
HAL Id: hal-02457425
https://hal.inria.fr/hal-02457425

Submitted on 28 Jan 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Runtime Multi-versioning and Specialization inside a
Memoized Speculative Loop Optimizer

Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, Philippe Clauss

To cite this version:
Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, Philippe Clauss. Runtime Multi-versioning and
Specialization inside a Memoized Speculative Loop Optimizer. CC 2020 - 29th International Con-
ference on Compiler Construction, Feb 2020, San Diego, United States. �10.1145/3377555.3377886�.
�hal-02457425�

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by INRIA a CCSD electronic archive server

https://core.ac.uk/display/288125671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://hal.inria.fr/hal-02457425
https://hal.archives-ouvertes.fr

Runtime Multi-versioning and Specialization
inside a Memoized Speculative Loop Optimizer

Raquel Lazcano
Centre of Software Technologies and Multimedia Systems

Universidad Politécnica de Madrid
Madrid, Spain

raquel.lazcano@upm.es

Daniel Madroñal
Centre of Software Technologies and Multimedia Systems

Universidad Politécnica de Madrid
Madrid, Spain

daniel.madronal@upm.es

Eduardo Juarez
Centre of Software Technologies and Multimedia Systems

Universidad Politécnica de Madrid
Madrid, Spain

eduardo.juarez@upm.es

Philippe Clauss
INRIA CAMUS, ICube laboratory

University of Strasbourg
Strasbourg, France

philippe.clauss@inria.fr

Abstract
In this paper, we propose a runtime framework that imple-
ments code multi-versioning and specialization to optimize
and parallelize loop kernels that are invoked many times
with varying parameters. These parameters may influence
the code structure, the touched memory locations, the work-
load, and the runtime performance. They may also impact
the validity of the parallelizing and optimizing polyhedral
transformations that are applied on-the-fly.

For a target loop kernel and its associated parameters, a dif-
ferent optimizing and parallelizing transformation is evalu-
ated at each invocation, among a finite set of transformations
(multi-versioning and specialization). The best performing
transformed code version is stored and indexed using its
associated parameters. When every optimizing transforma-
tion has been evaluated, the best performing code version
regarding the current parameters, which has been stored, is
relaunched at next invocations (memoization).

CCS Concepts • Software and its engineering → Just-
in-time compilers;Dynamic compilers;Runtime envi-
ronments.

Keywords runtime speculative optimization and paralleliza-
tion, multi-versioning, memoization, specialization, polyhe-
dral model
ACM Reference Format:
Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe
Clauss. 2020. Runtime Multi-versioning and Specialization inside a

Publication rights licensed to ACM. ACM acknowledges that this contribu-
tion was authored or co-authored by an employee, contractor or affiliate of
a national government. As such, the Government retains a nonexclusive,
royalty-free right to publish or reproduce this article, or to allow others to
do so, for Government purposes only.
CC ’20, February 22–23, 2020, San Diego, CA, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-1-4503-7120-9/20/02. . . $15.00
https://doi.org/10.1145/3377555.3377886

Memoized Speculative Loop Optimizer. In Proceedings of the 29th
International Conference on Compiler Construction (CC ’20), February
22–23, 2020, San Diego, CA, USA.ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3377555.3377886

1 Introduction
In code optimization, multi-versioning is a well-known ap-
proach to generate code that may adapt to a changing exe-
cution context: several versions of an original code snippet
are generated at compile-time, each one being the result of
some different optimizing transformations. When launching
the resulting code, some runtime decisions are performed
in order to select the convenient version to be run. For ex-
ample, most mainstream compilers (icc, gcc, clang) generate
multi-versioned code when handling automatic vectoriza-
tion: when some dependences across loops cannot be disam-
biguated at compile-time, a vectorized code is still generated,
but guarded by some dependence tests ensuring its validity.
Somemore ambitious proposals can be found in the literature,
where different advanced loop optimizing and parallelizing
transformations are applied to generate multi-versioned loop
kernels [11, 25]. Another well-known optimization strategy
is to generate specialized code, i.e. code where some param-
eters are instantiated as constants to predicted values, thus
yielding more efficient code [9, 13, 23].

However, static multi-versioning, i.e. several versions gen-
erated at compile-time, may be efficient when all future exe-
cution contexts are known: all the generated versions must
correspond to a potential execution context. These execu-
tion contexts might be related to the hardware execution
platform where the code is actually run, or to properties of
the target code that impact the validity or the performance
of the generated versions. When the execution contexts are
mostly unknown at compile-time and cannot be predicted,
such an approach becomes impractical. The same holds with
specialization and unpredictable values.

https://doi.org/10.1145/3377555.3377886
https://doi.org/10.1145/3377555.3377886

CC ’20, February 22–23, 2020, San Diego, CA, USA Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss

An answer to such limitations would be to generate the
code versions at runtime, when execution contexts are ob-
viously known. Nevertheless, such an approach includes
several steps that might be very time-consuming: profiling,
analysis, transformation, and just-in-time compilation.
On the other hand, several dynamic code optimizers and

parallelizers have been proposed, which are mostly based
on speculation. They may be classified as implementing one
of the three following mechanisms: (1) an optimized ver-
sion of the target code is launched without any previous
validity check, that is performed while the optimized code
is running [19, 21, 26, 29]; (2) an initial «light» code ver-
sion is launched, solely devoted to compute the memory
addresses that will be referenced, thus ensuring the validity
of a following optimized version of the code regarding data
dependences (inspector-executor mechanism) [27, 28]; (3) an
initial analysis is performed on-the-fly on some initial sample
of the whole execution, through instrumentation and pro-
filing, to build a prediction regarding the data dependences
and take advantage of advanced optimizing transformations.
The prediction is then continuously verified while the opti-
mized code is running [7, 16, 30]. In every approach, when
the verification fails, a rollback mechanism is triggered.
However, such speculative optimizers usually apply a

single optimizing transformation and do not handle multi-
versioning, mostly because of the inherent time-overhead.
Thus, the generated code may be inefficient in the context
actually met by the code at runtime, or some optimization op-
portunities may be missed. Another downside occurs when
the target code is relaunched many times: such optimizers
start again all their analysis and transformation steps at each
invocation, yielding a useless time-overhead.

Memoization [2, 15, 20] is also a well-known optimization
technique to speed up functions by storing the results of
calls and returning the cached result when the same inputs
occur again. To our knowledge, memoization has barely
been applied to runtime optimizers, for storing the generated
optimized codes in order to relaunch them whenever the
associated execution contexts occur again.

In this paper, we propose an optimizing framework whose
goal is to generate on-the-fly several transformed versions
of loop kernels that are intensively used and relaunched
many times. Specifically, we focus on stream-based, data-
driven applications employed in domains such as video and
image processing [31] and neural networks [1]. This kind
of applications can be specified with a dataflow Model of
Computation (MoC), which is a directed graph of nodes rep-
resenting computations, the so-called actors, and arcs, which
represent First-In First-Out (FIFO) queues where data tokens
interchanged between actors are stored [18]. Due to their
natural expressivity of task parallelism and analyzability,
dataflow MoCs are increasingly popular [4]. Dataflow MoCs
are especially useful for applications performing the same

processing to a stream of data; consequently, they run on a
loop, and hence they invoke actor kernels iteratively.

