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ABSTRACT This paper proposes a new position tracking algorithm by integrating extended Kalman
filtering (EKF) and direction-of-arrival (DOA)-based geolocation into one factor graph (FG) framework. A
distributed sensor network is assumed for detecting an anonymous target, where the process and observation
equations in the state space model (SSM) are unknown. Importantly, the predicted state information can be
utilized not only for filtering, but also for enhancing the observation process. To be specific, by taking the
prediction into account as the a priori, a new FG scheme is proposed for GEolocation, denoted by FG-GE.
The benefits are two-fold, compared with the conventional geolocation scheme which does not rely on the
a priori information. First of all, significant performance improvement can be observed, in terms of the
root mean square error (RMSE), when severe sensing errors are suddenly encountered. Furthermore, the
proposed FG-GE can achieve dramatic reduction of computational complexity. In addition, this paper also
proposes the use of a predicted Cramer-Rao lower bound (P-CRLB) to dynamically estimate the observation
error variance, which demonstrates more robust tracking performance than that with only fixed average
variance approximation.

INDEX TERMS Factor graph (FG), direction of arrival (DOA), extended Kalman filter (EKF), geolocation,
tracking, complexity analysis, CRLB.

I. INTRODUCTION

THE roles to be played by wireless cellular networks are
experiencing a paradigm shift from mobile communi-

cations to more dedicated infrastructure-supporting applica-
tions. Emerging use cases include smart transportation, fac-
tory automation, remote construction control, intelligent agri-
culture [1]–[4] and etc. In particular, position-based services
are gaining increased attention through the rapid evolution of
cellular networks [5], [6], where tracking of the user position
is believed to be of great importance. Moreover, to cope with
severe attenuation of millimeter-wave (mmWave) signals in
fifth generation (5G) and beyond 5G (B5G) networks [7], ac-
curate direction identification technologies are required. For
example, beam tracking is applied in massive multiple-input
multiple-output (mMIMO) systems [8], [9]. Challenged by
the increased density and mobility of wireless devices, low-
complexity but yet highly robust geolocation and tracking
techniques are strongly demanded in the future networks.

To perform tracking, an accurate geolocation scheme is

required, regarded as the observation process of the state
space model (SSM). Conventional geolocation schemes rely
on a series of range-related measurements in time, signal
strength and angle domains. For example, applications using
time-of-arrival (TOA) can be found in [10], [11], where time
synchronization among targets, sensors and the fusion center
is assumed. Time-difference-of-arrival (TDOA) is proposed
in [12], [13], which eliminates the necessity of synchroniza-
tion between sensors and the target. However, it can not
outperform TOA as presented in [14]. More energy efficient
geolocation techniques using received-signal-strength (RSS)
can be found in [15], [16]. In such cases, off-line training
with reference signals has to be performed beforehand, and
furthermore, the transmit signal power from the target has to
be known. Due to the constraints mentioned above, time and
signal strength-based schemes are not applicable if the target
is anonymous. Instead, this paper proposes an efficient use
of direction-of-arrival (DOA) for the following reasons: (1)
neither time synchronization nor off-line training is needed;
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(2) DOA measurement is possible even for silent target by
using camera or other sensing devices; (3) multi-path effect
on DOA measurements is supposed to be negligible in future
networks, due to the very densely located sensing devices,
applying mmWave techniques. DOA measuring techniques
are well studied such as in [17]–[19]. However, discussion of
practical techniques is out of the scope of this paper.

To avoid up-link transmission congestion in distributed
sensor networks, factor graph (FG) algorithm [20] is applied,
where only key parameters describing the probability density
function (PDF) of DOA measurements are sent from sensors
to the fusion center. FG is first used for GEolocation in [21],
referred to as FG-GE in this paper. It is shown to achieve
higher accuracy and lower complexity than the conventional
schemes. The related work can be also found in [22]–
[24]. In [25], a DOA-based two-dimensional (2D) FG-GE
is proposed to detect a single anonymous target, with lower
root mean square error (RMSE) than the least square (LS)
technique. This work has been extended to three-dimensional
(3D) in [26].

