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Abstract
The polyhedral model permits to automatically improve data
locality and enable parallelism of regular linear algebra ker-
nels. In previous work we have proposed a new data struc-
ture, 2d-packed layout, to store only the non-zeros elements
of regular sparse (triangular and banded) matrices dynami-
cally allocated for different basic linear algebra operations,
and used Pluto to parallelize and optimize them. To our sur-
prise, there were huge discrepancies in our measures of these
kernels execution times that were due to the allocation mode:
as statically declared arrays or as dynamically allocated ar-
rays of pointers.

In this paper we compare the performance of various lin-
ear algebra kernels, including some linear algebra kernels
from the PolyBench suite, using different array allocation
modes. We present our detailed investigation of the possible
reasons of the performance variation on two different archi-
tectures: a dual 12-cores AMD (Magny-Cours) and a dual
10-cores Intel Xeon (Haswell-EP).

We conclude that static or dynamic memory allocation
has an impact on performance in many cases, and that the
processor architecture and the gcc compiler’s decisions can
provoke significant and sometimes surprising variations, in
favor of one or the other allocation mode.

Keywords Dynamic/static memory allocation, polyhedral
model, linear algebra kernels, performance

1 Introduction
To fully use high performance computing, programmers
must parallelize their applications. This task is far from triv-
ial, hence the need to automate this process. This automa-
tion is partially handled by tools that analyze the code to
exploit parallelism, using compiler or runtime optimization
techniques. Several tools of automatic optimization and par-
allelization are proposed in the literature. Among these tools,
Bondhugula et al. [5, 6] developed a source to source frame-
work based on the polyhedral model called Pluto. Pluto al-
lows to transform an input C source code into a semantically
equivalent output C code that achieves parallelism and data
locality.
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Linear algebra (in particular, multiplication of two ma-
trices) lies at the heart of many calculations in scientific
computing [1]. Optimizing this kind of calculations is one
of the research topics that have attracted the scientists in-
terest over the past years. In order to show the efficiency
of parallelization in high performance computing, many re-
searchers are focusing on sparse matrices by suggesting
different data structures to store the non-zero elements of
this type of matrices [4, 9, 10, 12]. In our previous work [3],
we have suggested a new approach to optimize triangular
and banded matrix operations by using a dense and regu-
lar 2-dimensional data structure dynamically allocated for
sparse matrix storage. To our surprise, we measured huge
discrepancies in the execution time of different versions of
those codes that were caused only by the memory allocation
type: as static declared arrays or as dynamically allocated
arrays of pointers.

In this paper we compare several matrix computation ker-
nels using static and dynamic memory allocation, both in
original (sequential) form and in optimized and parallelized
form generated by the Pluto compiler. We show that allocat-
ing the matrices dynamically or allocating them statically
has a noticeable influence in the performance of the result-
ing codes. We explore the possible causes of these variations
using the hardware performance counters, on two different
architectures.
The remainder of the paper is organized as follows: in

Section 2, a related work is given. Section 3 gives a quick
overview of our previous work on 2d-packed layouts for
sparse triangular matrices. We present a performance com-
parison between dynamic and static allocation on these ker-
nels in Section 4. Section 5 focuses on the precise study of
the matrix multiplication kernel. The effect of the number
of vectorized instructions is studied in Section 6 for all the
2d-packed benchmarks. Another experimental study is pro-
vided in Section 7 for the linear algebra kernels from the
PolyBench suite. Finally, this work is concluded in Section 8.

2 Related work
Linear Algebra is a branch of mathematics that deals with the
study of vectors, matrices and linear equations. In addition
to mathematics, engineering and science, linear algebra has
extensive applications in natural as well as social sciences.
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It has been shown that the optimization of sparse matrix
operations significantly enhances the performance of many
scientific and engineering applications [7, 11, 15, 17]. Many
manual optimizing techniques targeting matrix computation
kernels have been proposed [8, 13, 19].

The automatic optimization and parallelization techniques
consist of creating and implementing tools and compilers
that are able to translate a given code into an optimized
and parallelized code [14]. Pluto [2, 5, 6] is an example of
automatic optimization and parallelization source-to-source
compiler that can be used to this purpose.

