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Abstract. Multithreshold Entropy Linear Classifier (MELC) is a recent classi-
fier idea which employs information theoretic concept in order to create a mul-
tithreshold maximum margin model. In this paper we analyze its consistency
over multithreshold linear models and show that its objective function upper
bounds the amount of misclassified points in a similar manner like hinge loss
does in support vector machines. For further confirmation we also conduct some
numerical experiments on five datasets.
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1. Introduction

Many of the existing machine learning classifiers are based on the minimization of
some additive loss function which penalizes each missclassification [1]. This class
of models consists perceptron, neural networks, logistic regression, linear regression,
support vector machines (both traditional and least squares) and many others. For
most of such approaches it is possible to prove their consistency, meaning that under
assumption that our data is sampled i.i.d. from some unknown probability distri-
butions, algorithm will converge to the optimal model in Bayesian sense with the
sample size growing to infinity [2, 3]. While this is quite natural to be consistent with
a loss function which is being directly minimized, it generally only upper bounds the
number of wrong answers.
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In general, up to some weighting schemes, the classic measure of the classification
error is the expected number of missclassified samples from some unknown distribution
F:

Ely: # cl(z:)|(zi,yi) ~ Fl,

which directly translates to

/ (cl(), g, 2)p(x)dz,

for I(p,y,z) =1 <= py > 0. We call I the 0/1 loss function and use the ly/;
notation. As a result we can define an empirical risk over the training set as

N
Remp({(xhyi)}i]il) = % Zl(d(xl)7ywxz)7
i=1

which can be minimized over some family of classifiers ¢l. Unfortunately for 0/1
loss the resulting optimization problem is hard even for linear models. To overcome
this issue many classifiers are constructed through optimization of some similar loss
function which results in feasible problems. For example support vector machines
change 0/1 loss to so called hinge loss

ZH(I% Y, CU) = max{(), 1- py}v

for y € {—1,+1}. Tt appears, that such problem in the class of linear classifiers is
convex and so — easy to compute. There are two important aspects of hinge loss that
make it a reasonable surrogate function. First, Iy (p,y,2) = 0 = lo,1(p,y,x) = 0!
second I (p,y, ) > lo/1(p,y, ). In other words, it is an upper bound of the 0/1 loss
and when it attains zero then there are no missclassified points.

In this paper we analyze Multithreshold Entropy Linear Classifier, a recently pro-
posed [4] classifier which builds a multithreshold linear model using information the-
oretic concepts. It is a density based approach which cannot be easily translated to
the language of additive loss functions. We show that this model is consistent with
0/1 loss over simple families of distributions and that in general it also upper bounds
the 0/1 loss in the class of multithreshold linear classifiers and when it attains zero
then there are no missclassified points. We also draw some intuitions to show how
this model is related to other linear classifiers and conclude with some numerical
experiments.

2. Multithreshold Entropy Linear Classifier

Multithreshold Entropy Linear Classifier (MELC [4]) is aimed at finding such linear
operator v that maximizes the Cauchy-Schwarz Divergence [5] of kernel density esti-
mation of each class projection on v. It appears that due to the affine transformation

I Implication is an equivalence relation up to scaling of the linear operator as hinge loss returns
non-zero values for predictions in (—1, 1) interval.
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invariance of such problem one can (and should, as shown in [4]) restrict to the unit
sphere, meaning that ||v|| = 1.

There are many density based methods in particular one can perform kernel den-
sity estimation of any dataset and simply classify according to which density is bigger.
However, such an approach cannot work in general due to the curse of dimensionality
and the fact that density estimation requires enormous number of points for reason-
able results (number of required points grows exponentially with the data dimension).
As a result, existing datasets can be used to approximate density to at most few di-
mensions while data can have thousands. This leads to a very natural concept of
performing density estimation of low dimensional data projection, in particular one
dimensional one, performed by MELC.