In addition, a sensor separation algorithm is proposed in
[26] to solve the target-DOAs matching problem in the multi-
target scenario. Since messages propagated over FG-GE are
all Gaussian-approximated, only the mean and the variance
are needed. Therefore, the required computational complex-
ity is very light. The first order Taylor expansion is utilized
in [25] to linearize the trigonometric functions, in order
to keep the Gaussianity of messages’ PDF. However, such
approximation still incurs a certain level of computational
cost, which may get severer if the FG structure becomes large
and complex.

In this paper, a new DOA-based FG-GE is proposed to fur-
ther reduce the computational cost of linear approximation.
Compared with the conventional approaches in [25], [26], the
proposed FG-GE always utilizes predicted state information,
based on the tracker output at the previous timing. In this
sense, geolocation and tracking jointly work in one frame-
work, and form an integrated FG. In order to well express the
real target behavior, extended Kalman filter (EKF) is used
in this paper. The complexity of conventional EKF mainly
lies in matrix operations based on the linearization result with
the first order Taylor series expansion. Instead, an FG-based
EKF, denoted by FG-EKF, is used in this paper, as in [27].
FG-EKF replaces matrix operations by scalar operations, and
therefore significantly reduces the computational complexity.
Note that the complexity analysis in this paper only considers
FG-GE, while the analysis of FG-EKF can be found in [27].

Besides the complexity reduction, the predicted state in-
formation is also utilized for reducing the impact of sudden
sensing errors. False alarm is one of the examples, where
interfering signals are also detected at the sensor in additional
to the desired ones. The principle is that, the current state of
target should not vary significantly from that at the previous
timing. Sudden sensing errors, which may not be realized by
the sensor, can be identified at the center, and then eliminated
in the FG-GE detection. The prediction made by EKF can be

used as the a priori information, to evaluate the measurement
data. In this paper, a simple false alarm scenario is studied. It
has been shown that even though the sensor may suffer from
false alarm, FG-GE can still take useful measurement data
from such sensor.

Known as a tuning problem, estimating the variance of
observation error plays an important role in EKF, as well
discussed in [28], [29]. It should be noted that in the proposed
tracking system, observation is not directly modeled with
Gaussian errors. Instead, target positions are detected by
distributed sensors, based on a series of Gaussian-distributed
DOA measurements. The smallest variance of observation
error is determined by the Cramer Rao lower bound (CRLB)
[30]. Due to the fact that the proposed FG-GE can achieve a
performance which is very close to the CRLB, it is reasonable
to use CRLB to estimate the observation error variance
in real time. However, calculating CRLB requires the real
target position, which is practically not available. Hence, a
predicted CRLB (P-CRLB) is calculated in this paper, where
the predicted target position based on the result of previous
timing is used. With this technique, the proposed FG-EKF
is shown to achieve higher robustness than conventional
schemes which assume only fixed estimation of the obser-
vation noise variance.

The main contributions of this work are summarized as
follows.

1) A new DOA-based tracking system is proposed by in-
tegrating EKF and geolocation into one FG framework;

2) By utilizing the state prediction as the a priori infor-
mation, the impact of sudden sensing errors can be
eliminated.

3) The proposed FG-GE exhibits much lower computa-
tional complexity than the conventional scheme;

4) The robustness of tracking is further enhanced, by
estimating the observation error variance for FG-EKF
with the proposed P-CRLB in real time.

The organization of this paper is as follows. The tracking
model to be investigated is described in Section II. Detailed
steps of the proposed FG-EKF and FG-GE algorithms are
then introduced in Section III. The predicted CRLB which
is utilized in FG-EKF is derived in Section IV. Moreover,
the complexity analysis of FG-GE is provided in Section
V. The proposed tracking system is evaluated by a series of
simulations, and the results are shown in Section VI. Finally,
this work is concluded with several remarks in Section VII.

II. SYSTEM MODEL
A non-linear discrete SSM is focused on in this paper. The
target state at timing k is represented by sk = [xk, yk]

T , k =
{1, 2, ...,K}, which defines the target position in a 2D plane.
The process equation is given by

sk = f (sk−1) + wk, (1)

where f(·) is a non-linear process function, and wk =
[wx,k, wy,k]

T represents a Gaussian-distributed noise vector,
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with each element following N
(
0, σ2

w

)
. According to the

principle of EKF, the first order Taylor expansion is used
to linearly approximate f(·), i.e., f (sk−1) ≈ f (α) +
f ′ (α) (sk−1 − α). However, f(·) is unknown by the tracker,
and therefore it can not be directly applied to the position
tracking problem. Instead, assuming that α exists which
satisfies f (α) = sk−1, (1) can be rewritten by

sk ≈ sk−1 + vk−1 + wk, (2)

where the gradient vk−1 = f ′ (α) (sk−1 − α), which can be
updated during the dynamic EKF process. Note that (2) is
accurate only if the target does not move very fast between
any two adjacent timings.

