associated with w and n) is the multiplicity
of X\ in this representation.

From Proposition 2.15 and the comment following it, one sees that =, = ¥ 5., ns0Og. Here we abuse notation
and include all ©4 with 8 < a even if 5 ¢ A, in which case we let ng = 0.

Theorem 2.17 (Weyl character formula) § = % Y per+ P I8 a strongly dominant weight and

YsEw="Tuss where To= Y det(B)z""
Bew

The earlier cited [11, Chapitre VI, §3.3 Théoréme 1] that provided Proposition 2.11 allows the following
definition of the generalized Chebyshev polynomials of the second kind.

Definition 2.18 Let w be a dominant weight. The Chebyshev polynomial of the second kind associated to
w is the polynomial U, in K[X] =K[X},...X,] such that 2, =U,(O,,,...,0., ).
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This is the definition proposed in [46]. In [41], the Chebyshev polynomial of the second kind are defined as
the polynomial U, such that =, = U, (Z.,,...,Z, ). This is made possible thanks to [11, Chapitre VI, §3.3
Théoréme 1] that also provides the following result.

Proposition 2.19 Let {w1,...,w,} be the fundamental weights.

1. {Es,,--., 2w, } is an algebraically independent set of invariant Laurent polynomials.
2. Z[x, 27 Y = Z[E.,,...,Eu, ]

One sees from [11, Chapitre VI, §3.3 Théoréme 1] that an invertible affine map takes the basis {G,,..., 0., }
to the basis {2, ,...,Zw, } so results using one definition can easily be applied to situations using the other
definition. The sparse interpolation algorithms to be presented in this article can also be directly modified

to work for this latter definition as well. The only change is in Algorithm 3.8 where the evaluation points
should be

(Ewl(ﬁaTS)w--,Ewn(faTS)) instead of (@wl(gaTS),_..’@wn(faTS)).

As with Chebyshev polynomials of the first kind, we shall usually drop the phrase “associated to w” and
just refer to Chebyshev polynomials of the second kind with the understanding that we have fixed a root
systems and each of these polynomials is associated to a dominant weight of this root system.

Example 2.20 Following up on Example 2.9

Ai : As we have seen in Section 2.1, the Chebyshev polynomials of the second kind associated to A, are
the classical Chebyshev polynomials of the second kind after a scaling.

Ay @ We can deduce from Proposition 2.10 (as done in the proof of Proposition 2.23) the following recur-
rence formulas that allow us to write the multivariate Chebyshev polynomials associated to A, in the
monomial basis of K[X,Y]. We have Uy =1 and, for a,b>1, for a,b>1,

2Ua+170 = XUa,O - 2U'a_1717 2U0,b+1 = YUO,b — 2Ua+1,b—1
2Uq41,0 = XU p = 2Up-1p41 = 2Uq p-1, 2Un i1 =YUsp = 2Uns16-1 —2Ua 1
For instance
Uo=3X, Uni=3Y;
1,0 = 5 X, 01=357¥;
U210=%X2_%Y2 (Jl,lzi)(}/—l7 U0,2=iy2—%X;
U3,o=éXg—%XY+17 UO73:éy3_%)(y+17
Uy =2 XY -3V2-1X, U1p=LiXxY2-1X2-1y;
Uno=15 X' =2XY +31Y?+ X, Upa=5Y"'-2XY*+1X%+Y,

p ’

1 v3 1 2 1 y2 1 3 1 y2 12
U371=EX Y_ZXY _ZX +Y, U173=EXY _ZX Y_ZY + X,
U2,2:%X2Y2_§X3_§Y3-
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By : Similarly we determine

Uso=1; Uio=1X-1, Up1=1Y;
Uzo=3X"-1X-1YV? Uii=1XY-Y, U2=1Y"-1X;
Uso=2X" Ups=1Y’-1XY+1Yy,
Up1=2X?Y -2Y?-Y, Urp=1XY?-1Y?-1X?+1X+1;
_ 1 4 1 3 3 2v2 1 2 1 2 1 4 1 _ 1 4 3 2 1 2 1 2
U4’0_T6X —gX _TGXY +§XY —EX +T6Y +1+§X, UO74_T6Y_§XY +§Y +ZX —17