For a given set of points X_, X, its projection to the hyperplane v is simply
vT'X_,vT X, . Kernel density estimations using Silverman’s rule [6] is given by

" o 1 _M)
" X)) = g D M\XileXp( 20% ’

ryEX4

where

or = () std(v” X ).
Now to define the MELC objective function, we need some definitions, namely:

e cross information potential which, as shown in [4], is connected to minimization
of the empirical risk

%o f) = [ @) f @)

e Renyi’s quadratic cross entropy as defined in [7] is simply a negative logarithm
of ip™
H;(f—af—l—) = 71n(ipx(f—a f+))

e Renyi’s quadratic entropy is a Renyi’s quadratic cross entropy between pdf and
itself

Hy(f) = H3 (f. f).

e Cauchy-Schwarz Divergence, optimized by the full MELC model
Des(f-, f+) = 2Hy (f-, f4+) — Ha(f-) — Ha(f4).

In particular, non-regularized MELC is prone to overfitting which can be easily sum-
marized by the following observation.

Observation 1 Given an arbitrary finite, consistent set of samples {(z:,y;)} Y, C
R? x {1, +1} non-regularized MELC learns it with zero error for sufficiently small o.

Proof. First let us notice, that any finite, consistent sample set is separable by some
multithreshold linear classifier. In other words

V{(w“yi)}ﬁ\l:layvfi’j<’l]7l'i> 7é <U,.’L'j>
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Obviously, there are N? pairs of vectors which can violate this assumption. Each
defining a family of linear projections that are projecting them at the same point.
Uiy ={v: (v,25) = (v,25)} = {v: (v,2; — ;) = 0}, thus Yy, v,ec0,; Jacrv1 = avo.

So it is sufficient to choose v € R\ Ul ; vij which is a non-empty set as for any
d > 1 there are infinitely many possible angles that vectors can form with each axis,
and for d = 0 all v;; = 0 (from the dataset consistency).

In the worst case it results in a (N — 1)—multithreshold linear classifier. As a con-
sequence, there exists such linear projection for which the smallest margin between
samples of this set is greater than zero.

As it has been shown in [4] non-regularized MELC maximizes the smallest margin
among all margins in multithreshold linear classifiers as o approaches 0. In the same
time MELC will not learn these samples perfectly if and only if at least two samples
are projected at the very same point, which is equivalent to the maximum of the
smallest margin in the class of multithreshold linear classifiers for this sample is equal
to 0, contradiction. O

In particular, this means that for small values of o, without regularization, this
model has infinite Vapnik-Chervonenkis dimension [8], as many other density or near-
est neighbours based approaches. In the following section we focus on more practical
characteristics — whether this classifier is able to learn an arbitrary continuous dis-
tribution with smallest obtainable error in its class of models. This characteristic is
called consistency and can be defined as
Definition 1 (Consistency) Model M is called consistent with error measure E and
family of distributions F in the class of models M if for any f € F M trained on the
i.9.d. samples from f approaches minimum error as measured by E over all models
in M on f with samples’ size going to infinity.

3. Non-regularized MELC consistency

In this section we focus on non-regularized MELC which searches for linear projec-
tion v (with norm 1) maximizing Renyi’s quadratic cross entropy of kernel density
estimation of data projection:

vy = argmax HY ([ X_], v X4]),
which makes a classification decision based on the estimated projected densities
cl(a) = sign([ef; X41(@) - o X)),

We show that such classifier is nearly consistent with the 0/1 loss in the class of all
multithreshold linear classifiers. We also draw an analogy between its approach to the
one taken by support vector machines model (as well as other regularized empirical
risk loss function minimization based models). Let us start with some basic definitions
and notations.
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Definition 2 (Expected accuracy) Given some classifier cl(x) : X — {—1,4+1} the
expected accuracy over a distributions f_, fy with priors p(—),p(+) is

p(-) [ max{o, ~cl()} (@) + pl+) [ max{0,cl(a)}f (a)do.

