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Abstract 

Sickle cell disease (SCD) is a highly complex inherited disorder of hemoglobin structure. 

Although the molecular lesion is a single-point mutation, the sickle gene is pleiotropic in nature 

causing multiple phenotypic expressions that constitute the various complications of the disease. 

Its manifestations could be acute, chronic, nociceptive, neuropathic that could occur singly or in 

various combinations. Pain continues to be the major factor of SCD phenotypic complications 

and the most common cause of admissions to the Emergency Department and/or the hospital. 

Although progress has been made in understanding the pathophysiology of SCD as well as in 

developing curative therapies such as hematopoietic stem cell transplantation and gene therapy, 

effective pain management continues to lag behind. Palliative therapies continue to be the major 

approach to the management of SCD and its complications. The advent of hydroxyurea made 

partial success in preventing the frequency of vaso-occlusive crises and L-glutamine awaits post-

trial confirmation of benefits.  The search for additional pharmacotherapeutic agents that could 

be used singly or in combination with hydroxyurea and/or L-glutamine awaits their dawn 

hopefully in the near future. The purpose of this review is to describe the various manifestations 

of SCD, their pathophysiology and their current management. Recent impressive advances in 

understanding the pathophysiology of pain promise the determination of agents that could 

replace or minimize the use of opioids. 

Introduction  

The International Association for the Study of Pain (IASP) defined pain as “an unpleasant 

sensory and emotional experience associated with actual or potential tissue damage or described 

in terms of such damage”.1-4 This definition implies several important aspects of the pain 

experience: (1) unpleasantness is a major component; (2) sensation and emotion are two major 
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aspects; (3) tissue damage may not be a visible factor; and (4) patients may complain of pain in 

the absence of objective signs. This definition applies well to patients with sickle cell disease 

(SCD), as will be discussed below. Before IASP introduced this comprehensive definition, several 

writers and poets made insightful and intuitive remarks about pain that echo certain aspects of the 

pain experience. 

Sickle pain is unique.5 Polymerization of sickle hemoglobin and sickling of erythrocytes is 

considered to be the proximate cause of acute vaso-occlusive pain. However, it is becoming clear 

other cells which are activated such as platelets and neutrophils as well as binding to l- and p-

selections and adherence of RBC to the endothelium also play important role in vaso-occlusion.  

The severity of these events may be different in different parts of the body and hence the variation 

in the severity and location of the pain.  The IASP definition applies to sickle pain, which can be 

acute, chronic, neuropathic, intermittent, recurrent, or persistent.5-9 Sensation and emotion in sickle 

pain are intertwined in an unusually complex manner that is specific to each person and affects 

behavior in every vaso-occlusive painful crisis (VOC). 

Sickle cell pain should not be equated with non-cancer chronic benign pain syndrome 

(CBPS). Although the two share some characteristics, they have fundamental differences. Major 

distinctions of SCD include an identifiable etiology, chronic anemia, recurrent acute episodes of 

severe pain, and progressive organ damage. Unfortunately, some care providers consider 

sickle cell pain as one type of CBPS and treat it accordingly. This is a tragic mistake because 

sickle cell VOCs are recurrent attacks of acute, severe pain (of peripheral origin) for which relief 

often requires the use of opioids. Management of sickle cell pain with opioids, however, must 

follow two tiers as is the case in the management of other types of pain with opioids. The first tier 

is to optimize analgesia by prescribing adequate dose to minimize pain severity, and the second 



4 
 
 

tier is to minimize risk by frequent monitoring and assessment of opioid related adverse effects 

and outcomes related to substance use disorders.10, 11 The purpose of this review is to focus on the 

pathophysiology of sickle cell pain, its types and the principles of their management. 

It is important to note that the SCD refers to all types of SCD: homozygosity of sickle gene 

(Hb SS), Hb SC disease. Hb S-thalassemia, Hb SD, etc. On the other hand, sickle cell anemia 

(SCA) includes both Hb SS and Hb S-β0-thalassemia because both are clinically similar despite 

the fact that they differ at the molecular level.12  

Pathophysiology of pain 

The perception of pain in the prefrontal cortex of the brain after peripheral tissue damage 

involves several complex inter-related pathways. These pathways function in tandem so that if 

the pain persists and/or becomes more severe its transmission is handled by the next system in 

line as if one system gives the baton, so to speak, to a second system for further transmission. 

The most important of these pathways are listed in Table 1 and shown in Figures 113-15 and 

described below. Pain experience is subjective and self-reported. While many biomarkers have 

been recently proposed to be studied as markers and possible endpoints for pain none of those 

have been validated to date.16 

NaV1.7 – 1.9 channels and Pain  

The voltage Na-gated channels (NaV1.7 – 1.9) play an important role  in the 

transmission of painful stimuli from peripheral terminals in the skin to central preterminal and 

terminal branches in the dorsal root ganglion (DRG) and in the dorsal horn of the spinal cord 

17-21. Transmission of painful stimuli along these nerve fibers is facilitated by glutamate which 

is an efficient excitatory neurotransmitter throughout the nervous system. Contrariwise, 

gamma aminobutyrate (GABA) is an inhibitor of the transmission of electrical stimuli.22, 23 
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Nav 1.7 controls the passage of sodium ions into sensory neurons as shown in Figure 1. 