Many new data formats for sparse matrices have been pro-
posed to improve the performance of Linear Algebra bench-
marks. Among these works, Gustavson et al. [12] propose a
compact way to store triangular, symmetric and Hermitian
matrices called Rectangular Full Packed Format (RFPF). In or-
der to obtain better computation and memory performances,
the authors propose to store only the non-zero elements of
triangular matrices in a compact data structure, where the
size of the allocated space is N×(N+1)/2. To illustrate the
benefits of this RFPF format, they have compared the per-
formance of different Cholesky Algorithms by using RFPF
versus the LAPACK library routines. In our previous work [3]
on 2d-packed layouts we have improved their storage format,
in order to perform a unique data transformation for both
odd and even ordered matrices: in the Gustavson et al.’s pro-
posal, odd and even ordered matrices are stored differently,
which requires the resulting code to distinguish between
these two cases and the generated code to nest many if-then-
else structures. We have also proposed a packed storage
format for banded and triangular-banded matrices and eval-
uated their performance on Cholesky and on three extra
kernels: MatMul, SolveMat and sspfa.

There has been little attention drawn so far at performance
issues resulting from static versus dynamic memory alloca-
tion. In IMPACT’19, Shirako and Sarkar [18] proposed to
integrate affine data layout transformations to polyhedral
compilers. In their experiments they compared the original
program, the Pluto optimized program and their version of
the code with dynamic memory allocation. They provided
their version of the code and its memory allocation, how-
ever, they did not state whether the original and the Pluto
optimized programs performed static or dynamic memory
allocation, and if they isolated this effect. If the allocation
type is different for the various code versions they compared
(see Table 1 of their paper) then their results could have been
altered by its effect on performance that we expose here.

3 Overview of the 2d-packed format
transformation

Our proposal of 2d-packed layout [3] is quickly described
hereunder in three parts: the input, the transformation func-
tion for the new storage format and the output.

a00 0 0 0 0
a10 a11 0 0 0
a20 a21 a22 0 0
a30 a31 a32 a33 0
a40 a41 a42 a43 a44





a00 a44 a43
a10 a11 a33
a20 a21 a22
a30 a31 a32
a40 a41 a42




(a) 2d-packed transformation for triangular matrices

a00 a01 0 0 0 0
a10 a11 a12 0 0 0
a20 a21 a22 a23 0 0
0 a31 a32 a33 a34 0
0 0 a42 a43 a44 a45
0 0 0 a53 a54 a55





a01 a12 a23 a34 a45 −
a00 a11 a22 a33 a44 a55
a10 a21 a32 a43 a54 −
a20 a31 a42 a53 − −




(b) 2d-packed transformation for banded matrices

Figure 1. New data structures for different sparse matrices

for ( i = 0 ; i < n ; i ++) {
for ( j = 0 ; j <= i ; j ++) {

i f ( 2 ∗ j <= n )
C[ i ] += A[ i ] [ j ] ∗ V[ j ] ;

i f ( 2 ∗ j > n )
C[ i ] += A[n− i −1] [n− j ] ∗ V[ j ] ;

}
}

Figure 2.Matrix-vector multiplication code with matrix A
in 2d-packed format

3.1 Input
Our proposal takes as input (i) the original code to be trans-
formed and (ii) the identification of the sparse matrices to
be transformed. We have focused on three types of regular
sparse matrices: triangular, banded and banded-triangular
matrices.

3.2 2d-packed transformation function
The 2d-packed transformation consists in two steps: (i) we
store the non-zero elements of the sparse matrix in a new
2-dimensional dense data array, using the 2d-packed layout
(depending on the sparsity type). Figure 1 illustrates the 2d-
packed data structure for different sparse matrix types. Then,
(ii) the original code is transformed into a new code accessing
the 2d-packed data structure, eventually adding tests into
the code to distinguish between the different matrices parts.

3.3 Output
The automatically generated code is a SCoP which can be fed
to Pluto to obtain an optimized and parallelized C program,
equivalent to the original programmanipulating dense matri-
ces. The 2d-packed code of the matrix vector multiplication
kernel for a triangular matrix A is shown in Figure 2.
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/ / dynamic a l l o c a t i o n f o r t r i a n g u l a r ma t r i c e s
/ / i n 2d−packed f o rma t
double ∗ ∗ a l l o cT r i P a c kMa t ( in t n )
{

in t i ;
double ∗ ∗ mat = ma l l oc ( n ∗ s i z eo f ( double ∗ ) ) ;
for ( i = 0 ; i <n / 2 ; i ++)

mat [ i ]= c a l l o c ( ( n +1 ) / 2 , s i z eo f ( double ) ) ;
for ( ; i <n ; i ++)

mat [ i ]= c a l l o c ( ( ( n / 2 ) +1 ) , s i z eo f ( double ) ) ;
return mat ;