At each invocation of a given kernel, our framework either
generates and launches a new code version, which is then
stored if better performing when compared to previous ver-
sions; or launches the cached version that has been elected as
the best performing version for its related parameter values.
Indeed, the handled kernels may depend on some parameters
that impact the code structure, the touched memory loca-
tions or the workload. Such parameters are transmitted to the
optimizer in order to characterize the associated kernel. The
optimizing transformations that are applied on-the-fly by our
framework are polyhedral optimizing and parallelizing loop
transformations [5] as tiling, interchange, splitting, fusing
and skewing. The multi-versioning runtime optimizer has
been implemented as an extension of the Automatic Specula-
tive Polyhedral Loop Optimizer (Apollo) framework [7, 30].
While a traditional approach is to use some profile in-

formation for generating multiple versions statically, our
multi-versioning framework works entirely at runtime for
three main reasons: (1) Parameters values may be unknown
at compile-time and only discovered during real executions;
(2) With a static approach, too many versions would have to
be generated at compile-time (parameters values combined
with optimization opportunities), even inefficient ones, and
the final executable file, embedding all versions, would be
huge; (3) Our framework also takes advantage of one of the
main features of Apollo, which is that it handles codes that
cannot be handled statically, due to memory references us-
ing indirections or pointers, or to unknown loop bounds
as in while-loops [7, 30]. This paper brings the following
contributions:

• A runtime multi-versioning system for loop kernels;
• Applying polyhedral optimizing and parallelizing trans-
formations on-the-fly;

• Taking advantage of memoization by storing the best
performing optimized loop kernels indexed by self-
impacting parameters;

• For relaunching afterward the best performing cached
version according to the current execution context;

• Using a speculative approach to successfully paral-
lelize loops that may only be parallelizable in some
circumstances;

• Implemented as an extension of the speculative poly-
hedral loop optimizer Apollo.

The paper is organized as follows. In Section 2 some
required background is recalled, regarding the polyhedral
model and the speculative polyhedral loop optimizer Apollo.
Runtime multi-versioning and specialization, which are the
main contributions of this paper, are described in Section 3.
Experiments showing the effectiveness of our framework are
presented in Section 4. Related work is addressed in Section 5.
Conclusions are given in Section 6.

Runtime Multi-versioning and Specialization CC ’20, February 22–23, 2020, San Diego, CA, USA

2 Background
2.1 The polyhedral model
The polyhedral model [5, 12] has been proven to be a power-
ful mathematical and geometrical framework for analyzing
and optimizing for-loop nests. The requirements are that (i)
each loop iterates according to a unique index variable whose
bounds are affine expressions of the enclosing loop indices,
and (ii) the memory instructions that are handled are limited
to access simple scalar variables or multi-dimensional array
elements referenced using affine expressions on the enclos-
ing loop indices. Such loop nests are analyzed precisely with
respect to data dependences that occur among the statements
and across iterations. Thus, advanced optimizing transfor-
mations are proven to be semantically correct by preserving
the dependences of the original program. The loop nest opti-
mizations (e.g., loop skewing, loop interchange) are linear
transformations of the iteration domains that are represented
geometrically as polyhedra. Each tuple of loop indices values
is associated with an integer point contained in a polyhedron.
The order in which the iterations are executed translates to
the lexicographic order of the tuples. Thus, transformations
represent re-orderings of the iterations and are defined as
scheduling matrices, which are equivalent to geometrically
transforming a polyhedron into another equivalent form.
Representing loop nests as polyhedra enables one to reason
about the valid transformations that can be performed.

Although very powerful, the polyhedralmodel is restricted
to a class of compute andmemory intensive codes that can be
analyzed accurately and transformed only at compile-time.
However, most legacy codes are not amenable to this model
due to indirect or pointer based accesses to static or dynamic
data structures, which prevent a precise dependence analysis
to be performed statically. For these reasons, even though the
model is powerful, its applicability is limited. While Pluto1
is considered the state of the art polyhedral compiler, it can
only handle statically analyzable, affine-characterized, codes.

However, codes that do not exhibit characteristics suiting
the polyhedral model at compile time may still be in com-
pliance with the model, although this compliance can only
be detected and validated at runtime. Targeting such codes
for automatic optimization and parallelization imposes to
immerse the polyhedral model in the context of speculative
and dynamic parallelization. This is the main goal of Apollo
framework [7, 30], whose main features are recalled below.

2.2 Apollo
For loop nests that cannot be analyzed statically, but which
exhibit a polyhedral behavior at runtime, Apollo’s strategy
for making the polyhedral model applicable relies on spec-
ulation coupled with runtime verification. It consists of ob-
serving initially the original code during a very short sample
of the whole run. If a polyhedral behavior is observed on this
1http://pluto-compiler.sourceforge.net

sample, Apollo speculates that the behavior will remain the
same for the rest of the loop nest execution. Thus, Apollo
abstracts the loop to a polyhedral representation, reasons
about the intra and inter iteration dependences, applies and
validates polyhedral optimizations and parallelizing transfor-
mations. As long as the prediction remains true, the gener-
ated parallel code is semantically correct by definition of the
polyhedral model. In order to continuously verify the pre-
diction, and thus verify the correctness of the speculatively
optimized program, Apollo implements a decentralized run-
time verification system embedded in the parallel code. Each
of the parallel threads verifies independently if the next mem-
ory location touched has an address equal to the predicted
address corresponding to the polyhedral representation. A
similar verification is performed for the inner loops’ bounds.
Such a verification strategy has significantly less overhead
when compared to a centralized system traditionally used in
Thread-Level Speculation (TLS) systems [19, 21, 26, 29].

Apollo consists of two main parts: a static part imple-
mented as a set of passes of the Clang-LLVM compiler2, and
a dynamic part implemented as a runtime system.
At compile-time, Apollo’s static phase: (1) precisely an-

alyzes memory instructions that can be disambiguated at
compile-time; (2) generates an instrumented version to track
memory accesses that cannot be disambiguated at compile-
time; (3) generates elementary pieces of code called code-
bones [7], which are units of code in the LLVM Intermediate
Representation (LLVM-IR), that will be instantiated, assem-
bled and scheduled at runtime to result in the final optimized
code. Additionally, some code bones are devoted to specula-
tion verification.
At runtime, Apollo’s dynamic phase: (1) runs the instru-

mented version on a sample of consecutive outermost loop
iterations; (2) builds a linear prediction model for the loop
bounds and memory accesses from the instrumentation data;
(3) sends the linear model to the Pluto compiler, used as a
library, in order to compute dependences and generate an
optimizing and parallelizing transformation; (4) selects and
instantiates the code bones, and generates using the LLVM
JIT compiler an optimized parallel version of the original
sequential code, semantically correct with respect to the pre-
diction model, and which is going to run for a slice of the
original outermost loop (also called a chunk); (5) backs up
memory locations which are going to be modified according
to the prediction, during the execution of the next chunk;
(6) during the execution of the multi-threaded code, each
thread verifies independently if the prediction still holds. If
not, a rollback is initiated to recover the execution of the last
chunk and the system attempts to build a new prediction
model for the rest of the future chunks.
A dedicated pragma, added in source code, makes every

loop nest in the pragma’s scope being handled by Apollo.