Moreover,N distributed sensors locating at (Xn, Yn), with
n = {1, 2, ..., N}, are known to the fusion center. The
measurement equation at sensor n and timing k can be given
by

θ̂n,k = h(n, sk) + un,k, (3)

with un,k ∼ N
(
0, σ2

θ

)
being the measurement noise, and

θ̂n,k denoting the measured DOA θn,k, which is the output of
the non-linear measurement function h(·),

h(n, sk) = arctan

(
Yn − yk
Xn − xk

)
. (4)

During each sampling timing, the N sensors are assumed to
obtain L snapshots of DOA, from which the PDF parameters
are extracted. Let mθ̂ and σ2

θ̂
denote the mean and the

variance of θ̂, respectively, and the indexes n and k are
omitted for the simplicity. The larger the value of L, the
closer the values ofmθ̂ and σ2

θ̂
are tomθ and σ2

θ , respectively.
The transmission channels between sensors and the fusion
center are assumed to be error-free, and therefore no specific
transmission scheme is considered in this paper.

Given the real target state, the effective observation equa-
tion can be expressed by

zk = g (sk) + ek, (5)

where ek denotes the observation noise vector. Since the
target state is determined by the true DOAs, g (sk) can be re-
placed by g̃ (θk). Note that all messages in the proposed FG-
GE algorithm are approximated to be Gaussian, and so is the
observation noise, i.e., each element of ek followsN

(
0, σ2

e

)
.

However, σ2
e can not be directly measured. The smallest σ2

e

which can be theoretically achieved is determined by the
variances of θ̂k, according to the CRLB.

III. PROPOSED TRACKING ALGORITHM
The proposed DOA-based tracking algorithm is described in
this section, including both FG-EKF and FG-GE.

A. FG-EKF
According to (2) and (5), the objective of this tracking
problem is to find sk and vk which maximize the a poste-
rior probability p (sk,vk|z1:k), where (·)1:k denotes the data
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Fig. 1. Proposed FG structure for EKF.

series from timing 1 to k. The marginal function of sk and
vk, denoted by p̂ (sk,vk), is given by

p̂ (sk,vk) = p (sk,vk|z1:k)

=
∑

∼sk,∼vk

p (s1:k,v1:k|z1:k) , (6)

where ∼ is the exclusion operator. The conditional PDF
function in (6) can be further factorized by

p (s1:k,v1:k|z1:k)

=
p (zk|s1:k,v1:k, z1:k−1) p (s1:k,v1:k, z1:k−1)

p (z1:k)
(7)

=
p (zk|sk) p (s1:k,v1:k, z1:k−1)

p (z1:k)
, (8)

where (7) is derived based on Bayes’ rule, and (8) is obtained
due to that zk is only determined by sk. Further more,

p (s1:k,v1:k, z1:k−1)

p (z1:k)

=
p (sk|sk−1,vk−1) p (vk|vk−1) p (s1:k−1,v1:k−1|z1:k−1)

p (zk|zk−1)
,

(9)

with the assumption that sk is only determined by sk−1 and
vk−1, and vk is only determined by vk−1. By substituting
(9) into (8), p (s1:k,v1:k|z1:k) can be re-written as

p (s1:k,v1:k|z1:k)

∝
∏
1:k

p (sk|sk−1,vk−1) p (vk|vk−1) p (zk|sk) , (10)

where the denominator of (9), i.e. p (zk|zk−1), is ignored.
Note that p (s1:k−1,v1:k−1|z1:k−1) in (9) represents the fil-
tering result of FG-EKF at the previous timing, and therefore∏

is introduced in (10) with the timing index 1 to k. Based
on (10), the proposed FG-EKF algorithm can be described in
the following 3 steps.