}

Figure 3. Matrix dynamic allocation code

4 Dynamic allocation versus static
allocation in 2d-packed layout

We have tried various allocation modes for 2d-packed matri-
ces of double’s: as statically declared global variables, stack
allocated arrays, dynamically allocated 2d arrays and dynam-
ically allocated arrays of pointers to dynamically allocated
rows. Our results are summarized hereafter as a comparison
between “static allocation” as statically declared global array
and “dynamic allocation” as an array of pointers. The stack
allocated arrays results are very similar in performance to
the static allocation, and the dynamically allocated 2d arrays
results very similar to the dynamic allocation, so it did not
make much sense to present all four of them.

In the dynamic allocation, we store triangular matrices in
2d-packed format using an array of pointers of size N. The
data itself is stored in the dynamically allocated rows, with
the addition of an extra column of size N/2 when N is even.
The allocation code for triangular matrices in 2d-packed
format is shown in Fig. 3. We also tried to allocate the rows
in a single calloc call, and it did not have much influence on
the performance of the resulting benchmarks. The advantage
of this row allocation is that each row pointer is aligned such
that it can be used for any data type, including vector types.

In the static allocation, we have stored the triangular ma-
trices in 2d-packed format in statically declared global arrays
of size N × ((N /2) + 1).

4.1 Execution times and performance
We have applied our approach to optimize and parallelize
four double-precision linear algebra kernels using triangular
matrices: Cholesky factorization, multiplication of two ma-
trices (MatMul), matrix-matrix solver (SolvMat, see annex A)
and sspfa factorization (annex B). We have compared the
execution times of the automatically optimized and paral-
lelized kernels in 2d-packed format using static allocation to
the ones using dynamic allocation. All reported results are
obtained from an average of five executions of each kernel
using matrices of size N = 8000. The allocation time was not
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(a) Execution time for config1 machine (seconds)
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(b) Execution time for config2 machine (seconds)

Figure 4. Comparison of the execution time between static
and dynamic allocations

included in the time measures. The experiments were run
on two different computers:
• config1 is a dual socket Intel Xeon E5-2650 v3 (Haswell-
EP) of 2x10 hyperthreaded cores, with AVX2 (256 bits)
support;
• config2 is a dual socket AMD Opteron 6172 (Magny-
Cours) of 2x12 cores, with SSE (128 bits) support.

Both configurations run the exact same system: Ubuntu
(bionic) with a Linux 4.0.15 standard kernel. No huge page
support was enabled. We have compiled our codes on both
configurations using the exact same gcc version (7.3.0), with
options -O3 -march=native -fopenmp. We have used Pluto
0.11.4 with options --tile --parallel to optimize and
parallelize the programs, using the default tile sizes and no
other fine tuning option.
Figure 4 shows the execution times obtained on our con-

fig1 and config2 machines. In both subfigures, each couple of
bars represent the execution times with static and dynamic
allocation respectively. In the first configuration (config1,
Fig. 4a) one can notice that the execution times in the two
cases are almost the same for sspfa and Solvemat, whereas
for Cholesky and MatMul the static allocation performs bet-
ter than the dynamic allocation. In the second configura-
tion (config2, Fig. 4b) the dynamic allocation leads to better

3
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performance compared to the static allocation for all those
benchmarks.

There are remarkable discrepancies between those execu-
tion times depending on whether the arrays are statically or
dynamically allocated. The compiler is the same, the kernel is
the same, so what might be the reasons for such differences?
To answer this question we have performed a set of further
experiments on the MatMul benchmark, since it is the one
which presents important differences in execution times and
a complete opposite effect of the memory allocation type
on our two test platforms. The following section presents
a detailed performance analysis of the MatMul benchmark
using the two memory allocation modes.

5 Experimental study of the matrix
multiplication in 2d-packed format

The original algorithm of multiplication of two lower tri-
angular square matrices of the same order N is given in
Algorithm 1.