Mutation or deletion of Nav 1.7 causes Congenital Insensitivity to Pain (CIP).24 Individuals with 

this mutation are normal with the exception that they do not feel pain. Ironically, a different 

mutation in the same gene results in an extremely painful condition called erythromelalgia25, 26 

also commonly referred to as “man on fire syndrome” characterized by severe burning 

neuropathic pain due to hyperfunctioning Nav 1.7 channel with enhanced and continuous 

depolarization of membranes (Figure 2A and 2B).  

The Dorsal Root Ganglion (DRG) 

The DRG is a relay station that sorts the transition of painful stimuli in different 

directions. Some stimuli are returned to the periphery, others are directed to the sympathetic 

nervous system and the majority are sent to the dorsal horn of the spinal cord where painful 

stimuli are processed by a number of channels. 

The Dorsal Horn of the Spinal Cord 

At the level of the dorsal horn of the spinal cord the transmission of painful stimuli is 

facilitated or inhibited. The pain stimuli received from the DRG cross over to the contralateral 

side and ascends along the spinothalamic tract to make connections with the brainstem, 

hypothalamus, thalamus, limbic system (mediator of emotion and memory), reward system 

(mediator of pleasure and addiction), glia, and the pre-frontal cortex where pain sensation is 

perceived. Simultaneously, a descending pathway from the nucleus accumbense (modulation) 

that attempt to prevent or minimize the transmission of painful stimuli via endogenous 

endorphins. 

Activation of the AMPA and NMDA Receptors 
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Repetitive, severe, painful stimuli play an important role in the transmission and 

sensation of pain. They exert their effects both at the level of the peripheral and the central 

nervous systems. At the peripheral level, there is recruitment of dormant nociceptors, which 

facilitate the transmission of the progressive increase in repetitive painful stimuli. At the level of 

the DRG, there is communication with and activation of the sympathetic system. At the level of 

the dorsal horn of the spinal cord, four major events occur in succession over time. These include 

activation of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (also known 

as AMPA receptor or AMPAR), activation of the N-methyl-D-aspartate (NMDA) receptor, 

central sensitization, and glial activation. The sequence of transmission of painful stimuli from 

the AMPA to the NMDA receptor is shown in Figure 3.  

Central sensitization 

Central sensitization is the process by which excessive nociceptive signals bombarding 

the central nervous system from the periphery cause changes both in the spinal cord and the 

brain, resulting in continuous amplification of pain sensation.27-30 Central sensitization indicates 

neuroplasticity of the nervous system. Clinical manifestations of central sensitization include (1) 

a reduced pain threshold, in hyperalgesia and allodynia; (2) expanded receptive fields, which 

refers to hyperalgesia occurring beyond the area of original injury; and (3) aftersensations, in 

which pain sensation continues after cessation of the original injury. Thus, if a patient with SS 

develops a VOC with severe pain in the right knee, and within a few hours the same exact pain is 

felt in another area such as the left knee, the pain in the left knee is not necessarily due to de 

novo vaso-occlusion in that area but due to central sensitization. It is explained by the 

convergence-projection hypothesis, in which afferents from one source, usually the viscera, 

converge on the same pain-projection neurons as afferents from a different source, usually 
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somatic structures, where pain is perceived.31, 32 Evidence of central sensitization has been shown 

in SCD patients using quantitative sensory testing (QST) and neuroimaging. QST studies in 

adults show increased sensitivity to painful stimuli and aftersensations compared to non-SCD 

controls.33 Furthermore, functional neuroimaging studies have shown alternation of brain 

connectivity patterns which have been associated with burden of pain again suggesting 

neuroplastic changes in brain.34, 35  

Individuals receiving opioids occasionally may exhibit the phenomenon of opioid 

induced hyperalgesia (OIH) where opioid use leads to nociceptor sensitization and make them 

more sensitive to painful stimuli. This phenomenon could sometimes explain loss of efficacy to 

opioids in managing pain.36 

Glial Activation 

The glia includes three major cells: oligodendrocytes, astrocytes, and microglia.37 Glial 

activation that is associated with sickle cell pain occurs in at least two ways. The first is the 

facilitation of the transmission of painful stimuli and the second is the activation of the microglia 

followed by neuroinflammation with the release of excess proinflammatory cytokines and 

glutamate that accentuate the pain experience.  

Classification of Sickle Cell Pain Syndromes 

Pain is associated with SCD and the acute painful VOC is its hallmark. Symptoms of pain 

can start as early as 3-6 months of age typically as an episode of dactylitis and continue to occur 

through the life span of the individuals with variable frequency. Pain remains the most common 

cause of health care utilization in this population.  Pain in SCD typically described as acute, 

chronic, neuropathic, due to co-morbidities or a combination of any two or more of these38. 

Recently, a new type referred to as acute pain in the background of chronic pain or chronic pain 
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in the background of acute pain possibly implying that the pain that occurs between VOCs is 

chronic.39 Others refer to the pain between VOCs as persistent but milder acute pain.38   

The Acute Painful Vaso-occlusive Episodes 

 These intermittent VOCs are the most common clinical complication of SCD. Per the 

recent AAAPT criteria to fall under the diagnosis of acute pain, it must be an increased pain of 

new onset, have a ≥ 2-hour duration, but not have been present for >10 days.39 Additionally signs 

of acute VOC should include 1) palpation of the region of reported pain elicits focal pain or 

tenderness, 2) movement of the region of pain elicits focal pain, or 3) a decreased range of 

motion or weakness in the region of reported pain. AAAPT criteria also proposed 2 possible 

diagnostic modifiers: acute pain that occurs in the absence of chronic SCD pain, and acute pain 

that occurs in the presence of chronic pain with or without signs of vaso-occlusion.  