2http://llvm.org

http://pluto-compiler.sourceforge.net
http://llvm.org

CC ’20, February 22–23, 2020, San Diego, CA, USA Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss

Note that even if Apollo’s main goal is to take advantage of
polyhedral optimizations opportunities at runtime, it also im-
plicitly achieves code specialization since many source code
parameters are actually instantiated at runtime. This frame-
work, whose source code is freely available3, implements the
basic functionalities required for our multi-versioning and
memoization system of loop kernels.

3 Runtime multi-versioning and
polyhedral optimization

3.1 General overview
As already mentioned in Section 1, our proposal of a runtime
multi-versioning system is especially useful for stream-based,
data-driven applications. Such dataflow systems often im-
plement applications performing the same processing to a
stream of data. Thus, they run on a loop and invoke code
kernels iteratively. A classic scheme where continuous high
performance computations of kernels are required is when a
device, or system, produces dataflows that must be processed
as fast as possible, to yield an apparent «real-time» behavior
of the device. The different kinds of output that may be re-
quested are associated to specific kernels, and quantitative
and/or qualitative data properties are associated to specific
kernel parameters. Since the target execution platform may
not be always the same, and the kernel parameters may be
unpredictable, a fully dynamic system is required to provide
high performance for the computed kernels: the kernels must
be automatically parallelized and optimized on-the-fly; in
a way that is adapted and specialized for the current exe-
cution context; that is characterized by the current kernel
parameter values and hardware resource characteristics.

These goals relate to automatic parallelization, multi-ver-
sioning and specialization of programs. Since we exclusively
focus on loops which can take advantage of the polyhedral
model, polyhedral parallelizing and optimizing transforma-
tions must be applied on-the-fly. For a given loop kernel,
there are many polyhedral transformations which are valid
regarding data dependences, and which could be applied.
Although the state of the art polyhedral compiler Pluto im-
plements heuristics to decide which transformations may be
the most beneficial, its purpose is to generate generally well-
performing code, whichever the actual execution context is.
Since Pluto is a static compiler, it needs to anticipate runtime
behaviors without any runtime information, as it is for any
mainstream compiler (excepting when profile-guided com-
pilation is used). Moreover, Pluto offers several invocation
flags in order to activate or deactivate some transformations,
or to set some transformation parameters. Thus, it is up to
the user to select the convenient optimizing strategy.
Our runtime multi-versioning system is depicted in Fig-

ure 1. It is organized in two main phases: the training phase

3http://apollo.gforge.inria.fr

Figure 1. Overview of the multi-versioning training and
operational phases

and the operational phase. For each loop kernel and its as-
sociated parameters, the training phase is successively re-
launched until every polyhedral transformation, among a
fixed set of transformations, has been applied to generate
a new kernel version. Each polyhedral transformation may
be more or less beneficial in some circumstances. For exam-
ple, an obvious multi-versioning scheme would be to apply
loop tiling with several different tile sizes: depending on
the cache memory hierarchy or the input data size, one or
another tile size may yield the best performing code. Then,
among all the generated versions, the best version is elected
by comparing the respective execution times. This version is
finally stored and indexed relatively to its kernel parameters.
Since the kernels may be invoked many times with the same
parameters, the stored versions will be relaunched many
times and provide directly the best performance, without
any further required code analysis or transformation. If a
kernel that has already been encountered is launched again,
but with parameters that are different than in previous in-
vocations, a new related training phase is launched. Note
that our approach includes a two-fold optimization strategy:
(1) applying the best polyhedral optimizing transformation
among a set of potential transformations and (2) specializing
the code regarding the current kernel parameters.

As soon as the training phase associated to a set of kernel
parameters has been completed, the operational phase is
launched whenever the same parameters are encountered. It
simply consists in loading and launching the best version as-
sociated to the current and already encountered parameters.
Thus this phase implements the memoization of our system.

3.2 Implementation
Our runtime multi-versioning system has been implemented
as an extension of the speculative polyhedral loop optimizer

http://apollo.gforge.inria.fr

Runtime Multi-versioning and Specialization CC ’20, February 22–23, 2020, San Diego, CA, USA

Apollo, since it already implemented several required fea-
tures (see Subsection 2.2). However, although it successfully
applies polyhedral optimizations at runtime, it is blind to
the number of times the same kernel is launched. As shown
in Figure 2, Apollo’s dynamic phase can be roughly summa-
rized in three steps: each time a kernel is invoked, it (1) runs
a small subset of consecutive outermost loop iterations to
instrument the code and build a prediction model; (2) calls
Pluto to generate an optimizing transformation; and (3) gen-
erates the optimized version using the LLVM Just-In-Time
(JIT) compiler and runs it by chunks, i.e., slices of the outer-
most loop. But if the same kernel is launched again, the same
steps are always repeated, re-instrumenting the code and
re-generating the same transformation again. This behavior
yields useless time-overheads, since the profiling and code
generation steps could be launched once for all invocations
of the same kernel and associated parameters.

Instrument the code

Compute an optimizing

transformation

Run the optimized code

Figure 2. Apollo diagram.

To do so, we have modified and extended Apollo’s dy-
namic phase as depicted in Figure 3. If it is the first time
the kernel is ever launched, Apollo behaves «normally», as
described before, by generating and applying an optimiz-
ing transformation and running the optimized code for a
slice of the outermost loop. At this step, Apollo has been
modified to apply one optimizing polyhedral transformation
among a fixed set of transformations. Each transformation
is characterized by a specific set of flags used to invoke the
Pluto compiler. Although the number of flag combinations
has been set to 10 for our experiments (see Section 4), it can
be easily modified and customized by the user. As soon as
this process finishes, some important information related to
the tested optimizing transformation is stored:

• A unique identifier for the handled kernel and associ-
ated parameters;

• The prediction model built after the instrumentation;
• An identifier of the tested transformation;
• The specialized and optimized code generated by the
LLVM JIT compiler;

• The execution time of the optimized code.
Next time the same kernel with the same parameters is

launched, the prediction model is automatically retrieved, so

the instrumentation phase is skipped. Then, Pluto is called
again, but this time with a different flag combination, among
the fixed set of combinations, to generate and evaluate a
different transformation. Once the optimized kernel finishes
its execution, the last tested transformation is compared with
the stored one regarding its execution time. If the new one
is better, it substitutes the stored one. Otherwise, the only
information saved is the identifier of the transformation, in
order to keep track of the transformations that have already
been tested. This process is repeated each time the same
kernel is invoked with the same parameters and until all
flag combinations have been tested. When this occurs, the
best optimized code is automatically launched, avoiding the
overhead of calling both Pluto and the LLVM JIT compiler.