1) State Prediction

First of all, the current state prediction is performed based
on the FG-EKF outputs at the previous timing. As shown in
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Fig. 1, the message flow of the predicted state µc(sk|k−1) is
given by

µc(sk|k−1)

=
∑
sk−1

∑
vk−1

f(sk|k−1|sk−1,vk−1)µa(sk−1)µb(vk−1),

(11)

where the message flows µa(sk−1) and µb(vk−1) are ob-
tained as the FG-EKF outputs at timing k − 1, with the
function f(sk|k−1|sk−1,vk−1) = sk−1 + vk−1.

2) State Refinement
Secondly, the predicted state sk|k−1 is further refined by
the observation, yielding the FG-EKF results at the current
timing k. As shown in Fig. 1, the message flow of the FG-
EKF output µe(sk) is given by

µe(sk) = µc(sk|k−1)µd(zk), (12)

where µd(zk) denotes the message flow of the observation,
obtained by the proposed FG-GE scheme.

3) Gradient Update
After obtaining the refined state, the vector vk should also
be updated. Since the process equation (1) is assumed to
be unknown, vk is only updated by refining vk−1 with a
correction term v̂k. According to Fig. 1, the message flow
of the v̂k can be given by

µg(v̂k) =
∑
sk−1

∑
sk

f(v̂k|sk−1, sk)µa(sk−1)µf (sk), (13)

where µf (sk) is the message flow of the refined state, and
f(v̂k|sk−1, sk) = sk − sk−1. Finally, the message flow of
the updated vector vk is given by

µh(vk) = µb(vk−1)µg(v̂k). (14)

B. FG-GE
To obtain the state observation zk required by FG-EKF,
the proposed FG-GE is applied, which is detailed in this
sub-section. Note that the sensor index n is omitted in
the following derivations. With the first order Taylor series
expansion, the true DOA, expressed by (4), can be linearly
approximated, centered at the point β, as

θk ≈ h (β) +
∂h (sk)

∂xk
(xk − βx) +

∂h (sk)

∂yk
(yk − βy) ,

(15)

where β = [βx, βy]T . Obviously, the approximation of (15)
is accurate if β is close to sk. In this paper, we propose
that β equals to the predicted state by FG-EKF from the
previous timing, i.e., β = sk|k−1. Therefore, (15) can be
further expressed by

θk ≈ λ1xk + λ2yk + λ3, (16)

10
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Fig. 2. Proposed FG detector for the DOA-based geolocation.

where λ1, λ2 and λ3 are all constants, given by

λ1 =
Y − yk|k−1

(X − xk|k−1)2 + (Y − yk|k−1)2
, (17)

λ2 =
−(X − xk|k−1)

(X − xk|k−1)2 + (Y − yk|k−1)2
, (18)

λ3 =
−(Y − yk|k−1)xk|k−1 + (X − xk|k−1)yk|k−1

(X − xk|k−1)2 + (Y − yk|k−1)2

+ arctan

(
Y − yk|k−1
X − xk|k−1

)
. (19)

Therefore, the target position can be linearly expressed by

xk =
θk − λ2yk − λ3

λ1
, (20)

yk =
θk − λ1xk − λ3

λ2
. (21)

Given the Gaussian-distributed DOA measurements as the
input of FG-GE, all messages interchanged inside FG-GE are
also Gaussian, where linear approximations at the function
nodes follow (20) and (21).

The proposed FG-GE structure is illustrated in Fig. 2, as
a part of the integrated tracking system. Let ηn denote the
message flow of the measured DOA associated with the func-
tion node hn. In the upward process, ξzx,n and ξzy,n denote
the messages forwarded from hn to zx and zy , respectively.
Then, ρzx,n and ρzy,n are the downward messages arriving at
hn from zx and zy , respectively. The detailed updates at the
function node hn can be described by two steps as follows.