Classically, the mechanism of acute pain is considered to be the result of occlusion of 

microvasculature resulting in hypoxia, tissue damage and inflammation from 

ischemia−reperfusion injury.40 Polymerization of sickle hemoglobin (Hb) leading to sickling of 

the red blood cells initiates vaso-occlusion. The process also involves complex interactions 

between sickle red cell, vascular endothelium and other blood cells i.e. leukocytes, and 

platelets.41 The acute SCD VOC typically has a crescendo−decrescendo course which has been 

described in 4 phases (Figure 4).42, 43 Prodromal Phase is the first phase of the VOC and lasts 1-

2 days. Symptoms typically include numbness, paresthesia, or aches in the areas that 

subsequently become painful. The next phase Initial Phase is associated with increasing pain 

intensity and accompanying laboratory findings may include decreased RBC deformability, 

increase in the number of dense cells, red cell distribution width, reticulocyte count, 

leukocytosis, and relative thrombocytopenia. The next phase, Established Phase is associated 
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with the peaking of the pain intensity with other findings such as increased temperature, white 

blood cell count, increasing dense cell, and reticulocytes. The last phase, Resolving Phase is 

associated with improvement in the symptoms of pain as well as trends towards normalization of 

abnormal laboratory findings described above.42, 44  

 Acute episodes of pain can present as early as 6 months of age and often corresponds to 

age related decrease in fetal Hb levels. Infants typically present with swelling of hand or feet or 

dactylitis, also known as hand/foot syndrome results from the vaso-occlusion in 

metacarpal/metatarsal bones or the phalanges45. As patients get older, the rates of pain typically 

increase and acute episodes of pain become one of the most common symptoms46. While they 

remain the most common reason for hospitalization, most of the acute episodes of pain are 

managed at home. Acute episodes of pain can involve any part of the body but typically affect 

long bones in the extremities or flat bones in chest/back (ribs and vertebrae) or pelvis.47 Pattern 

of chronic pain start to appear as children approach adolescent years and chronic pain becomes 

common in adults with SCD as described below and as described by the data  from the Pain in 

Sickle Cell Epidemiologic Study (PiSCES).46, 48, 49  

Frequency of acute episodes of pain varies among patients with SCD.50 Some patients 

may experience frequent episodes of pain while others may experience these episodes 

infrequently. The Cooperative Study of Sickle Cell Disease (CSSD) reported that 39% of 

individuals had no admissions for pain while 5% had 3-10 admissions per year.50 Increased rates 

of hospitalizations for pain are associated with mortality.50, 51 Typically, patients with SCA 

(homozygous SS and sickle-β0-thalassemia) experience the highest whereas sickle-β+- 

thalassemia the lowest burden of pain. However, a large variability may exist within each 

genotype. Many SCD and non-SCD factors can modulate the frequency and severity of VOCs. 
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These SCD related factors include high levels of Hb whether related to genetics or hydroxyurea 

therapy and the presence or absence of alpha thalassemia. High Hb F is associated with reduced 

frequency of VOCs whereas the presence of alpha thalassemia is associated with increased 

frequency of VOCs.52,53  Sickle βS haplotypes have also been proposed to impact the frequency 

of VOCs. However, this observation could be related to the differences in the fetal hemoglobin 

Hb levels seen in patients with different haplotypes.54, 55 Age and female gender have been 

associated with increasing rates of VOCs and many females experience VOCs with the onset of 

menstrual cycle.56, 57 Other triggers for the precipitation for VOCs may include exposure to cold 

weather, infections, dehydration, pregnancy and mental stress.58-61 Non- SCD factors such as 

anxiety and depression which impact perception of pain can contribute to the overall pain 

experience.62, 63    

Other acute pain syndromes in SCD 

 Other complications of SCD that can present with acute pain include acute chest 

syndrome, acute multi-organ failure, right upper quadrant syndromes, splenic sequestration and 

priapism.64 These complications are typically associated with underlying vaso-occlusion. For 

example, splenic sequestration is associated with trapping of sickled erythrocytes within the 

spleen and patients presenting with acute anemia with splenomegaly. Enlargement of the spleen 

and stretching of the capsule is likely the underlying cause of abdominal pain. Similarly, vaso-

occlusion of the hepatic vasculature may cause pain in right upper quadrant of the abdomen. 

Patients typically present with tender, progressive hepatomegaly, acute anemia below baseline, 

and hyperbilirubinemia. Vaso-occlusion of penile vasculature can lead to priapism or painful 

erection in absence of sexual stimulation and may be a cause of significant morbidity for males 

with SCD. Acute pain syndromes described here may have coexisting pathology such as 
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infection, pneumonia and acute chest syndrome. Accordingly, these complications should be 

managed by treating the underlying pathology if applicable along with an appropriate pain 

management plan.   