Comparing optimized versions: To compare transforma-
tions in terms of performance, the comparison criterion must
be correctly defined. There are two main issues to address
for this purpose. First, in order to counterbalance Pluto’s
overhead induced from dependence analysis and optimiz-
ing transformation selection, Apollo launches in parallel a
thread executing simultaneously some iterations of the orig-
inal loop kernel. When Pluto finishes, this thread is stopped,
and the optimized chunk is then launched from the iteration
where the thread ended. Consequently, the starting iteration
of the optimized chunk depends on the time spent by Pluto
in generating the optimizing transformation, and thus can-
not be predicted. The second issue is related to the shape
of the loop kernel: non-rectangular iteration domains may
occur when some loop bounds depend linearly on some sur-
rounding loop iterators. In such cases, the total number of
iterations for a fixed-size slice of the outermost loop is not
constant, for any outermost loop bound.

Both issues are addressed by computing the exact number
of iterations that have been run for any slice of the outermost
loop, whichever the loop bounds and the shape of the iter-
ation domain. Instead of incrementing a dedicated counter
which would yield some time overhead, this number can be
directly computed through the evaluation of the associated
Ehrhart polynomial [8]. Ehrhart polynomials are particular
polynomials expressing the exact number of integer points
inside a parameterized polyhedron. They can be computed
using existing software tools like the barvinok library [32].
However, invoking such a library at runtime would be too
time-consuming. Hence we implemented in our system the
runtime computation of the Ehrhart polynomial associated
to each handled loop kernel, whose variables are the out-
ermost loop bounds defining a slice of executed iterations.
Then, by dividing the measured execution time by the related
and evaluated Ehrhart polynomial, we obtain the average
execution time per iteration, which is a figure of merit that
can be used to accurately compare two optimized versions.

Ehrhart polynomials are generated as follows. Following
the theory presented in [8], for a loop nest of depth d , the

CC ’20, February 22–23, 2020, San Diego, CA, USA Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss

associated Ehrhart polynomial is a polynomial whose degree
is at most d , and whose variables are the lower and upper
bounds of the outermost loops, which are defining a slice of
executed iterations. Hence it is of the general form:

ep(lower ,upper) =
d∑
i=0

d−i∑
j=0

ci j lower
i upper j

where coefficients ci j ’s are rational numbers that have to be
found to generate the Ehrhart polynomial. The number of
coefficients that must be determined is:

#unknowns =
d2

2
+
3d
2
+ 1

which is also the number of linear equations that are required
to get a solvable system of linear equations. For this purpose,
#unknowns different small and valid combinations of lower
andupper , for which the total number of iterations is known
thanks to Apollo’s profiling phase, are used to set a system of
linear equations, which is then solved by invoking a solver
already implemented in Apollo for other purposes.

Compute an optimizing

 transformation

Run the optimized code

Figure 3. Apollo diagram with multi-versioning and memo-
ization.

The impact of kernel parameters: The handled kernels
may depend on some parameters, which in turn can affect
the workload, the touched memory locations and/or the code
structure. These parameters depend on the application (e.g.
size of the image, video resolution), and they can be trans-
lated to loop bounds, memory accesses, etc. The impact they
can have in the loop kernel can be summarized in two main
categories: (1) The new values of the parameters can cause
a variation in the linear functions predicting the memory
accesses, and thus they can invalidate the prediction model

built by Apollo for that loop kernel in previous invocations;
(2) The new values of the parameters can directly impact the
loop bounds, and thus the transformation selected as being
the best may not be the best anymore.

Since all of these features directly affect the transformation
and, obviously, the specialized code, these changes must be
taken into consideration when applying the multi-versioning
and memoization mechanism described above. As a result,
the framework must be reactive to possible changes in these
parameters. In parameterized dynamic dataflow applications,
the parameters that may change at runtime are clearly identi-
fied, so they can be fed to Apollo’s extended runtime system.
When there is a change in some dynamic parameter, the
process shown in Figure 3 is restarted.

Time-overhead investment: To fully exploit the possibili-
ties offered by combining a dataflow system with a runtime
polyhedral parallelizer like Apollo, another functionality has
been added. As already stated before, while Pluto is comput-
ing the optimizing transformation, Apollo launches a thread
in parallel to execute the original loop kernel sequentially.
The goal of this mechanism is two-fold: (1) to counterbal-
ance Pluto’s overhead; and (2) to counterbalance Apollo’s
overhead in such a way that, if the sequential thread fin-
ishes before Pluto, Apollo’s execution is aborted, and the
results of the sequential thread are provided to the user. In
that way, it is guaranteed that the loop kernel is not slowed
down too much by Apollo when the handled loop kernel is
too small regarding its workload. In the context of dataflow
applications, a new compromise may be reached. As these
applications are running on a loop, we consider the possi-
bility of allowing Apollo to spend more time in generating
the optimizing transformation, as hypothetically, this time
will be counterbalanced by the speedup provided for the
next invocations of the same kernel. This functionality has
been implemented as a timeout, configured by the user and
activated if the sequential thread finishes before Pluto. This
extension benefits to small loop kernels, which could not be
handled profitably by Apollo before, as it is illustrated by
our experiments in Section 4.

Speculative optimization & parallelization: Apollo im-
plements a speculative approach enabling the application
of polyhedral optimizations to loop kernels that cannot be
handled by static polyhedral compilers, but which exhibit
a polyhedral-compliant memory behavior at runtime. Thus
some speculative optimizations may fail and imply Apollo’s
rollback mechanism to be triggered.
An important consequence is that our multi-versioning

system handles loop kernels that cannot be handled statically.
This feature is particularly interesting for kernels whose
memory behavior depends on the shape of the input data:
if the encountered shapes can be classified and take part
of the kernel parameters, then a dedicated multi-versioning
scenario is launched for each kind of encountered data shape,

Runtime Multi-versioning and Specialization CC ’20, February 22–23, 2020, San Diego, CA, USA

and a best version especially optimized for the current kind of
shape is generated. This aspect is illustrated in Section 4 with
spmatmat, which is a sparse matrix-vector multiplication,
andwhere versions dedicated to the shape of the inputmatrix
are generated by our system (dense or diagonal matrix).
Our runtime multi-versioning system registers every op-

timizing transformation whose related optimized code has
been successfully run for at least one chunk. During the
operational phase, if several transformations have been suc-
cessfully tested, the best one is launched for each chunk,
leaving a chunk running the original serial code between
each one. If, after a rollback, the system is unable to find a
valid transformation, the original code is launched from the
moment the last optimization chunk finishes until the end
of the whole kernel invocation.

4 Experiments
The presentation of our experiments is organized as follows:
first the hardware platforms and the benchmark programs
are presented in Subsection 4.1; then, the parameters used
to evaluate the multi-versioning mechanism are given in
Subsection 4.2; finally, speed-ups provided by our framework
are presented and discussed in Subsection 4.3.