For unbalanced datasets we might be more interested in measures that make both
classes equally important despite their sizes (priors) which leads to the averaged
accuracy (also known as balanced /weighted accuracy).

Definition 3 (Expected averaged accuracy) Given some classifier cl(z) : X —
{=1,+1} the expected averaged accuracy (ignoring the classes’ priors) over a dis-
tributions f_, f1 is

%/max{(), —cl(z)} f-(z)dx + %/max{(),cl(x)}ﬂr(x)dx.

Let us now compute the smallest obtainable error by multithreshold linear classifiers
as measured by expected averaged accuracy (EAA).

Proposition 1 (Multithreshold Linear Classifier EAA Bayes Risk) For the family of
multithreshold linear classifiers, the smallest obtainable EAA error for distributions

f—, f+ equals
Rian(f- ) =min [[min{(o” £)(o), (" £:)(0)}do.

Proof. [ min{(vT f_)(z), (vT f1)(x)}dz simply expresses the probability of making
a bad classification over whole data projection. For each point vz, we have to
classify it as a member of either f_ or f; and obviously, we make an error when
classifying any point  with probability min{ (v f_)(x), (vT fi)(x)}. As a result, the
projection which realizes the minimum of probability of an error is the one giving the
greatest expected averaged accuracy. O

In the following sections we assume that the kernel density estimation approximat-
ing the data distribution is the actual distribution, as with the sample size growing
to infinity kernel density estimation with Silverman’s rule [6] is guaranteed to con-
verge to the true distribution. As a consequence each result regarding a property
over distribution is also true over finite sample in the limiting case. We also use the
notation

Rean(v; f, f1) = / min{o” f_(z), 0" £ (z)}dz,

for the smallest obtainable multithreshold linear classifier missclassification error for
a given projection v. So in particular

Vopt = arg mvinREAA(v; f*a f+)7

Reaa(f-, f+) = mvinREAA(U; f= f+) = Reaa(vopt)-

Let us begin with the simplest case, when there exists a perfect classifier able to
distinguish samples’ classes (case when Bayesian risk is 0).
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Observation 2 Non regularized MELC is consistent with 0/1 loss on multithreshold
linearly separable distributions.

Proof. If two distributions are perfectly separable by a multithreshold linear separator
then there exists a linear projection v,y such that common support of distributions
projected on v,y has zero measure.

|Supp (Ugps f—) N supp(vay; f+)] = 0.

Obviously, ip* (vg;75 f—, v(?pt f+) = 0 as we integrate the function which is not equal to
0 only on the set of zero measure.

Similarly Vv : ip™ (vT f_, 0T f1) = 0 — [supp(v? ) Nsupp(v? f1)| = 0 because if
the integral of the product of two functions is equal to zero then only on the set of
zero measure both of these functions can be non-zero. As a result the solution given
by non-regularized MELC attains the Bayesian risk for this class of distributions. U

Let us now investigate the situation when data of each class come from a radial
normal distributions.

Observation 3 Non regularized MELC is consistent with 0/1 loss on radial normal
distributions.

Proof. Let us assume that we are given Gaussians with variances o2 and U%r respec-
tively.
f* :N(m,,U%I),er :N(eranI)
It is easy to see that linear projections of these distributions form the family of
one-dimensional normal distributions with variances o2, ai respectively and distance
between their means in the [0, [vTm_ —vTm_||] interval. Optimal projection is given
by vope Which maximizes the distance between these means, so vop = £(m— — my4).
On the other hand according to Czarnecki et al. [4], we have

T T 2
< x (T T _ 1 7||v m_ — v my||
1p (’U f—av f+)* 271'((72,4-01) exp( 2(0_3_’_0_3) )
so obviously ip* is minimized (and H) maximized) when [[vTm_ —vTm_|? is max-
imized. As a result non-regularized MELC selects optimal linear projection. O

Unfortunately MELC (neither regularized nor non-regularized) does not seem to
be consistent with 0/1 loss in general. However, we show that 0/1 loss is nicely
bounded by its objective function which will draw an analogy between this approach
and those taken by other linear models.