 

Chronic painful complications of SCD  

Sickle cell pain syndromes may be acute or chronic. However, the definition of chronic 

pain is arbitrary. The distinction between acute and chronic pain is time dependent. The common 

chronologic markers used to denote chronic pain are 3 months and 6 months since the 

onset of pain.65 The 3-month cut-off appears to be used most often by providers. Some 

providers consider pain lasting for long periods in the presence of ongoing pathology to be 

persistent or extended acute pain.65 Such a definition appears to be applicable to VOCs. 

Acute sickle pain has a duration that varies from hours to months. The VOC is the prototype of 

acute pain, whereas leg ulcers, avascular necrosis (AVN) of humeral or femoral heads, and bone 

infarcts cause chronic pain. 

Major characteristics of chronic pain include emotional, behavioral, affective, and 

physiologic responses that differ from those of acute pain. Patients with chronic SCD pain 

frequently suffer from psychological comorbidities such as depression, paranoia, a feeling of 

hopelessness, and despair. Many patients with chronic sickle cell pain become preoccupied with 

their pain and gradually withdraw from social activities. Their existence becomes a circuitous 

journey from home to the doctor’s office, to the pharmacy, and back home. 

Patients with SCD who suffer from chronic pain syndromes, and frequent VOCs are 

seriously disadvantaged. Their management commands infinite patience, understanding, 

empathy, and long-term follow-up by their medical providers. 
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Chronic sickle cell pain syndromes include leg ulcers, AVN, bone infarcts, chronic 

osteomyelitis, osteoporosis/osteopenia and chronic arthropathy due to iron overload. 

Leg Ulcers  

Leg ulcers are ulceration of the skin and underlying tissues of the lower extremities, 

especially the medial or lateral surfaces of the ankles. Trauma, infection, and severe anemia 

may predispose patients to ulcer formation.64 

Leg ulceration is a common complication of SCD in general and SCA in particular.66, 67  

Representative data from the cooperative study of sickle cell disease (CSSCD) in the United 

States found active leg ulcers at entry in 2.5% of 2075 patients 10 years of age or older and in 

none of 1700 patients less than 10 years of age.68 The prevalence of leg ulcers elsewhere in the 

world varies from almost none in Saudi Arabia69, 70 to 4% in London71 and 10% in Africa.72-75 

Table 2 summarizes predisposing factors for leg ulcers. Among sickle cell syndromes, 

SCA is most often associated with leg ulceration, which is rarely seen in patients with Hb SC 

disease or sickle β+-thalassemia.68 Some studies reported that leg ulcers are more common in 

patients with SCA who were also carriers of the Central African Republic (CAR) β haplotype57, 

76 as shown in Figure 5. Moreover, leg ulcers are associated with genetic polymorphisms in the 

BMP6, TGFBR3 and Klotho genes.77, 78 

The pathophysiology of leg ulceration appears to be the result of multiple factors.79 Leg 

ulcers may appear spontaneously or after infection or trauma, even minor, to an area of 

compromised blood supply may initiate an ulcer. Other reported factors that may enhance blood 

stasis and skin necrosis include reduced red blood cell deformability,80 adherence of sickle red 

blood cells to the endothelium,81 increased blood viscosity,82 the presence of circulating immune 

complexes,83 activated blood coagulation,84 pulmonary hypertension, abnormal autonomic 
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control with excessive vasoconstriction when in the dependent position, in situ thrombosis, 

anemia with a decrease in oxygen-carrying capacity,85 and decreased nitric oxide bioavailability, 

leading to impaired endothelial function.86 Secondary infection of the ulcer, with undermining of 

the edges, delays healing and causes progressive extension of skin ulceration.  

Clinically, leg ulcers occur in areas with less subcutaneous fat, thin skin, and decreased 

blood flow.87 The most common site for the appearance of leg ulcers is the distal third of the leg, 

especially the inner area, just above the ankles and over the medial malleoli. The medial 

malleolus is more commonly involved than the lateral malleolus. However, no site of the skin is 

spared from possible involvement, and ulcers have been reported over the dorsum of the foot, 

Achilles tendon, anterior tibial area, elbows, and thighs.88 Leg ulcers may be single or multiple, 

and an estimated one-third occur bilaterally.67, 68, 89 They vary in size from a few millimeters in 

diameter to huge ulcers that may circle around the leg. They may be shallow, superficial erosions 

of the dermis or very deep craters with tendons visible at their base. 

Principles of management of leg ulcers include education, protection, infection control, 

debridement, and compression bandages. Debridement may be surgical, medical or biologic. 

Optimization of nutritional state is also important especially in the areas where malnutrition is 

common. Osteomyelitis may complicate chronic leg ulcers, especially those with deep wounds, 

and it is advisable to rule out this complication with a bone scan or magnetic resonance imaging 

(MRI) and bone biopsy if needed. Table 3 summarizes various methods of treatment of leg 

ulcers.90-98 Autologous stem cell-based therapy for sickle cell leg ulcer is a potentially novel 

therapy.99 Amputation is rarely used for severe extensive leg ulcers as shown in Figure 6.100 

Amputation is used more often in South America and Africa. 

Avascular Necrosis 
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Avascular necrosis is necrotic bone tissue due to an interruption in blood supply, most 

likely as a result of vaso-occlusion. Bones near a joint, especially the hip, are primarily affected; 

it is also referred to as aseptic necrosis, osteonecrosis, or ischemic necrosis of the bone. 