4.1 Description of the experiments
The benchmarks were run on two hardware platforms:

• Namaka: A general-purpose multicore platform in-
cluding an AMD Ryzen™Threadripper™1950X proces-
sor with 16 cores running at 2.4 GHz, with 32 GB of
RAM, running Linux 4.15.0-65 and with cache sizes of
32K L1d, 64K L1i, 512K L2, 8192K L3. The experiments
have been conducted on the 16 cores of the processor,
with one thread per core.

• Magerit: A cluster of 68 Lenovo ThinkSystem SD530
nodes, each one including two Intel Xeon Gold 6230
processors with 20 cores running at 2.1 GHz, with
192 GB of RAM, running Linux 3.10.0-957 and with
cache sizes of 32K L1d, 32K L1i, 1024K L2, 28160K L3.
The experiments have been conducted on the 20 cores
of one Intel Xeon Gold 6230 processor, with one thread
per core, using 4 GB of RAM per core.

The set of benchmark programs has been built from two
different benchmarks suites: the Apollo benchmarks4 and
a selection of loop kernels from the Polybench benchmark
suite5. In total, 20 different benchmark programs have been
used to evaluate our framework: 11 from Polybench and 9
from Apollo, including spmatmat with two different config-
urations related to the shape of the input matrices.
Note that programs from the Apollo benchmarks cannot

be handled by a static compiler, since they contain either

4http://apollo.gforge.inria.fr/download
5https://sourceforge.net/projects/polybench

memory references using pointers or indirections, or while-
loops. Although programs from the Polybench benchmark
suite may be handled statically, such programs must still be
handled at runtime when input parameters are unknown
at compile-time, and when too many versions have to be
evaluated, which is actually our context of use.
The Apollo benchmarks can be configured with three

different problem sizes: small, medium and large; the Poly-
bench benchmarks also provide those three sizes, but also
size extralarge. We have observed that size small induces
a workload that is too weak for parallelization, thus it is
not included in our experiments, while sizes medium, large
and extralarge are. Thus in the following, we rename the
Apollo benchmarks sizes in the same way. They are used
in our experiments as being dynamic parameters associated
to the loop kernels. For program spmatmat from the Apollo
benchmarks, one additional qualitative parameter indicates
whether the input matrix is dense or diagonal.

Every benchmark code has been compiled using Apollo
compiler, i.e. apolloc or apolloc++, which are based on
clang 6.0.1, and optimization flags -O3 -march=native. Runs
were performed with OpenMP parallelization and after hav-
ing set the environment variable OMP_PROC_BIND=true
to avoid thread migration and bind the threads to processor
cores, and the environment variable OMP_NUM_THREADS
to 16 for platform Namaka and 20 for platform Magerit.
Moreover, programs were launched by using the linux tool
taskset to explicitly select specific processor cores.

4.2 Setup of the multi-versioning system
Our multi-versioning system has been configured to test 10
different polyhedral optimizing transformations, for each
benchmark program and associated parameters. Additionally,
the original code is also considered as a candidate, since there
are cases where the original serial code is the best option,
particularly when the workload is very low. As described
in Section 3, the set of tested transformation candidates can
be easily modified by the user. Although Pluto offers many
possible flag combinations, we reduced the number of tested
combinations to the 10 that may potentially provide the
best performance. The involved Pluto flags are: --tile, to
activate loop tiling with tile sizes that may be customized;
--intratile, to promote intra-tile execution order for data
locality; --parallel, to enable OpenMP loop parallelization;
and --identity, to prevent loop interchange and skewing.
The selected combinations of these flags are shown in Table 1.

The timeout related to the generation of the optimizing
transformation has been set to two times the execution time
of the original serial loop kernel: if the original code, which is
launched simultaneously to the generation of the optimizing
transformation, completes first, then the same time, as the
original code execution time, is granted in addition to finish
the generation of optimized code.

http://apollo.gforge.inria.fr/download
https://sourceforge.net/projects/polybench

CC ’20, February 22–23, 2020, San Diego, CA, USA Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss

ba
ckp

rop

dm
atm

at

isp
matm

at
mri-q

ne
ed

le pc
g so

r

sp
matm

at-
dia

g

sp
matm

at-
sq

ua
re

co
rre

lat
ion

co
va

ria
nc

e
ge

mm
syr

2k syr
k

trm
m

2m
m

3m
m

do
itg

en

ch
ole

sky

se
ide

l-2
d

-20

0

20

40

60

80

100

Sp
ee

d-
up

 (%
)

Medium Large Extralarge

Figure 4. Speed-up with 100 invocations against Apollo without multi-versioning (Namaka: 16 threads/cores)

ba
ckp

rop

dm
atm

at

isp
matm

at
mri-q

ne
ed

le pc
g so

r

sp
matm

at-
dia

g

sp
matm

at-
sq

ua
re

co
rre

lat
ion

co
va

ria
nc

e
ge

mm
syr

2k syr
k

trm
m

2m
m

3m
m

do
itg

en

ch
ole

sky

se
ide

l-2
d

-20

0

20

40

60

80

100

Sp
ee

d-
up

 (%
)

Medium Large Extralarge

Figure 5. Speed-up with 100 invocations against Apollo without multi-versioning (Magerit: 20 threads/cores)

ba
ckp

rop

dm
atm

at

isp
matm

at
mri-q

ne
ed

le pc
g so

r

sp
matm

at-
dia

g

sp
matm

at-
sq

ua
re

co
rre

lat
ion

co
va

ria
nc

e
ge

mm
syr

2k syr
k

trm
m

2m
m

3m
m

do
itg

en

ch
ole

sky

se
ide

l-2
d

-20

0

20

40

60

80

100

Sp
ee

d-
up

 (%
)

Medium Large Extralarge

Figure 6. Maximum speed-up with unlimited invocations against Apollo without multi-versioning (Magerit: 20 threads/cores)

4.3 Performance results
Our framework has been run by invoking 100 times each
loop kernel, for each problem size among medium, large and
extralarge. Additionally, for kernel spmatmat, which im-
plements a sparse matrix-vector multiplication, two different
kinds of inputs were provided: a dense square matrix and a
diagonal matrix. This scenario has been repeated 5 times, and

the average execution times have been used to compute the
speed-ups against the execution of Apollo without our multi-
versioning system (one-shot Apollo). The obtained speed-ups
are shown in Figures 4 and 5 for hardware platforms Namaka
and Magerit respectively. Note that no extralarge input is
provided in the Apollo benchmarks for mri-q.

Runtime Multi-versioning and Specialization CC ’20, February 22–23, 2020, San Diego, CA, USA

Table 1. Pluto flag combinations used for multi-versioning

ID Flag combination
0 no transformation (original code)
1 intratile + parallel
2 tile 32 × 32 × 32 + parallel
3 tile 32 × 32 × 32 + intratile + parallel
4 tile 32 × 32 × 32 + intratile + identity + parallel
5 tile 64 × 64 × 64 + parallel
6 tile 128 × 128 × 128 + intratile + parallel
7 tile 32 × 32 × 64 + parallel
8 tile 64 × 64 × 32 + parallel
9 tile 16 × 64 × 32 + parallel
10 tile 16 × 64 × 32 + identity + parallel

Significant speed-ups are obtained for most of the loop
kernels and problem sizes on both platforms, since our multi-
versioning system allows to select a better performing op-
timized kernel version than the unique version generated
by one-shot Apollo. However, a few slow-downs can be ob-
served for kernels backprop, needle, syr2k and doitgen
and size extralarge on platform Namaka (also on platform
Magerit for syr2k). In these cases, 100 invocations is not
enough to counterbalance the time overhead induced by the
training phase of multi-versioning.