Usp= XY -t XY -3 XY +2Y?+ XY -V, Uiz=5XY?-1Y°-1X°Y + XY +2Y,
Uzo= 1 X°Y2 - LY - 1y? - LX% 4+ 1 XP+ LXY?+ L X - 1.
We note that the elements Y, appearing in Theorem 2.17 are mot invariant polynomials but are skew-

symmetric polynomials, that is, polynomials p such that A-p = det(A)p. The K-span of all such polynomials
form a module over K[z*]"Y which has a nice description.

Theorem 2.21 [11, Ch. VI,§3,Proposition 2] With § = 3 ¥ g+ p, the map

K[mi]w - K[z*]
p = TYsp

is a K[z*]"Y-module isomorphism between K[x*]"Y and the K[z*]"V-module of skew-symmetric polynomials.

This theorem allows us to denote the module of skew-symmetric polynomials by TsK[z*]".

2.5 Orders

In this section we gather properties about generalized Chebyshev polynomials that relate to orders on N™.
They are needed in some of the proofs that underlie the sparse interpolation algorithms developed in this
article.

Proposition 2.22 For any «, 8 € N" there exist some a, € N with aq+s # 0 such that

0.05= Y 4,0, TaOs= 3 a7,

veN™ veN™
v<a+ v<a+

and the cardinality of the supports {v e N"|v <a+ 8, and a, # 0} is at most |[W|.

PROOF: From Proposition 2.10 we have ©,03 = Y. goy Oa+Bs; YaOs = X pay Yaspg. If 1 € N is the

unique dominant weight in the orbit of o + BB then ©n.pg = ©, and Yoipg = T,,. We next prove that

w=<a+p.

Let A € W be such that A(a+ Bf) = p. Since A, AB € W we have Aa < a and ABf < 8 (Proposition 2.8.2).

Therefore Ao = —Y m;p; an ABS = 3 - Y n;p; for some m;,n; € N. This implies
A(la+BB)=Aa+ABB=a-Y mip;+B- Y. nipi=a+ -y (m;+n;)p;

sopu=Ala+BB)<a+5. m

Proposition 2.23 For all « e N, T, = Z thﬁ and U, = Z u5XB where t,, # 0 and u, # 0.
B=<a B=<«
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PROOF: Note that the (w;,w;) are nonnegative rational numbers Proposition 2.8. Therefore the set of non-
negative integer combinations of these rational numbers forms a well ordered subset of the rational numbers.
This allows us to proceed by induction on (4, @) to prove the first statement of the above proposition.

Consider 6 = 1 Y per+ P = Liqg wi (Proposition 2.8). As a strongly dominant weight § satisfies (d, p) > 0 for all
p € R*. Furthermore, for any dominant weight w # 0, (§,w) > 0 since {p,w) > 0 for all p € R*, with at least
one inequality being a strict inequality. Hence (8, o — w;) < (4, ).

The property is true for Ty and Uy. Assume it is true for all 3 € N™ such that (4, 8) < (4, a), o € N™.
There exists 1 < 4 < n such that a; > 1. By Lemma 2.10, 0,,04-w;, = X, <0 @0, with a, # 0. Hence
a6 To = XiTow; - 2523 a,T,. Since v < a, v # «, implies that (4,r) < (4, «), the property thus holds by
recurrence for {To} -

By Proposition 2.15, Z, is invariant under the action of the Weyl group. Furthermore, any orbit of the Weyl
group will contain a unique highest weight. Therefore =, = ¥ 5., 1505 with n, # 0. Hence Uy = ¥ 5.0 ngTa
and so the result follows from the above. The property holds for {Us,} y as it holds for {T,} - ®

The following result shows that the partial order < can be extended to an admissible order on N”. Admissible
order on N” define term orders on the polynomial ring K[ X}, ..., X,,] upon which Grobner bases can be
defined [7, 16]. In the proofs of Sections 3 and 4 some arguments stem from there.