Avascular necrosis of the epiphyses is an important complication of SCD. It is second only to the 

spleen as the most common organ to undergo sickle cell–induced organ failure.101 Acute 

diaphyseal infarction of long bones is less common in adults than in children. However, AVN of 

the epiphyses becomes more common, recurrent, and chronic in adults with SCD and may cause 

considerable morbidity because of persistent pain and limitation of movement. Avascular 

necrosis of the hips has been the subject of several studies and reports. Involvement of the 

shoulder is less common, and the knees and other large joints are rarely involved.102 Although it 

tends to be most severe and disabling in the hip area, it is a generalized bone disorder in that the 

femoral and humeral heads, as well as the vertebral bodies, may be equally affected. The limited 

terminal arterial blood supply, paucity of collateral circulation, and complete disruption of 

vascular supply to the articular surfaces and ends of long bones make these three areas especially 

vulnerable to sickling and subsequent bone damage.103, 104 Scientific advances in chronic bone 

disease have lagged behind improvements in survival in SCD, and AVN remains the leading 

cause of crippling disability in this population.47, 77, 105 

Risk factors for AVN of the femoral head include genotype, age, frequency of VOCs, 

Hb/hematocrit level, α-gene deletion, mean corpuscular volume, and serum aspartate 

aminotransferase (AST) level.104 There is positive correlation between the α-gene number and 

frequency of AVN (Figure 7). In the CSSCD104 that included 2804 patients, those with SCA and 

α-gene deletion had a higher incidence of AVN because the relatively high hematocrit increases 

blood viscosity and thus, enhances microvasculopathy in the aforementioned anatomic sites.104, 
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106 The mean corpuscular volume (MCV) and AST levels were reported to be negatively 

correlated with AVN especially in patients with homozygous alpha gene deletion.104 In a study 

involving about 100 patients with SCA, Lemonne et al.107 found no difference in blood viscosity 

between patients with and those without osteonecrosis, despite difference in hematocrit/Hb. 

Together, all these findings suggest that Hb seems to have a negative effect on the frequency of 

AVN irrespective of its effect on viscosity. The roles of Hb/hematocrit, viscosity, deformability 

and aggregation in the pathophysiology of certain complications of SCD need further studies. 

Medical treatment of AVN is symptomatic and includes providing non-opioid and/or 

opioid analgesics for pain relief as well as physical therapy. Advanced forms of the disease 

require total bone replacement. Core decompression in the management of AVN appears to be 

effective if done in the early stages of AVN.108 This, however, was not supported by a 

prospective randomized multi-center comparing physical therapy alone with core decompression 

and physical therapy for femoral head AVN in 46 patients with SCD.109 Physical therapy alone 

appeared to be as effective as hip core decompression followed by physical therapy in improving 

hip function and postponing the need for additional surgical intervention at a mean of three years 

treatment.  

Results of hip arthroplasty in patients with SCA are not as encouraging as results of 

arthroplasty performed for arthritic hip.110 Placement of an internal prosthesis may be difficult 

owing to the presence of hard sclerotic bone in patients with SCD. Other problems associated 

with hip arthroplasty in these patients include an increased incidence of infection,111, 112 a failure 

rate of about 50% and a high morbidity due to loosening of both cemented and uncemented 

prosthesis. Recent techniques of arthroplasty may improve the life expectancy of hip 

Prostheses.113 
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Chronic Osteomyelitis 

Chronic osteomyelitis is continuous bacterial infection involving cortical bone, reported 

in SCD particularly in association with AVN and bone infarcts.114-116 Acute osteomyelitis may 

evolve into chronic bone infection, with typical radiographic changes.117 In SCA, chronic 

osteomyelitis is rare and may follow acute osteomyelitis associated with insertion of a hip or 

shoulder prosthesis. The prevalence of osteomyelitis is lower in individuals with the Bantu 

haplotype, and it may occur as a complication of severe leg ulcers.118 The most common 

etiologic organism in SCD is Salmonella, followed by Staphylococcus aureus, Haemophilus   

influenzae, and enteric Gram-negative bacilli.119, 120 Inappropriate management can result in 

significant bone destruction and necrosis, with persistent foci of inflammation. Those sites may 

continue to re-infect the area, with a progressive bony response characterized by sequestration 

and involucrum formation. With healing, the shaft will demonstrate increased bone density.117  

 

Chronic osteomyelitis in SCA is difficult to treat; prolonged antibiotic therapy may 

suppress the infection but rarely eradicates it. Persistent infection is one cause for the recurrence 

of VOCs. The mainstay of treatment of chronic osteomyelitis is a prolonged course of 

antibiotics. Initial use of parenteral antibiotics against Salmonella, Staphylococcus, and enteric 

Gram-negative organisms is prudent to achieve rapid bactericidal blood levels. A 6-week course 

of antibiotics is recommended for confirmed cases. Physical therapy to improve joint function 

and avoid muscle wasting should be encouraged once pain improves. 