This issue is highlighted when extrapolating the measures
to an unlimited number of invocations, such that the training
phase execution time becomes negligible. The associated
theoretical speed-ups are shown in Figure 6 for platform
Magerit. One can observe that kernels backprop, needle,
syr2k and doitgen may after all provide speed-ups above a
certain number of invocations.

The exact numbers of invocations required to counterbal-
ance the time overhead of the training phase are given in
Table 2. Symbol∞ denotes cases where the training phase
can never be counterbalanced, since no optimized code ver-
sions could be generated with the timeout value used in
these experiments. It is the case with kernel sor on Magerit
with size medium. However, note that the related slow-downs,
showed in Figures 5 and 6, can be considered as negligible.

The flag combinations characterizing the best elected ver-
sions are given in Table 3, by using the ID’s of Table 1. One
can observe that some kernels, (e.g. correlation), are com-
posed of several loop nests which are handled separately by
Apollo. Thus several different combinations of optimizations
are tested and selected by the multi-versioning system for
one unique kernel. Note also that in several cases, the multi-
versioning system wisely selects the original serial kernel
version, either because the transformed versions are slower,
or the timeout did not enable the generation of any optimized
version, especially for small workloads. More importantly,
one can observe that different optimizations are selected for a
given kernel when changing the problem size or the platform.
In particular, the best performing tile sizes are obviously dif-
ferent on Namaka and Magerit, due to different cache sizes

Table 2. Minimum number of invocations required to coun-
terbalance the time-overhead of runtime multi-versioning
(M=Medium, L=Large, E=Extralarge)

Program Namaka Magerit
M L E M L E

backprop 32 31 326 34 48 49
dmatmat 20 28 37 38 34 29
ispmatmat 14 18 32 1 38 29
mri-q 27 52 NA 26 30 NA
needle 24 38 207 1 52 52
pcg 48 29 24 15 27 63
sor 41 24 39 ∞ 108 17
spmatmat-diag 25 19 25 74 34 19
spmatmat-square 24 27 20 42 40 18
correlation 36 36 62 38 31 75
covariance 42 33 63 47 30 77
gemm 14 22 25 32 37 24
syr2k 21 34 168 48 26 193
syrk 14 23 104 26 24 43
trmm 12 63 39 22 76 26
2mm 15 33 48 36 52 56
3mm 19 37 56 45 56 55
doitgen 23 60 264 17 16 1
cholesky 20 1 1 27 1 1
seidel-2d 36 30 54 41 22 37

and types. This fully justifies the automatic adaptation of
optimized code through runtime multi-versioning.

5 Related Work
To our knowledge, there is no proposal of another runtime
framework performing multi-versioning on loop kernels
optimized and parallelized on-the-fly using polyhedral tech-
niques, and furthermore taking advantage of memoization.
In contrast, there are several proposals related to one of

our framework’s feature, however mostly accomplished at
compile-time, i.e., statically. This is mostly due to the time-
overhead of dynamic code generation, which is significantly
lowered in our approach thanks to speculation and the col-
laborative static-dynamic mechanism of Apollo, based on the
static generation of code-bones [7], instantiated and sched-
uled at runtime to reflect a polyhedral optimization.

As mentioned in the introduction, multi-versioning is im-
plemented in mainstream compilers for two main goals: (1)
generating vectorized loops guarded by some dependence
tests; (2) enabling programmers to specify multiple versions
of a function, where each function is specialized regarding
some hardware feature.

The ATLAS system [33] achieves empirical tuning of BLAS
kernels where numerous variants are repeatedly executed
on the target architecture, in order to find the best one.
Diniz and Rinard [10] propose dynamic feedback, a tech-

nique for selecting code variants based on measured execu-
tion times. A program has alternating sampling and produc-
tion phases. In the sampling phase, code variants, generated

CC ’20, February 22–23, 2020, San Diego, CA, USA Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss

Table 3. Optimizations selected by the multi-versioning
system to generate the best performing code (M=Medium,
L=Large, E=Extralarge)

Program Loop nest Namaka Magerit
M L E M L E

backprop 1 0 2 3 0 2 3
dmatmat 1 3 1 6 1 1 9
ispmatmat 1 0 0 6 0 1 9
mri-q 1 2 6 NA 6 6 NA
needle 1 0 0 5 0 0 6

2 0 0 6 0 0 5
pcg 1 0 4 4 4 4 4
sor 1 0 0 3 0 0 9
spmatmat-diag 1 0 3 8 0 3 3
spmatmat-square 1 3 1 5 3 1 1
correlation 1 0 0 6 0 9 9

2 0 0 0 0 0 0
3 0 1 6 0 0 0
4 0 0 0 0 0 0

covariance 1 0 1 0 0 9 9
2 0 0 6 0 0 0
3 0 0 0 0 0 0

gemm 1 0 3 5 0 1 9
syr2k 1 0 10 10 0 10 10
syrk 1 0 4 4 0 4 10
trmm 1 0 6 8 0 3 8
2mm 1 1 2 9 0 1 2

2 0 1 9 0 1 1
3mm 1 0 3 7 0 1 1

2 0 2 7 0 1 1
3 0 7 9 0 1 1

doitgen 1 0 0 3 0 7 3
cholesky 1 0 0 0 0 0 0
seidel-2d 1 1 1 1 1 1 7

at compile-time using different optimization strategies, are
executed and timed. This phase continues for a user-defined
interval. After the interval expires, the code variant that
exhibited the best execution time is used.

PetaBricks [3] provides a language and a compiler where
having multiple implementations of multiple algorithms to
solve a problem is the natural way of programming. The
associated runtime system uses a choice dependency graph
to select one or another algorithm and implementation at
different steps of the whole computation, thus resulting to
an optimized hybrid algorithm. Such an approach is suitable
for programs where it is obviously possible to switch from
one algorithm to another while still making progress in the
whole computation.

One of the earliest methods proposed for generating mul-
tiple version loops was proposed by Byler et al. in [6]. In this
technique, several variants of a loop are generated at compile-
time and the best version is selected based on runtime infor-
mation. Pradelle et al. [25] propose a multi-versioning frame-
work where several optimized versions of a loop kernel are
generated at compile-time using Pluto. Then, these versions

are profiled offline in order to set up the relevant runtime
selection criteria. Doerfert et al. [11] propose a framework to
handle assumptions based on Presburger arithmetic, in order
to derive a minimal set of preconditions to validate polyhe-
dral optimizations at runtime. However in these proposals,
the optimized loop kernels are generated at compile-time,
which limits the scope to the related execution contexts (pa-
rameter values, potential optimizations, etc.).