Algorithm 1: Lower triangular matrices multiplica-
tion
Input: Two lower triangular matrices A and B of

order N
1 for i ← 0 to N − 1 do
2 for k ← 0 to i do
3 for j ← 0 to k do
4 C[i][j] ← C[i][j] +A[i][k] ∗ B[k][j];
5 end
6 end
7 end

In our study, we have used two variants of the matrix
multiplication in 2d-packed format, where the input matrices
A and B aswell as the outputmatrix C are stored in 2d-packed
data structures. The first variant of the matrix multiplication
code is obtained applying the raw 2d-packed transformation
algorithm. The resulting code, named C1, is shown in Fig. 5.
This code is only composed of one perfect loop nest in which
the innermost loop contains three tests. The second variant,
named C2, is an equivalent code in which the tests were
removed thanks to loop splitting. The resulting code, shown
in Fig. 6, is a non-perfect loop nest containing no test. In
the following subsections, we will compare the performance
of the static and dynamic allocations for both codes C1 and
C2, by measuring their execution time, number of executed
instructions, number of cache loads, number of cache misses,
number of TLBmisses and number of vectorized instructions.
These comparisons are illustrated on Figures 7, 8 and 9. In
all these experiments, the four bars represent respectively
the original code with static allocation, the original code
with dynamic allocation, the code optimized and parallelized

const int nn=n / 2 ;
for ( i =0 ; i <n ; i ++) {

for ( k=0 ; k<= i ; k ++) {
for ( j =0 ; j <=k ; j ++) {

i f ( i >nn && j >nn && k>nn )
C[n− i −1] [n− j ] += A[n− i −1] [n−k ] ∗ B [n−k−1] [

n− j ] ;
i f ( i >nn && j <=nn && k>nn )

C[ i ] [ j ] += A[n− i −1] [n−k ] ∗ B [ k ] [ j ] ;
i f ( j <=nn && k<=nn )

C[ i ] [ j ] += A[ i ] [ k ] ∗ B [ k ] [ j ] ;
}

}
}

Figure 5. C1 code: triangular matrix multiplication in 2d-
packed format

const int nn=n / 2 ;
for ( i = 0 ; i <nn +1 ; i ++) {

for ( k =0 ; k<= i ; k ++) {
for ( j = 0 ; j <=k ; j ++) {

C[ i ] [ j ] += A[ i ] [ k ] ∗ B [ k ] [ j ] ;
}

}
}
for ( i =nn +1 ; i <n ; i ++) {

for ( k =0 ; k<= i && k<nn +1 ; k++) {
for ( j = 0 ; j <=k ; j ++) {

C[ i ] [ j ] += A[ i ] [ k ] ∗ B [ k ] [ j ] ;
}

}
for ( k=nn +1 ; k<= i ; k ++) {

for ( j = 0 ; j <=k && j <nn +1 ; j ++) {
C[ i ] [ j ] += A[n−( i ) −1][n−( k ) ] ∗ B [ k ] [ j ] ;

}
for ( j =nn +1 ; j <=k ; j ++) {

C[n−( i ) −1][n−( j ) ] += A[n−( i ) −1][n−( k ) ] ∗ B [n
−( k ) −1][n−( j ) ] ;

}
}

}

Figure 6. C2 code: triangular matrix multiplication after
loop splitting in 2d-packed format

by Pluto with static allocation and the code optimized and
parallelized by Pluto with dynamic allocation.
In Figure 7, looking individually at each group of bars

and comparing the first to the third, and the second to the
last, we see that optimizing and parallelizing our codes using
Pluto is always beneficial. For code C1 (with tests), Figure 8
confirms that applying Pluto reduces the number of executed
instructions, L1 cache loads, cache misses and TLB misses.
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Figure 7. Execution time (in seconds, logscale) for static and
dynamic allocations, on config1 and config2, for C1 and C2
codes

Applying Pluto to code C2 (without tests) also reduces
the number of cache misses, but it increases the total num-
ber of executed instructions and the number of cache loads,
probably as an effect of tiling and parallelization. The next
subsections present a detailed analysis of those graphs to
compare static and dynamic allocations.

5.1 Execution time
Comparing each couple of bars in Figure 7 we observe that
the difference in execution time between the static and the
dynamic version varies from 0.80× up to 1.95×. In the origi-
nal (sequential) C2 code, static or dynamic allocation does
not influence the execution times (first two bars in the two
right side groups of bars). In the other versions (original and
parallel) and configurations (config1 or config2), static allo-
cation performs better than dynamic allocation, except for
the Pluto-optimized code on config2: the dynamic version
performs better than the static version (e.g. 20s vs. 25s for
code C1).