Proposition 2.24 Let B = {p1,...,p,} be the base for R and consider § = % Y per+ p- Define the relation <
on N" by

(6,a) < (5,8) or
(0,a) = {6, 8) and {p2, @) <(p2,5) ~ or

. )= 0.8) )= (8 ) = s B ) < ) o

Then < is an admissible order on N", that is, for any «, 3,7 € N™
[0 O]TS% anda<f = a+y<f+7.

Furthermore < 8 = a < f5.

PROOF: We have that (p,«) > 0 for all p € B and « € N*. Hence, since § = %ZpeR"‘ p, (6, > 0 for all
dominant weights «. Furthermore since {p1,p2...,pn} is a basis for V = K", so is {0, p2,...,pn}. Hence < is
an admissible order.

We have already seen that 0 is a strongly dominant weight (Proposition 2.8). As such (4, p) > 0 for all p € R*.
Hence, if a < 8, with a # 3, then 8 = a—myp1 — ... — mpp, with m; € N, at least one positive, so that
(6,) < (0,8) and thus « < 5. m

2.6 Determining Chebyshev polynomials from their values

The algorithms for recovering the support of a linear combination of generalized Chebyshev polynomials
will first determine the values O, (§“TS ) for certain a but for unknown w. To complete the determination,

we will need to determine w. We will show below that if {u1,...,u,} are strongly dominant weights that
form a basis of the ambient vector space V', then one can choose an integer £ that allows one to effectively
determine w from the values

(@w (E‘”TS) | 1Si£n)
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or from the values

(2o (%) 11<i<n)
We begin with two facts concerning strongly dominant weights which are crucial in what follows.

e If 411 and s are dominant weights, then {p1, o) > 0 (Proposition 2.8).

e If B is a base of the roots, p € B and p is a strongly dominant weight, then (u, p) > 0. This follows
from the facts that (u, p*) > 0 by definition and that p* is a positive multiple of p.

Also recall our convention (stated at the end of Section 2.2) that the entries of S are in Q. We shall denote
by D their least common denominator. Note that with this notation we have that D{u,v) is an integer for
any weights u, v.

Lemma 2.25 Let u be a strongly dominant weight and let & = £P where &, € N satisfies
3
&> W)
1. If w be is a dominant weight then
.
D-{p,w) = [logg, (O (" %))

where |-] is the usual floor function.

2. If w is a strongly dominant weight then

D- (’u7w> = nint[loggo(Tw(fuTs)]

where nint denotes the nearest integer

PROOF:

1. Let s be the size of the stabilizer of w in W. We have the following

Ou (f“TS) = > gn'So(w) - S gl (@)

gew oeWwW

sy §OD<“’G(“))> where C'is a set of coset representatives of W/Stab(w).
oeC

PN (1h Y gDlmol)ay

o#l,0eC

We now use the fact that for o € W, o(w) ~w = -} g njp for some nonnegative integers nj. If o € C,0 # 1

we have that not all the ng are zero. Therefore we have

@w (guTS) _ Sg(?(u,w)(1+ Z §OD<M7—ZpeB"gP>)

o#l,0eC

s& 1 Y gm),

o+l,0eC

where each m, is a positive integer. This follows from the fact that D{u, p) is always a positive integer for
u a strongly dominant weight and p € B. It is now immediate that

seg v <o, (e9). (2.5)

lin the proof we show that the distance to the nearest integer is less than % so this is well defined.
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Since & > (2|W])? > §)W| we have

3
1+ Y ggmvg1+|W|551<5

o+l,0eC

and so

L, W — 3 ,w
sl % §Om“)<§s§éj(“ ) (2.6)

o+l,0¢C

To prove the final claim, apply log,, to (2.5) and (2.6) to yield

Tg 3
D(p,w) +log, s <logg, (O, (fg )) < D(p,w) + loggo(is)
Using the hypothesis on the lower bound for £, we have
2 3 1
s<|W|< §(§0)1/2 = loggo(is) <3

Therefore )
.
D(Mu(“)) < logg(gw (é‘ﬂ« S)) < D(/J'?w) + 5
which yields the final claim.

2. Since w is a stongly dominant weight, we ha