1) Update of ξzx,n:

mξzx,n
=

1

λn,1
mηk −

λn,2
λn,1

mρzy,n
− λn,3
λn,1

, (22)

σ2
ξzx,n

=
1

λ2n,1
σ2
ηn +

(
λn,2
λn,1

)2

σ2
ρzy,n

, (23)

mξzy,n
=

1

λn,2
mηk −

λn,1
λn,2

mρzx,n
− λn,3
λn,2

, (24)

σ2
ξzy,n

=
1

λ2n,2
σ2
ηn +

(
λn,1
λn,2

)2

σ2
ρzx,n

, (25)
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2) Update of ρzx,n:

σ2
ρzx,n

=
1∑

i∈{1:N},i6=n σ
2
ξzx,i

, (26)

mρzx,n = σ2
ρzx,n

∑
i∈{1:N},i6=n

mξzx,i

σ2
ξzx,i

, (27)

σ2
ρzy,n

=
1∑

i∈{1:N},i6=n σ
2
ξzy,i

, (28)

mρzy,n
= σ2

ρzy,n

∑
i∈{1:N},i6=n

mξzy,i

σ2
ξzy,i

. (29)

The iteration is to be performed at the function node 1 to N ,
with the estimated position mz =

[
mzx ,mzy

]T
obtained by

mzx = σ2
zx

∑
i∈{1:N}

mξzx,i

σ2
ξzx,i

, (30)

mzy = σ2
zy

∑
i∈{1:N}

mξzy,i

σ2
ξzy,i

, (31)

and

σ2
zx =

1∑
i∈{1:N} σ

2
ξzx,i

, (32)

σ2
zy =

1∑
i∈{1:N} σ

2
ξzy,i

. (33)

It should be noted that σ2
z =

[
σ2
zx , σ

2
zy

]T
denotes the vari-

ance vector of the FG-GE estimation. However, according to
the observation equation defined in (5), h(sk) is a constant,
and therefore the observation variance of zk is equal to σ2

e ,
which is different from the results in (32) and (33). The
observation variance is calculated in the following section.

IV. P-CRLB DERIVATION
In this section, a P-CRLB is derived for the proposed EKF,
as the estimate of the observation noise variance. First of all,
by omitting the timing index k, the CRLB is given by [25]

CRLB = trace
[
F−1 (s)

]
, (34)

where F denotes the Fisher information matrix (FIM). Given
the measured DOA variable θ̂ with L samples, the FIM can
be expressed by

F (s) = E

[(
∂

∂s
ln p

(
θ̂
))2

]
, (35)

where the Gaussian PDF function of θ̂ is given by

p(θ̂) =
L∏
l=1

1√
2πσ2

θ

exp

[
− 1

2σ2
θ

(
θ̂l − θ

)2]
. (36)

Moreover, due to the fact that

E

[(
∂

∂θ
ln p(θ̂)

)2
]

= −E
[
∂2

∂θ2
ln p(θ̂)

]
, (37)

and according to (36),

∂2

∂θ2
ln p(θ̂) = − L

σ2
θ

. (38)

Then, the FIM can further be derived by

F (s) =
∂θ

∂s

T

E

[(
∂

∂θ
ln p(θ̂)

)T (
∂

∂θ
ln p(θ̂)

)]
∂θ

∂s

=
∂θ

∂s

T

E

[(
∂

∂θ
ln p(θ̂)

)2
]
∂θ

∂s

=
∂θ

∂s

T [ L
σ2
θ

]
∂θ

∂s
, (39)

where ∂θ
∂s is defined by the Jacobian matrix,

J =
∂θ

∂s
=


∂θ1
∂x

∂θ1
∂y

∂θ2
∂x

∂θ2
∂y

...
...

∂θN
∂x

∂θN
∂y

 , (40)

with
∂θn
∂x

=
Yn − y
d2n

, (41)

∂θn
∂y

=
−(Xn − x)

d2n
, (42)

and the Euclidean distance between sensor n and the target
in the 2D plane is denoted by dn, with n = {1, 2, ..., N}.
Finally, the CRLB of the proposed geolocation system can
be expressed by

CRLB =
{

trace
[(
JTΣ−1θ J

)
L
]}−1

. (43)

However, since the real target position is unknown in
practice at the timing k, xk and yk in (41) and (42) are
replaced by xk|k−1 and yk|k−1, respectively, with which (40)
can be rewritten as

Jk|k−1 =


Y1−yk|k−1

d21

−(X1−xk|k−1)

d21
Y2−yk|k−1

d22

−(X2−xk|k−1)

d22
...