5.2 Total number of instructions
In Figure 8a, one can notice that the number of executed
instructions of code C1 is similar on both configurations. For
example: Instr (orig-static, config1, C1) ≃ Instr (orig-static,
config2, C1) ≃ 1,950 Billions instructions. For code C2, it is
higher on config2 than on config1, which means that the
compiler did certainly generate different codes from C2 on
those two different architectures.

For code C1, dynamic allocation increases the number of
executed instructions in the original code, while it is reduced
on the Pluto code. But those results do not correlate to the
execution time.

For code C2, the number of executed instructions increases
when it is optimized and parallelized by Pluto. The origi-
nal code is composed of three nested imperfect loops, and
Pluto generates a more complex tiled and parallelized code
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Figure 8. Performance counters for static and dynamic allo-
cations, on config1 and config2, for C1 and C2 codes
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Figure 9. Number of vectorized instructions (Millions,
logscale) for static and dynamic allocations on config1 for
C1 and C2 codes

of imperfect loops of depth six. The number of executed
instructions in dynamic allocation is greater than the one of
static allocation on config1, probably due to the extra control
and the extra pressure on register allocation of this complex
code. This effect is the opposite on the other versions.

Overall, these measures show that the compiler seems to
take different decisions on our two different test architec-
tures. There is some correlation between the difference in
number of executed instructions and the difference in per-
formance between static and dynamic allocation shown in
Fig. 7 except for the optimized version of config1/C1.

5.3 Number of L1-dcache-loads
Figure 8b shows the number of L1-dcache-loads: this feature
can be used to determine how many times the load ports
are used. In all the cases in this experiment, the number of
L1-dcache-loads in the dynamic allocation is greater than
the one of the static allocation. The reason for this is the use
of pointers which obviously leads to more memory accesses
in order to access data.

For the comparison between static and dynamic memory
allocation, the number of L1-dcache-loads can be somehow
correlated to the execution time on config1 but not for the
config2 parallel versions, where the execution time in dy-
namic allocation is better than the one of static allocation.

5.4 Number of L1 and L3 cache-misses
The number of L1 and L3 cache-misses are shown in Figure 8c
and 8d.

There is sometimes a very important ratio of cache-misses
compared to the total number of loads (up to 19.7/43.8 = 45%
L1-dcache-misses for config1/C2 with static allocation). As
expected, in the Pluto optimized codes the cache-misses are
substantially diminished in most cases (e.g. 2.08/173 = 1.2%
in the same example).

The second observation is that the sum of the number of
L1 and L3 cache-misses slightly correlates with the execu-
tion times in the Pluto optimized versions, except for the
config2/C2 version. However, in the original versions of the
codes it is not true.

5.5 Number of TLB misses
Counter-intuitively, Figure 8e shows that in all cases there
are less TLB misses in the dynamic allocation versions than
in the static ones: an extra memory access to an array of
pointers reduces the overall number of TLBmisses! However,
the TLB replacement policy and the order of the memory
accesses play an important and complex role, so their inter-
action is hardly predictable.

The number of TLBmisses does not seem to correlate with
the execution time results (Fig.7). However, this is the only
measure where a significant difference between the static
and the dynamic versions for the Pluto optimized code on
config2 could explain their difference in performance.

5.6 Number of vectorized instructions
In this last experiment, we measured the number of vector-
ized instructions on config1 only, since this performance
counter is not available on our oldish config2 processor. One
can clearly notice from Figure 9 that the C2 original code is
well vectorized, while the other versions are only partially
vectorized at best. Since the C1 code contains tests in the
innermost loops, it was more difficult for the compiler to
discover vectorization opportunities in this code. In both
cases, there are more vectorized instructions in the static
allocation versions than in the dynamic one.
We believe that this is one of the reasons of the differ-

ences reported earlier, and it explains why the static alloca-
tion on config1 is significantly better than its dynamically
allocated version. However, on config2, activating option
-fopt-info-vec in gcc did not show any difference between
static and dynamic memory allocation, so those codes are
vectorized in the same way probably without much impact
on performance.

5.7 Synthesis
The conclusion of these measures is that it is very difficult
to get a simple explanation on the reason why some codes
with static allocation perform better than the ones with dy-
namic allocation, or the opposite. Our best hypothesis is
that the overall performance (Fig. 7) can be deduced from a
combination of (1) the total number of memory accesses (2)
the number of cache and TLB misses and (3) the number of
vectorized instructions.