Osteoporosis/Osteopenia 

Osteoporosis is systemic skeletal disease characterized by low bone mass and 

microarchitectural deterioration of bone tissue, with resultant increased fragility and risk of 
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fracture. Osteopenia, or low bone mineral density (BMD), is decreased calcification, bone 

density, or bone mass due to impaired osteoid synthesis. Both of these conditions appear to be 

more common in SCD than previously thought. The prevalence of low BMD in SCD ranges 

from 30% to 80%,103, 121-125 with a predilection for the lumbar spine. Predisposing factors include 

age, sex, severe anemia, frequent VOCs, low Hb F level, high lactate dehydrogenase level, and 

body mass index.126-129 Major etiologic factors include primary or secondary hypogonadism and 

vitamin D deficiency. Diagnostic modalities include determination of BMD by dual-energy x-ray 

absorptiometry scan. Osteoporosis is usually asymptomatic, but when fractures occur, they can 

cause significant morbidity including pain, deformities, and vertebral collapse.130 Requirements 

for long-term analgesia, mechanical support, and surgical interventions increase exponentially 

after osteoporosis-related bone complications.  

The literature on the prevalence of fracture in SCD is very limited.130-133 A study by Fung 

et al.134 found the self-report rates of fracture among young adults (median age 25 years) with 

SCD to be 32% and 28% for non-transfused and transfused men and boys and 15% and 16% for 

non-transfused and transfused women and girls respectively. In that report, most fractures 

occurred in the upper extremities (47.4%), lower extremities (29.5%), or spine and pelvis 

(11.5%), and fracture rates increased with age. Ebong135 reported fracture rates of 20% in 

patients with SCD and osteomyelitis, the majority of whom were children. As the natural history 

of SCD continues to evolve, the prevalence of age-related diseases, such as osteoporosis, will 

increase. This is important because hip fractures are associated with a 1-year mortality rate of 

36% for men and 21% for women.136 Prospective studies on the prevalence of fractures and pain 

attributable to osteoporosis in SCD are needed in order to generate treatment guidelines and 

recommendations for interventions. The management of osteoporosis in SCD is not well 
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established. Recommendations follow those of the endocrine and thalassemia literature, with 

emphasis on primary prevention and adequate vitamin D and calcium intake. 

 

Neuropathic Pain 

One of the causes of chronic pain in SCD includes neuropathic pain. The current 

paradigm in pain medicine suggests that persistent acute pain results in chronic 

pain due to central sensitization27, 28, and persistent chronic pain in turn causes 

neuropathic pain, possibly due to glial activation.137, 138 Sickle cell pain is presumed 

to follow this sequence, with no well-established scientific evidence. 

Neuropathy and neuropathic pain are not the same and not all patients with neuropathy 

have pain. Neuropathic pain is not well documented as a complication of SCD. The scales to 

assess neuropathic pain are different than those used in assessing sickle cell nociceptive pain.139 

Neuropathy, especially peripheral neuropathy, has been reported in patients with SCD, albeit 

uncommonly. Mental nerve neuropathy (AKA numb chin syndrome) is the most commonly 

reported neuropathy in SCD usually associated with VOC.140, 141 Other reported neuropathies in 

SCD include trigeminal neuralgia 142, acute proximal median mononeuropathy,143 entrapment 

neuropathy,144 and acute demyelinating polyneuropathy.144 

Neuropathic pain is characterized by sensations of burning, tingling, shooting, 

lancinating, and numbness. These symptoms may occur in the presence or absence of obvious 

central or peripheral nerve injury. The mechanism of neuropathic pain presumably involves 

aberrant somatosensory processing in the central or peripheral nervous system.145-147 

Sickle cell pain could have a neuropathic component.144, 148 A thorough history and 

physical examination are essential to determining whether sickle cell pain is associated with a 
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neuropathic component.  While presence of descriptors can be suggestive of neuropathic pain, it 

is advisable to use a standardized tool to assess presence of neuropathic pain in SCD. Tools such 

as self-reports on the Leeds Assessment of Neuropathic Symptoms and Signs (S-LANNS) scale 

and the Neuropathic Pain Symptom Inventory (NPSI) have been utilized where higher scores 

were indicative of more pain.  PainDETECT and PAINReport have also been used. More studies 

are needed to determine the prevalence of neuropathy and neuropathic pain in patients with SCD 

using validated tools and to find whether these are complications of the disease itself or due to 

co-morbidities.139 

Management of neuropathic pain involves anticonvulsants. Gabapentin and pregabalin 

seem to be the anticonvulsants that are generally used for this complication.149 

 

Pain Due to Comorbidities  

Comorbidity refers to unrelated pathologic disease processes that occur concomitantly 

with SCD. Concomitant disorders can be pain or non-pain comorbidities.150 They may have a 

negative, positive, or neutral effect on the primary basic sickling process. Survival of patients 

with SCA has increased progressively since the 1970’s. Newborn screening, prophylactic 

antibiotics, newer vaccines, newer antibiotics, newer analgesics, safer blood transfusion, 

chelation therapy and hydroxyurea are some of the reasons for this change in longevity.151-154 

Patients with SCA in their sixth, seventh or eighth decade have been described previously.155, 156 

In 1994 Platt et al.151 reported that the median age of survival for males with SS was 42 years 

and for females 48 years and the median age of survival for males with Hb SC disease was 60 

years and for females 68 years. 
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As patients with SCD age, they become more at risk for developing comorbid conditions 

that were not previously seen or were rare in this patient population. For example, diabetes 

mellitus, obesity, and end-stage renal disease in SCD are seen more often now than in the 20th 

century. Cognizance of the complexity of SCD and its polymorbidities and the implementation 

of preventative, educational, counseling, and prompt intervention measures may ameliorate the 

associated complexities of the disease and improve quality of life for its victims. 