Similarly, iterative compilation [17] searches through the
transformation space to find the best optimizations. In [24],
Pouchet et al. propose advanced techniques using an heuris-
tic and a genetic algorithm to traverse huge polyhedral opti-
mization spaces.
Consel and Noël [9] address code specialization through

the generation of code templates with «holes» at compile-
time, that may then be selected at runtime by filling holes
with runtime values and relocating jump targets. Grant et al.
propose DyC [14] which is a staged compiler that generates
a runtime compiler from an annotated program. Then, the
runtime compiler generates the executable using runtime
values. Note that DyC also implements memoization since
the generated executables are stored for potential reuse. Oh
et al. [22] automatically specialize loops based on patterns.
An offline profiling phase collects value profiles to identify
static instructions that always produce the same value.

6 Conclusion
In this paper, it has been shown that runtimemulti-versioning
and specialization using polyhedral loop optimizations can
be effective, thanks to a speculative approach using pre-
diction based on instrumentation by sampling. Significant
speed-ups may be obtained when invoking many times some
loop kernels, characterized by dynamic parameters, as it is
implemented by dataflow systems.
Among the perspectives of further extensions, one inter-

esting option would be to store the best elected versions and
their associated execution contexts into a file on disk, which
could then be reloaded each time the invoking dataflow sys-
tem is relaunched. This added feature would save the time
overhead of the training phase and thus provide systemati-
cally the theoretical speed-ups for an unlimited number of
invocations (Figure 6).

Acknowledgments
The authors acknowledge the computer resources and techni-
cal assistance provided by the Centro de Supercomputación
y Visualización de Madrid (CeSViMa). This work has been
supported by Universidad Politécnica de Madrid under the
Programa Propio RR01/2015, by CERBERO european project
(Grant No.: 732105) and by the Spanish Government through
PLATINO project (TEC2017-86722-C4-4-R).

Runtime Multi-versioning and Specialization CC ’20, February 22–23, 2020, San Diego, CA, USA

References
[1] Martín Abadi, Paul Barham, Jianmin Chen, Zhifeng Chen, Andy Davis,

Jeffrey Dean, Matthieu Devin, Sanjay Ghemawat, Geoffrey Irving,
Michael Isard, et al. 2016. Tensorflow: A system for large-scale machine
learning. In 12th {USENIX} Symposium on Operating Systems Design
and Implementation ({OSDI} 16). 265–283.

[2] Umut A. Acar, Guy E. Blelloch, and Robert Harper. 2003. Selective
Memoization. In Proceedings of the 30th ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages (POPL ’03). ACM, New
York, NY, USA, 14–25. https://doi.org/10.1145/604131.604133

[3] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao,
Alan Edelman, and Saman Amarasinghe. 2009. PetaBricks: A Lan-
guage and Compiler for Algorithmic Choice. In Proceedings of the
30th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI ’09). ACM, New York, NY, USA, 38–49.
https://doi.org/10.1145/1542476.1542481

[4] Florian Arrestier, Karol Desnos, Eduardo Juarez, and Daniel Menard.
2019. Numerical Representation of Directed Acyclic Graphs for Ef-
ficient Dataflow Embedded Resource Allocation. ACM Trans. Em-
bed. Comput. Syst. 18, 5s, Article 101 (Oct. 2019), 22 pages. https:
//doi.org/10.1145/3358225

[5] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayap-
pan. 2008. A Practical Automatic Polyhedral Parallelizer and Locality
Optimizer. In Proceedings of the 29th ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation (PLDI ’08). ACM, New
York, NY, USA, 101–113. https://doi.org/10.1145/1375581.1375595

[6] Mark Byler, Michael Wolfe, James R. B. Davies, Christopher Huson,
and Bruce Leasure. 1987. Multiple Version Loops. In ICPP.

[7] Juan Manuel Martinez Caamaño, Manuel Selva, Philippe Clauss, Ar-
tiom Baloian, and Willy Wolff. 2017. Full runtime polyhedral opti-
mizing loop transformations with the generation, instantiation, and
scheduling of code-bones. Concurrency and Computation: Practice
and Experience 29, 15 (2017), e4192. https://doi.org/10.1002/cpe.4192
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4192 e4192
cpe.4192.

[8] Philippe Clauss. 1996. Counting Solutions to Linear and Nonlinear
Constraints Through Ehrhart Polynomials: Applications to Analyze
and Transform Scientific Programs. In Proceedings of the 10th Inter-
national Conference on Supercomputing (ICS ’96). New York, NY, USA,
278–285.

[9] Charles Consel and François Noël. 1996. A General Approach for
Run-time Specialization and Its Application to C. In Proceedings of the
23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages (POPL ’96). ACM, New York, NY, USA, 145–156. https:
//doi.org/10.1145/237721.237767

[10] Pedro C. Diniz and Martin C. Rinard. 1997. Dynamic Feedback: An
Effective Technique for Adaptive Computing. In Proceedings of the
ACM SIGPLAN 1997 Conference on Programming Language Design and
Implementation (PLDI ’97). ACM, New York, NY, USA, 71–84. https:
//doi.org/10.1145/258915.258923

[11] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. 2017. Op-
timistic Loop Optimization. In Proceedings of the 2017 International
Symposium on Code Generation and Optimization (CGO ’17). IEEE
Press, Piscataway, NJ, USA, 292–304. http://dl.acm.org/citation.cfm?
id=3049832.3049864

[12] Paul Feautrier and Christian Lengauer. 2011. Polyhedron Model. In
Encyclopedia of Parallel Computing, David Padua (Ed.). Springer US,
1581–1592. https://doi.org/10.1007/978-0-387-09766-4_502

[13] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and
Susan J. Eggers. 1999. An Evaluation of Staged Run-time Optimiza-
tions in DyC. In Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation (PLDI ’99). ACM,
New York, NY, USA, 293–304. https://doi.org/10.1145/301618.301683

[14] Brian Grant, Matthai Philipose, Markus Mock, Craig Chambers, and
Susan J. Eggers. 1999. An Evaluation of Staged Run-time Optimiza-
tions in DyC. In Proceedings of the ACM SIGPLAN 1999 Conference on
Programming Language Design and Implementation (PLDI ’99). ACM,
New York, NY, USA, 293–304. https://doi.org/10.1145/301618.301683

[15] Marty Hall and J Paul McNamee. 1997. Improving software perfor-
mance with automatic memoization. Johns Hopkins APL Technical
Digest 18, 2 (1997), 255.

[16] Alexandra Jimborean, Philippe Clauss, Jean-François Dollinger, Vin-
cent Loechner, and Juan Manuel Martinez Caamaño. 2014. Dynamic
and Speculative Polyhedral Parallelization Using Compiler-Generated
Skeletons. International Journal of Parallel Programming 42, 4 (01 Aug
2014), 529–545. https://doi.org/10.1007/s10766-013-0259-4

[17] Toru Kisuki, Peter M. W. Knijnenburg, Mike F. P. O’Boyle, François
Bodin, and Harry A. G. Wijshoff. 1999. A feasibility study in itera-
tive compilation. In High Performance Computing, Constantine Poly-
chronopoulos, Kazuki Joe Akira Fukuda, and Shinji Tomita (Eds.).
Springer Berlin Heidelberg, Berlin, Heidelberg, 121–132.