On config1 however, the number of vectorized loops is
probably the main factor affecting performance.

6
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Figure 10. Number of vectorized instructions (Millions,
logscale) for static and dynamic allocations on config1 for
the 2d-packed benchmarks

6 Number of vectorized instructions in all
2d-packed benchmarks

To confirm this hypothesis, we compared the number of
vectorized instructions on config1 of static and dynamic al-
locations in the four benchmarks presented earlier (Fig. 4a).
The results are shown in Figure 10. We can clearly see that
the number of vectorized instructions in static allocation
is always greater than the one in dynamic allocation (ex:
Nbr_vec_instr (Cholesky, static)=74,607 Million instructions,
Nbr_vec_instr (Cholesky, dynamic)=2.21Million instructions).
But it is very significant in the first two benchmarks (Cholesky
and Matmul) and these are the ones presenting the most per-
formance variation in Fig. 4a. From all the previous experi-
ments, we conclude that on config1 the number of vectorized
instructions is probably one of the main factor affecting per-
formance of the benchmarks studied till now.

In the next section, we will focus on the Polyhedral Bench-
mark suite (PolyBench) [16] and check whether the number
of vectorized instructions is also affecting the performance
of those benchmarks in static and in dynamic memory allo-
cations.

7 Dynamic allocation versus static
allocation in PolyBench

We have studied the difference in performance of the two
memory allocation modes by considering eight linear alge-
bra kernels from the PolyBench suite: 2mm, 3mm, atax, bicg,
mvt, trisolv, lu and cholesky. All the experiments are
performed on our config1 machine, based on the Intel Xeon
(Haswell-EP). The matrix sizes used in these experiments
are 2,000 for the O(N 3) algorithms (2mm, 3mm, cholesky and

lu), and 20,000 for the O(N 2) ones (atax, bicg, mvt and
trisolv).
PolyBench provides a C macro for declaring its data as

stack allocated arrays (declared in the main function) or as
heap-allocated multidimensional arrays (with a posix_mem-
align call, the default). We compiled all programs with gcc
version 7.3.0 using options -O3 -march=native -fopenmp
for the dynamic versions, and adding option
-DPOLYBENCH_STACK_ARRAYS for the static versions.

We have also tried to add the options (-DUSE_RESTRICT
and -DC99_PROTOS) to use the restrict keyword and in-
form the compiler that the arrays do not alias. This did not
have any significant effect on the performance: the only gain
was to spare a test to protect each potentially aliased region
(as reported by gcc -fopt-info-vec), but since these tests
were never taken they were correctly predicted and harmless
in our experiments.

7.1 Measurements
The first plot in Fig. 11a shows the execution times of the
different benchmarks. In regard of this figure, we plotted the
number of vectorized instructions in Fig. 11b.

The execution times of all the optimized and parallelized
benchmarks (right-hand side couples of bars) are very similar
whether the arrays are statically or dynamically allocated. A
noticeable exception is lu: 0.36s for the static version versus
0.43s for the dynamic one, a 20% slowdown. On Fig. 11b, the
difference between the number of vectorized instructions for
these two executions is only of 3%, so the main reason of this
gap is probably not vectorization. The other exception is 2mm,
where the 8% difference in execution time can be imputed to
a 12% difference in the number of vectorized instructions.

For the sequential original codes (left-side couples of bars),
the execution times are very close for atax, trisolv, lu and
cholesky. But the other four benchmarks (2mm, 3mm, bicg
and mvt) show significant differences: the dynamic allocation
performs better than the static allocation. The number of
vectorized instructions is much better for the dynamically
allocated versions of 2mm and 3mm. This can clearly explain
the difference for those two benchmarks. The difference in
number of vectorized instructions in mvt is 22%, not enough
to explain a 3× difference in execution time. For bicg, there
is no difference. So, for bicg and mvt, we need to find another
explanation than vectorization for those speedups.
At this point, there is no explanation for the difference

in performance between static and dynamic allocation of
three benchmarks: the Pluto version of lu and the original
versions of bicg and mvt.