  Comorbidities that have been reported in SCD at least once are listed in Table 4. It 

includes only conditions that have an impact on sickle cell pain and hence, it may not be 

comprehensive. Most of the comorbidities listed in Table 4 can precipitate VOCs and may have a 

significant impact on the morbidity and mortality of patients. Details on selected comorbidities 

according to anatomic and/or pathophysiologic relevance have been recently reported.157 

Management of sickle cell pain 

Management of SCD in general and sickle cell pain in particular advanced significantly since the 

1970s and progressed from the simple palliative treatment to specific pharmacotherapeutic 

therapy within the framework of precision medicine as shown in Table 5. In addition, the 

sophisticated gene and genomic editing therapies emerged recently to cure SCD, these will not 

be addressed in this manuscript. Similarly, nonpharmacological approaches such as acupuncture 

and mindfulness are being evaluated in SCD however the evidence is not yet conclusive and will 

not be discussed.  

Opioids continue to play a major role in the treatment of most sickle cell pain syndromes. 

They block the transmission of painful stimuli and raise the pain threshold by acting as ligands 

that bind to receptors (mostly the µ-receptors) in the central nervous system and other tissues.22, 

158, 159 Opioid receptors have a helical structure160-164 which forms pockets in which the 
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corresponding opioid fits snugly. Not all opioids fit snugly in the pocket of a certain receptor 

and, moreover, the structure of the receptor varies greatly among patients due to variations in the 

OPRM1 gene that codes the specific structure of the receptor. This explains the variability of the 

analgesic effect of opioids among patients with sickle cell pain. 

Buprenorphine is underutilized in the treatment of sickle cell pain. It is a weak 

agonist/antagonist opioid with a weak partial µ-opioid receptor agonist and a weak κ-opioid 

receptor antagonist, It is often used for the treatment of severe pain in cancer pain and other 

types of pain. Its use to treat sickle cell pain may increase in the future. Some centers have 

already started using it. Buprenorphine can be used sublingually, trans- dermally or 

parenterally.165 

Methadone, ketamine and nitrous oxide inhibit the transmission of painful stimuli via the 

NMDA receptor and hence, they may be used in patients with severe pain not responsive to other 

analgesics to enhance pain relief. 

Another factor that determines the analgesic efficacy of an opioid depends on how that 

opioid is metabolized. Briefly, the metabolism of opioids includes two major phases57 as shown 

in Table 6. Phase I involves the cytochromes P450 (CYPs) enzymes and phase II includes 

glucuronidation as the major metabolic pathway. The efficacy of the CYP enzymes varies 

considerably among patients due to variability in their genes. These genes may be deleted, 

mutated, duplicated or triplicated. Thus, a patient who has duplication or triplication of the 

enzyme that metabolizes codeine to morphine would have adequate analgesia with codeine 

alone. On the other hand, a patient who has duplication of the genes that metabolize methadone 

would have poor analgesia due to the fact that methadone taken would be rapidly metabolized 

into inactive metabolites. 

https://en.wikipedia.org/wiki/Sublingual
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In addition, the pharmacokinetics of morphine in patients with SCD differ from that in 

patients with other pain syndromes. Studies of children with SCD treated with intravenous 

morphine during VOCs found increased clearance of morphine, particularly in prepubertal 

children which was significantly greater than that in studies conducted in children with 

postoperative pain or cancer pain. Similarly, increased clearance of morphine was reported in 

young adults (≥18 years) with SCD in the steady state in the absence of painful VOCs.57 

The conundrum created by the genetic variations in the metabolism of opioids 

undermines efforts to establish guidelines to treat patients with certain doses of opioids across 

the board. Treatment should be individualized plan for each patient. Such a plan should 

summarize pertinent aspects of the medical history, physical examination, laboratory data, 

complications, and treatment plans for patients as outpatients, in the day unit, ED, and hospital. 

In some cases, the treatment plan may be transformed into an identification card to be carried by 

the patient and presented to the care provider as needed.166 

Conclusion 

The many faces of pain continue to be the hallmark of SCD, and the VOC is the most 

frequent reason for treatment in the Emergency Department and/or hospital. Pain sensation 

results from a very complex and interactive series of mechanisms integrated at all levels of the 

nervous system: from the peripheral nerve fibers to the higher cerebral cortex where pain is 

perceived. Despite the fact that management of SCD continues to be primarily palliative in 

nature, the advent of preventative and curative approaches to therapy are promising. 

Understanding the pathophysiology of pain suggest that pain management should be 

individualized and coupled with the proper utilization of analgesics in general and opioids in 
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particular. Early recognition and treatment of organ damage minimizes morbidity and improves 

survival. 