...
YN−yk|k−1

d2N

−(XN−xk|k−1)

d2N

 . (44)

Finally, the P-CRLB can be obtained as

P-CRLB =
{

diag
[(

JTk|k−1Σ−1θ Jk|k−1

)
L
]}−1

. (45)

V. COMPLEXITY COMPARISON
The complexity comparison between the proposed FG-GE
and the conventional FG-GE in [25] is provided in this sec-
tion. Specifically, the required addition (ADD), multiplica-
tion (MUL) and trigonometric (TRI) operations for the both
schemes within one iteration time are listed in Tables 1-2.
Note that we assume subtraction and division have the same
complexity as addition and multiplication, respectively, for
the sake of simplicity. Moreover, only the upward message
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flows as shown in Fig. 2 are considered, while the downward
messages from the variable nodes zx and zy to the function
nodes are not included, since they are identical for the two
schemes compared.

TABLE 1: Arithmetic complexity analyses of the proposed
FG-GE.

Proposed FG-GE algorithm
Step Calculation Operation

Constant terms
related to λ1, λ2

and λ3 in (22)-(25)

1
λ1
, 1
λ2
, 1
λ2
1
, 1
λ2
2

,

λ3
λ1
, λ3
λ2
,
(
λ2
λ1

)2

,
(
λ1
λ2

)2

,

arctan
(
Y−yk|k−1

X−xk|k−1

)
based on (17)-(19)

5 ADD
10 MUL
1 TRI

mξzx
and σ2

ξzx

(22) and (23), assuming the
constant terms are given

3J ADD
4J MUL
0 TRI

mξzy
and σ2

ξzy

(24) and (25), assuming the
constant terms are given

3J ADD
4J MUL
0 TRI

Total
5+6J ADD
10+8J MUL
1 TRI

TABLE 2: Arithmetic complexity analyses of the conven-
tional FG-GE.

Conventional FG-GE algorithm
Step Calculation Operation

µF 7→∆y

m∆x tan (mθ̂) ,

σ2
∆x tan2 (mθ̂) +m2

∆xσ
2
θ̂

sec4 (mθ̂)
+σ2

∆xσ
2
θ̂

sec4 (mθ̂)

2J ADD
10J MUL
2J TRI

µF 7→∆x

m∆y tan (mθ̂) ,

σ2
∆y tan2 (mθ̂) +m2

∆yσ
2
θ̂

sec4 (mθ̂)
+σ2

∆yσ
2
θ̂

sec4 (mθ̂)

2J ADD
10J MUL
2J TRI

x↔ ∆x
y ↔ ∆y

m∆x = X −mx

m∆y = X −my

mx = X −m∆x

my = X −m∆y

4J ADD
0 MUL
0 TRI

Total
8J ADD
20J MUL
4J TRI

As shown in Table 1, λ1, λ2 and λ3 are all constants
during the proposed FG-GE detection at each timing, and
the required operations do not increase proportionally to the
iteration time J . Moreover, only one trigonometric operation
is needed in the proposed FG-GE. However, the complexi-
ties of the conventional FG-GE are found to be completely
proportional to J , as shown in Table 2. In addition, more
trigonometric operations are included as J increases. There-
fore, our proposed FG-GE scheme is found less complicated
compared to the conventional one.

VI. SIMULATIONS

In this section, an illustrative non-linear SSM is evaluated
with the proposed tracking algorithm. With the timing k =

x (meter)
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Fig. 3. Performance comparison between the proposed and
conventional schemes.

{1, 2, ..., 100}, the process equations are given by

xk = xk−1 + cos

(
xk−1φ

k

)
+ wx,k, (46)

yk = yk−1 + sin

(
yk−1φ

k

)
+ wy,k, (47)

where φ is set at π/60. The initial state s0 = [x0, y0]
T

=
[0, 0]

T . Simulations aiming at different investigation pur-
poses are presented as follows.

A. FG-GE COMPARISON
In this sub-section, comparison between the proposed and
the conventional counterpart schemes is provided under two
scenarios. In Scenario 1, an indoor environment is consid-
ered, where three distributed sensors are deployed at (0,-1),
(8,10) and (15, -2), respectively, with the unit being meter.
At each timing, every sensor is assumed to measure 60 DOA
samples, i.e., L = 60. σ2

w = 0.05 and σ2
θ = 3◦ were also

assumed. Scenario 2 focuses on the outdoor environment,
with three sensors located at (0,-10), (80,100) and (150,
-20), respectively, and the measurement snapshot number
L = 70. Moreover, σ2

w = 1 and σ2
θ = 5◦ were set. For

fair comparison, the FG iteration time J = 10 was fixed, and
the same random seed was used. Note that the conventional
FG-GE applied in the simulation follows [25].