The other performance counters are shown in Fig. 12. The
difference in performance for the original versions of bicg
and mvt can be correlated to the number of L1-dcache-loads
from Fig. 12b and to the number of cache misses from Fig 12c
and 12d. The number of total loads is higher of 64% for bicg
and 38% for mvt in the static allocation versions, and the
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Figure 11. Execution time and number of vectorized instruc-
tions, for static and dynamic allocations in PolyBench

same kind of difference is observable on the two original
benchmarks 2mm and 3mm.

For the parallel lu this difference is of 12.5%, which could
also partially explain the difference in execution time for
this benchmark. But the other parallelized benchmarks also
show a significant difference in their number of loads that did
not have any impact on their execution times! The dynamic
allocation versions have around 10% more memory loads
than the static versions, up to 17% for 2mm. However, this
is probably a consequence of the static allocation versions
having a bit more vectorized instructions than the dynamic
ones, as seen on Fig. 11b. So for the Pluto dynamic allocation
versions, there are more executed vectorized instructions but
the pressure on memory is higher, which combined together
results in the same overall performance. There is no satisfac-
tory explanation in those measurements for the difference in
performance between static and dynamic allocation of the
Pluto optimized lu benchmark.
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Figure 12. Comparison of different performance counters
between static and dynamic allocation for PolyBench

8



Static versus Dynamic Memory Allocation: a Comparison for Linear Algebra Kernels IMPACT 2020, January 22, 2020, Bologna, Italy

7.2 Analysis
Out of eight benchmarks in original and in Pluto optimized
forms, six show significant performance variations either in
original or in Pluto-optimized form between static allocation
and dynamic allocation. The differences are mainly due to
the number of vectorized instructions and to the number of
memory loads and misses.

Something that is difficult to explain is the reason why ac-
cessing static allocated matrices provoke more total memory
accesses (and misses) than dynamic ones in the original ver-
sions of the codes, for 4 out of 8 benchmarks. In the dynamic
allocated version there is a potential extra memory access for
each performed array access; it could be cached by temporal
reuse through a register if the arrays are accessed line by
line, but it could hardly be of opposite effect on the total
number of memory accesses. Vectorization could explain it,
since the memory accesses are packed together when being
accessed as a vector, but this can happen only in 2 out of 4 of
these benchmarks. Another possibility is that this could be
a side effect of a higher pressure on the register allocation,
resulting in a non optimal decision of the gcc compiler and
finally in more memory accesses. That effect could inverse
in the Pluto versions of the codes since the Pluto optimized
versions show more obvious temporal locality that could
be exploited by the compiler. Further investigations should
be made to evaluate the pressure on register allocation and
possibly validate this hypothesis.

As a conclusion, in the original versions of the code, static
memory allocation versions perform better than the dynamic
ones in 50% of our benchmarks on our config1 experimental
platform. On config2, we observed the opposite. In addition
to our first series of benchmarks on the 2d-packed codes,
those results on PolyBench show that the best performing
code after optimization by Pluto seems unpredictable: some-
times the static allocation performs better thanks to vector-
ization (as in Cholesky and Matmul on config1 in the first
series of experiments) and sometimes the dynamic allocation
one performs better (as on config2 or in lu or 2mm on config1
in the second series of experiments).

8 Conclusion
We have shown in this paper that the memory allocation
type, as static declared array or dynamically heap allocated
array, has a significant impact on the performance of some
linear algebra kernels. This happens both on sequential codes
and on automatically parallelized and optimized codes. In
our experimental study, the identified potential causes of
these performance variations are (1) the ability of the com-
piler to vectorize the kernels, and (2) the variation of the
number of performed memory accesses and cache misses
in the generated code. The variation of performance can be
alternatively in favour of the static allocation mode or the

dynamic one, and can even flip on different target processor
architectures in an unpredictable manner!

Further experiments could be conducted in future work on
different processor architectures, different operating systems,
using different compilation options and different compilers
to confirm the possible causes of the performance variation
due to memory allocation.