Legend to Figures: 

Figure 1 

Schematic of ion channels in nociceptor function. The cell bodies of nociceptors are contained 

within the dorsal root ganglia and terminate as free endings in peripheral tissues. The peripheral 

terminals respond to noxious stimuli or tissue damage through receptors and ion channels 

including TRP channels, acid-sensing ion channels (ASIC), serotonin (5-HT) receptors, ATP-

gated P2X receptors, tyrosine kinase receptor A (TRKA), and numerous GPCRs that indirectly 

activate ion channels. Receptors at the terminals respond to noxious stimuli such as heat or 

pressure (i). When a defined threshold of depolarization is reached, voltage-gated sodium 

channels are activated and an action potential is generated (ii). During an action potential, an 

IFM-inactivating segment moves to block the channel within 0.5–1 ms (iii). In this inactivated 

state, the channel cannot be opened. Meanwhile, potassium channels open, acting to repolarize 

the membrane. As the membrane repolarizes, the sodium channel gate is closed and inactivating 

segment is displaced, returning the sodium channel to a resting closed state (iii). This process is 

repeated to propagate the action potential along the axon (ii). The action potential is propagated 

along the axon to the presynaptic terminals synapses wit with second-order neurons in the dorsal 

horn. Calcium influx through voltage-gated calcium channels (VGCC) triggers the release of 

neurotransmitters such as glutamate from presynaptic terminals (iv). Glutamate activates 

ionotropic AMPA, NMDA receptor (NDMAR), and metabotropic glutamate receptors (mGluR) 

on the postsynaptic terminals in the spinal cord, and the signal is transmitted through the 

ascending pathways to higher centers in the brain. From J Clin Invest. 2010;120(11): 3745-3752. 

Used with permission. 

 

Figure 2 

2A shows a patient with congenital insensitivity to pain. 2B shows a patient with erythromelalgia 

also known as “man on fire syndrome”. Figure 2A rom techfrag.com/2015/05/27/researchers-

discover-gene-responsible-for-pain-insensitivity/ and Figure 2B from ayurvedamagazine.org/a-

journey-battling-erythromelalgia/ 1/. Used with permission. 

Figure 3 

A diagram of a model synapse showing the α-Amino-3- hydroxy-5-methyl-4-isoxazolepropionic 

acid (AMPA) and N-methyl-Daspartic acid (NMDA) Na+-gated channels in the dorsal horn of 

the spinal cord. (A) Shows weak pain stimulus causing weak depolarization by allowing the 

entry of Na+ through one of the four proteins of the AMPA channel. The NMDA channel is 

blocked by Mg2+. (B) Continuous weak stimulation allows the entry of Na+ through the other 

proteins of the AMPA channel but keeping the NMDA channel blocked by Mg2+. (C) Shows 

that continuous strong painful stimulus causing complete depolarization of the membrane 
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secondary to maximal entry of Na+ through the four components of the AMPA channel. At this 

point the NMDA channel is unblocked by the removal of Mg2+ allowing the entry of Ca2+. 

From Eur J Haematol. 2015;95(2): 113-123. Used with permission. 
 

Figure 4 
 

A typical profile of the events that develop during the evolution of a severe sickle cell painful 

crisis in an adult in the absence of overt infection or other complications. Such events are usually 

treated in the hospital with an average stay of 9-11 days. Pain becomes most severe by day 3 of 

the crisis and starts decreasing by day 6 or 7. The Roman numerals refer to the phase of the 

crisis: I indicates prodromal phase; II, initial phase; III, established phase; and IV, resolving 

phase. Dots on the x-axis indicate the time when changes became apparent; and dots on the y-

axis, the relative value of change compared with the steady state indicated by the horizontal 

dashed line. Arrows indicate the time when certain clinical signs and symptoms may become 

apparent. Values shown are those reported at least twice by different investigators; values that 

were anecdotal, unconfirmed, or that were not reported to occur on a specific day of the crisis are 

not shown. ISC indicates irreversibly sickled cells; RDW, red cell distribution width; HDW, 

hemoglobin distribution width; RBC DI, red cell deformability index; CRP, C-reactive protein; 

SAA, serum amyloid A; LDH, lactate dehydrogenase; CPK, creatinine phosphokinase; and ESR, 

erythrocyte sedimentation rate. Reproduced from Ballas48 with permission. From Blood. 

2012;120(18): 3647-3656. Used with permission. 

Figure 5  

Effect of β-globin haplotypes on the prevalence of leg ulcers. From Am J Pediatr Hematol 

Oncol. 1990;12: 367–374. Used with permission. 

 

Figure 6 

 

Effect of α-globin gene number on avascular necrosis (AVN) in sickle cell anemia. 

Patients with two α genes have the greatest prevalence of AVN. There is a significant negative 

correlation between the α-gene number and the prevalence of AVN. From Ballas SK. Sickle Cell 

Pain, 2nd Edition. Washington DC: International Association for the Study of Pain; 2014. Used 

with permission. 

 

Figure 7  

 

A. Chronic left leg ulcer of over 3 years duration before amputation. B. The stump after  

amputation below the knee. From Hemoglobin. 2014;38(2): 95-98. Used with permission. 

 

 

Figure 8 

 

Helical structure of the μ-opioid receptor. (A) Morphine-like molecule (yellow) in the deep 

pocket (blue) of the μ-opioid receptor. (B) μ-Opioid receptors form an intimate pair when 

crystallized with a ligand (yellow) such as morphine. From Nature. 2012;485(7398): 321–326. 

Used with permission. 
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