The detected target positions using FG-GE, as well as
the tracking results are shown in Fig. 3. Clearly, in the
both scenarios, the proposed FG-GE can achieve slightly
lower root mean square errors (RMSEs) than that with the
conventional scheme. The improvement is not significant
because in such a stable sensing environment, even with
the conventional scheme, close-CRLB performance can be
achieved, and hence the room for further improvement is
limited. The same performance trends can be observed when

6 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.2979510, IEEE Access

Author et al.: Integrated Factor Graph Algorithm for DOA-based Geolocation and Tracking

testing other random seeds in the simulation, but the results
are omitted due to the space limitation. Note that the pro-
posed scheme can achieve centimeter level RMSEs in indoor
scenario, as shown in Fig. 3(a), which is supposed to satisfy
the geolocation requirment in 6G systems [31].

Note that with the conventional FG-GE, the detection
performances do not vary significantly at different timings.
However, with the proposed FG-GE, a prediction of the
current state is always needed. Therefore, large errors may
happen at the initial stage, due to the lack of initial state
prediction. In this sub-section, the impact of the initialization
is neglected by assuming that the initial state prediction is
known by the tracker. More detailed discussions are provided
in the next sub-section.

B. CONVERGENCE
Due to the difficulty of theoretical analyses, the convergence
behavior of the proposed FG-GE is investigated only by
simulations in this sub-section. Specifically, it was evaluated
in terms of two parameters, i.e., the timing index and the FG
iterations.

First of all, the convergence behavior versus timing index
is evaluated. In order to compare the average RMSE, 100
simulations were performed for the proposed and the conven-
tional FG-GE schemes at each timing. The other parameters
were set the same as in Scenario 2 defined in the previous
sub-section. Note that for the proposed FG-GE, prediction
of the first state ŝ1|0 was randomly chosen. In the first
simulation, ŝ1|0 = [10, 15]T was used. It can be clearly seen
from Fig. 4(a) that the average RMSE of the proposed FG-
GE is around 9 meters at k = 1, compared to 1.8 meters
with the conventional scheme. However, it quickly converges
to almost the same level as that of the conventional scheme
after the 3rd timing.

According to Fig. 4(b), with ŝ1|0 = [15, 25]T , the average
RMSE with the proposed FG-GE is 17.5 meters at k = 1,
which is larger than the previous case, because ŝ1|0 is farther
from the real target position. It is found that, the initial RMSE
of the proposed FG-GE depends on the state prediction at
k = 1, but quickly converges after only 3 to 4 rounds of
computations. Therefore, the initial convergence problem of
the proposed FG-GE can be negligible in the tracking phase.

Then, the convergence behavior was evaluated versus the
FG iterations. As mentioned in Section V, the proposed FG-
GE requires less computations than that of the conventional
scheme for each FG iteration. However, the real system com-
plexity should also consider the FG iteration time required
to achieve the performance convergence. Specifically, the
average RMSEs of the two schemes are simulated versus J .
The other parameters were set the same as that defined in
Scenario 2 of Section VI-A.

According to Fig. 5, after the first round of FG iteration,
the proposed FG-GE achieves an average RMSE at 30.5
meters, which is roughly 6 meters larger than that of the
conventional scheme. However, the average RMSEs of the
both schemes quickly converge after around 5 to 6 iterations.
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(a) ŝ1|0 = [10, 15]T in the proposed FG-GE.
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Fig. 4. Convergence analysis of the tracking timing index.
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This observation clearly indicates that the proposed FG-
GE does not require more FG iterations compared with the
conventional scheme.

C. FALSE ALARM
In this sub-section, the robustness of the proposed FG-GE
is presented when the DOA measurement suffers from false
alarm. A simple scenario is evaluated in this simulation,
i.e., false alarm happens at each timing with a probability
pf for only one of the deployed sensors. If it happens,
interfering signals with random DOAs will be observed at the
sensor, besides the measurement of the real target. With the
conventional FG-GE, the measurement data from the sensor
in false alarm will not be used for detection at the fusion
center, because separating the real and the interfering DOA
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Fig. 6. Performance evaluation of FG-GE with false alarm.

measurements is difficult. However, with our proposed FG-
GE scheme, false alarm signals can be identified, if measured
DOAs are outside of the degree range threshold. The degree
range threshold was set at±20◦, compared with the predicted
DOA based on the a priori information, and pf = 1/5. The
rest of parameters followed the Scenario 2 of Section VI-A.