Although this work is not explicitly about polyhedral com-
pilation, we believe that our research community should be
thoughtful of this effect, and take a particular care about
memory allocation when running benchmarks to compare
the performances of various versions of codes, especially
when modifying the way arrays are declared and allocated.
In particular, all research on data layout transformations
(e.g. [18]) should be very careful for their benchmarks not
to be perturbed by the sometimes surprising side effect of
static versus dynamic memory allocation on performance.
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A SolveMat source code
void SolveMat ( in t n , double ∗ ∗A , double ∗ ∗ B , double ∗ ∗ Y )
{

in t i , j , k ;
for ( k = 0 ; k < n ; k++) {

for ( i = k ; i < n ; i ++) {
for ( j = 0 ; j < i ; j ++) {

i f ( j >= k )
B [ i ] [ k ] = B[ i ] [ k ] − A[ i ] [ j ] ∗ Y [ j ] [ k ] ;

}
Y [ i ] [ k ] = B[ i ] [ k ] / A[ i ] [ i ] ;

}
}

}

void SolveMat_2dp ( in t n , double ∗ ∗A , double ∗ ∗ B , double ∗ ∗ Y )
{

in t i , j , k ;
# pragma scop
for ( k = 0 ; k < n ; k++) {

for ( i = k ; i < n ; i ++) {
for ( j = 0 ; j < i ; j ++) {

i f ( j >= k ) {
i f ( ( 2 ∗ j > n ) && ( 2 ∗ k > n ) )

B [n−( i ) −1][n−(k ) ] = B[n−( i ) −1][n−(k ) ] − A[n−( i ) −1][n−(
j ) ] ∗ Y [n−( j ) −1][n−(k ) ] ;

i f ( ( 2 ∗ j <= n ) && ( 2 ∗ k > n ) )
B [n−( i ) −1][n−(k ) ] = B[n−( i ) −1][n−(k ) ] − A[ i ] [ j ] ∗ Y [ j

] [ k ] ;
i f ( ( 2 ∗ j > n ) && ( 2 ∗ k <= n ) )

B [ i ] [ k ] = B[ i ] [ k ] − A[n−( i ) −1][n−( j ) ] ∗ Y [ j ] [ k ] ;

i f ( ( 2 ∗ i > n ) && ( 2 ∗ j <= n ) && ( 2 ∗ k <= n ) )
B [ i ] [ k ] = B[ i ] [ k ] − A[ i ] [ j ] ∗ Y [ j ] [ k ] ;

i f ( 2 ∗ i <= n )
B[ i ] [ k ] = B[ i ] [ k ] − A[ i ] [ j ] ∗ Y [ j ] [ k ] ;

}
}
i f ( 2 ∗ k > n )

Y [n−( i ) −1][n−(k ) ] = B[n−( i ) −1][n−(k ) ] / A[n−( i ) −1][n−( i ) ] ;
i f ( ( 2 ∗ i > n ) && ( 2 ∗ k <= n ) )

Y [ i ] [ k ] = B[ i ] [ k ] / A[n−( i ) −1][n−( i ) ] ;
i f ( 2 ∗ i <= n )

Y [ i ] [ k ] = B[ i ] [ k ] / A[ i ] [ i ] ;
}

}
# pragma endscop

}

B Sspfa source code
void s s p f a ( double ∗ ∗m, in t n )
{

in t i , j , k ;
for ( j = 0 ; j < n ; j ++) {

for ( k = 0 ; k < j ; k ++) {
for ( i = 0 ; i < k ; i ++) {
m[ j ] [ k ] = m[ j ] [ k ] − m[ j ] [ i ] ∗ m[ k ] [ i ] ;

}
}

}
}

void s sp f a _2dp ( double ∗ ∗m, in t n )
{

in t i , j , k ;
# pragma scop
for ( j = 0 ; j < n ; j ++) {

for ( k = 0 ; k < j ; k ++) {
for ( i = 0 ; i < k ; i ++) {

i f ( 2 ∗ i > n && 2 ∗ k > n )
m[n−( j ) −1][n−(k ) ] = m[n−( j ) −1][n−(k ) ] − m[n−( j ) −1][n−( i )

] ∗ m[n−(k ) −1][n−( i ) ] ;
i f ( 2 ∗ i <= n && 2 ∗ k > n )
m[n−( j ) −1][n−(k ) ] = m[n−( j ) −1][n−(k ) ] − m[ j ] [ i ] ∗ m[ k ] [ i

] ;
i f ( 2 ∗ i > n && 2 ∗ k <= n )
m[ j ] [ k ] = m[ j ] [ k ] − m[n−( j ) −1][n−( i ) ] ∗ m[n−(k ) −1][n−( i )

] ;
i f ( 2 ∗ i <= n && 2 ∗ k <= n )
m[ j ] [ k ] = m[ j ] [ k ] − m[ j ] [ i ] ∗ m[ k ] [ i ] ;

}
}

}
# pragma endscop

}
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