[18] Edward A Lee and David G Messerschmitt. 1987. Synchronous data
flow. Proc. IEEE 75, 9 (1987), 1235–1245.

[19] Wei Liu, James Tuck, Luis Ceze, Wonsun Ahn, Karin Strauss, Jose
Renau, and Josep Torrellas. 2006. POSH: a TLS compiler that ex-
ploits program structure. In Proceedings of the eleventh ACM SIGPLAN
symposium on Principles and practice of parallel programming. ACM,
158–167.

[20] DonaldMichie. 1968. “Memo” Functions andMachine Learning. Nature
218, 306 (April 1968). https://doi.org/10.1038/218019a0

[21] Cosmin E. Oancea, Alan Mycroft, and Tim Harris. 2009. A Lightweight
In-place Implementation for Software Thread-level Speculation. In
Proceedings of the Twenty-first Annual Symposium on Parallelism in
Algorithms and Architectures (SPAA ’09). ACM, New York, NY, USA,
223–232. https://doi.org/10.1145/1583991.1584050

[22] Taewook Oh, Hanjun Kim, Nick P. Johnson, Jae W. Lee, and David I.
August. 2013. Practical Automatic Loop Specialization. In Proceedings
of the Eighteenth International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS ’13). ACM,
New York, NY, USA, 419–430. https://doi.org/10.1145/2451116.2451161

[23] Massimiliano Poletto, Dawson R. Engler, and M. Frans Kaashoek. 1997.
Tcc: A System for Fast, Flexible, and High-level Dynamic Code Gen-
eration. In Proceedings of the ACM SIGPLAN 1997 Conference on Pro-
gramming Language Design and Implementation (PLDI ’97). ACM, New
York, NY, USA, 109–121. https://doi.org/10.1145/258915.258926

[24] Louis-Noël Pouchet, Cédric Bastoul, Albert Cohen, and John Cavazos.
2008. Iterative Optimization in the Polyhedral Model: Part Ii, Multidi-
mensional Time. In Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI ’08). ACM,
New York, NY, USA, 90–100. https://doi.org/10.1145/1375581.1375594

[25] Benoît Pradelle, Philippe Clauss, and Vincent Loechner. 2011. Adaptive
runtime selection of parallel schedules in the polytope model. In 2011
Spring Simulation Multi-conference, SpringSim ’11, Boston, MA, USA,
April 03-07, 2011. Volume 6: Proceedings of the 19th High Performance
Computing Symposia (HPC). 81–88. http://dl.acm.org/citation.cfm?
id=2048588

[26] Arun Raman, Hanjun Kim, Thomas R. Mason, Thomas B. Jablin, and
David I. August. 2010. Speculative Parallelization Using Software
Multi-threaded Transactions. SIGARCH Comput. Archit. News 38, 1
(March 2010), 65–76. https://doi.org/10.1145/1735970.1736030

[27] Lawrence Rauchwerger and David A Padua. 1999. The LRPD test:
Speculative run-time parallelization of loops with privatization and
reduction parallelization. IEEE Transactions on Parallel and Distributed
Systems 10, 2 (1999), 160–180.

[28] J. H. Saltz, R. Mirchandaney, and K. Crowley. 1991. Run-time paral-
lelization and scheduling of loops. IEEE Trans. Comput. 40, 5 (May
1991), 603–612. https://doi.org/10.1109/12.88484

https://doi.org/10.1145/604131.604133
https://doi.org/10.1145/1542476.1542481
https://doi.org/10.1145/3358225
https://doi.org/10.1145/3358225
https://doi.org/10.1145/1375581.1375595
https://doi.org/10.1002/cpe.4192
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/cpe.4192
https://doi.org/10.1145/237721.237767
https://doi.org/10.1145/237721.237767
https://doi.org/10.1145/258915.258923
https://doi.org/10.1145/258915.258923
http://dl.acm.org/citation.cfm?id=3049832.3049864
http://dl.acm.org/citation.cfm?id=3049832.3049864
https://doi.org/10.1007/978-0-387-09766-4_502
https://doi.org/10.1145/301618.301683
https://doi.org/10.1145/301618.301683
https://doi.org/10.1007/s10766-013-0259-4
https://doi.org/10.1038/218019a0
https://doi.org/10.1145/1583991.1584050
https://doi.org/10.1145/2451116.2451161
https://doi.org/10.1145/258915.258926
https://doi.org/10.1145/1375581.1375594
http://dl.acm.org/citation.cfm?id=2048588
http://dl.acm.org/citation.cfm?id=2048588
https://doi.org/10.1145/1735970.1736030
https://doi.org/10.1109/12.88484

CC ’20, February 22–23, 2020, San Diego, CA, USA Raquel Lazcano, Daniel Madroñal, Eduardo Juarez, and Philippe Clauss

[29] J Gregory Steffan, Christopher Colohan, Antonia Zhai, and Todd C
Mowry. 2005. The STAMPede approach to thread-level speculation.
ACM Transactions on Computer Systems (TOCS) 23, 3 (2005), 253–300.

[30] Aravind Sukumaran-Rajam and Philippe Clauss. 2015. The Polyhedral
Model of Nonlinear Loops. ACM Trans. Archit. Code Optim. 12, 4,
Article 48 (Dec. 2015), 27 pages. https://doi.org/10.1145/2838734

[31] Giuseppe Tagliavini, Germain Haugou, Andrea Marongiu, and Luca
Benini. 2015. Adrenaline: An openvx environment to optimize embed-
ded vision applications on many-core accelerators. In 2015 IEEE 9th

International Symposium on Embedded Multicore/Many-core Systems-
on-Chip. IEEE, 289–296.

[32] Sven Verdoolaege, Rachid Seghir, Kristof Beyls, Vincent Loechner, and
Maurice Bruynooghe. 2007. Counting Integer Points in Parametric
Polytopes Using Barvinok’s Rational Functions. Algorithmica 48, 1
(2007), 37–66.

[33] R. Clint Whaley and Jack J. Dongarra. 1998. Automatically Tuned Lin-
ear Algebra Software. In Proceedings of the 1998 ACM/IEEE Conference
on Supercomputing (SC ’98). IEEE Computer Society, Washington, DC,
USA, 1–27. http://dl.acm.org/citation.cfm?id=509058.509096

https://doi.org/10.1145/2838734
http://dl.acm.org/citation.cfm?id=509058.509096

	Abstract
	1 Introduction
	2 Background
	2.1 The polyhedral model
	2.2 Apollo

	3 Runtime multi-versioning and polyhedral optimization
	3.1 General overview
	3.2 Implementation

	4 Experiments
	4.1 Description of the experiments
	4.2 Setup of the multi-versioning system
	4.3 Performance results

	5 Related Work
	6 Conclusion
	Acknowledgments
	References