As shown in Fig. 6, the proposed FG-GE is more stable,
with the average RMSE equal to 1.65 meters. However,
the conventional scheme exhibits larger estimation variances
caused by false alarm, with the average RMSE twice as large
as that of the proposed scheme. Therefore, utilizing the a
priori information at the FG-GE is proved to achieve higher
stability, because the more the useful DOA measurements,
the better the detection performance. Note that the average
RMSE is calculated only considering the performances with
the timing k > 5, in order to eliminate the influence of the
initial convergence behavior.

D. P-CRLB
The utilization of P-CRLB is motivated by the fact that,
the observation stability, expressed by the variance σ2

e , may
dynamically change in practical tracking environments. To
keep the tracking performance stable, P-CRLB is used as the
estimate of σ2

e in real time. The estimation accuracy is eval-
uated by comparing three items, i.e., the P-CRLB, the real
CRLB and the average mean square error (MSE) achieved
by the proposed FG-GE. The average MSE mentioned above
is equivalent to the average σ2

e . Note that σ2
e is practically

determined by the measurement variance σ2
θ , which is always

kept the same for all sensors in order to observe the global
effect trend. The other parameters are set the same as those
defined in Scenario 2 of Section VI-A.

First of all, it is found from Fig. 7 that the gap of average
MSE curves between the proposed FG-GE and the real
CRLB is very minor, especially when σ2

θ values are small.
This observation implies an excellent geolocation perfor-
mance of the proposed FG-GE. Moreover, the P-CRLB curve
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Fig. 7. Performance comparison among P-CRLB, real CRLB
and the average MSE with the proposed FG-GE.

is found to be very close to that of the average MSE achieved
by the simulations. Therefore, estimating the observation
noise variance by P-CRLB is proved to be very accurate.

To further evaluate the robustness of FG-EKF using P-
CRLB, simulations were conducted with dynamic DOA
measurement variances. Specifically, at each timing, σ2

θ was
randomly chosen from the set {2◦, 6◦, 10◦, 14◦, 18◦}, but
still kept the same for all sensors. With the proposed tech-
nique, P-CRLB was dynamically calculated as the estimate
of σ2

e , required in the FG-EKF calculation. However, in
the comparative scheme, only fixed σ2

e is used, assuming
that the observation error statistics can be obtained through
the offline tests. In fact, evaluating the proposed FG-GE
independently of FG-EKF is not feasible, as described in
Section IV. Therefore, in this simulation, only approximated
average σ2

e was used, which was calculated as the MSE with
the proposed FG-GE.

As shown in Fig. 8, the average RMSEs with dynamic
P-CRLB are in general lower than that with the fixed σ2

e .
After further averaging the RMSEs over all timings, the
final average RMSE achieved by the proposed technique is
1.64 meters, which is 1.24 meters smaller than that with
the conventional scheme compared. Therefore, the proposed
FG-EKF using P-CRLB exhibits higher robustness against
dynamic environment changes than that with the case of
offline average error estimation.

VII. CONCLUSION
This paper has proposed a DOA-based tracking algorithm,
which integrates EKF and geolocation into one FG frame-
work. The predicted state information obtained from EKF
is used not only for filtering, but also for observation, i.e,
as the a priori information of FG-GE. According to the
simulation results, the proposed FG-GE can always achieve
lower average RMSEs than that with conventional schemes.
Although large errors may happen at the beginning of track-
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ing due to the lack of accurate a priori, it has been shown
that the detection performance quickly converges after only 3
or 4 timings. Moreover, the impact of sudden sensing errors,
such as false alarm, can be effectively reduced by utilizing
the a priori information. In addition, the P-CRLB is used
in FG-EKF to estimate the variance of observation error.
With this technique, tracking is made more robust in the
presence of dynamic environment change, compared with the
scheme using fixed estimation of the observation variance.
The proposed tracking system can be easily implemented in
practice due to its low complexity.
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