We start with a simple lemma connecting square of the function’s integral and
integral of the function’s square on a bounded interval.

Lemma 1 For any square integrable function [ such that Ve : f(x) >0

/01 f(z)dz < /01 f2(x)dx.
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Proof. This is an obvious consequence of Schwarz inequality

( / bf(:c)g(x)dx>2 < / " P () /a” (),

for a =0, b =1, f being non-negative and g being a constant function equal ¢ > 0,
1 1 /1 1 1 1 1
/ f(z)dz = f/ ¢ fz)de < — / czda:/ f2(x)dx = / f2(x)dz.
0 ¢ Jo cyJo 0 0

Now we can prove the main theorem of this paper.

Theorem 1 Negative log likelihood of minimal obtainable missclassification error of
a given multithreshold linear classifier for any not multithreshold linearly separable
distributions is at least half of Renyi’s quadratic cross entropy of data projections
used by this classifier.

Proof. First from the fact that we can scale/center data so for any linear operator
v such that ||v|| = 1 we have

0 < sup(supp(v” f_) Usupp(v” f4)) — inf(supp(v” f-) Usupp(v” f1)) < 1,

and consequently we can narrow down to the error over a unit interval®? . From
Lemma 1 we get

/O min{(va><w>,<va+><x>}dx<\/ / (min{(vT f_)(z), 0T f1)(@)})2dr. (1)

For any a,b € Ry we have min{a, b} < v/ab, thus

min{(v" f-)(2), (v f4)(2)} < \/ () (@) (0T f1) (@),

which connected with (1) yields

Reaa(vi f-, f+) :/o min{(v" f_)(x), (v f+)(2)}dz < \//O W f) () (W f1) (x)d,

consequently, as f_, f1 are not multithreshold linearly separable, Rgaa (v; f—, f1) is
strictly positive, thus

~In(Rean(vi £, f1)) 2 ~n \/ / <va><x><va+><x>dx) = LHF 07 0T f).

2 For KDE based on functions with infinite support, for a proper scaling, integral of the pdf
outside [0, 1] interval goes to 0 with samples size growing to infinity.
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In other words by maximizing the Renyi’s quadratic cross entropy (minimizing the
cross information potential) we should also optimize negative log likelihood of correct
classification (get close to the Bayes risk of 0/1 error). It is worth noting that we do not
assume any particular kernel so even though MELC is defined with Gaussian mixtures
kernel density estimation, the theorems holds for any square integrable distributions
on [0, 1] interval.

4. Experiments

To further confirm our claims we perform simple numerical experiments on five
datasets, three of which are synthetic ones and two real life examples. During this
evaluation we analyze all possible linear models in two-dimensional space and com-
pare how particular upper bound objective (hinge loss in the case of linear classifiers
and non-regularized MELC for multithreshold classifiers) behaves as compared to the
Bayesian risk. Figure 1 visualizes the results for: two radial Gaussians distributions
(one per class) in 2d space; four radial Gaussians distributions placed alternately (two
per class) in a line; four random strongly overlapping Gaussian distributions (two per
class); fourclass dataset [9]; 2d PCA embedding of the images of 0 and 2s (positive
class) and 3s and 8s from MNIST dataset [10].

First, it is easy to notice the convexity of the hinge loss objective function. Even
for problems having multiple local optima (like fourth dataset) the SVM objective
function has just one, global optimum which is the core advantage of such an approach.
In the same time, non-regularized MELC function has similar number of local optima
like the Bayesian risk function, however it is much smoother and as a result one of the
unimportant local solution in terms of 0/1 loss in the fourth example (located near
0.5) is not a solution of MELC.

On the other hand for datasets where the considered class of models is not sufficient
(like third problem for linear model) hinge loss convex upper bounds leads to the
selection of the point distant from the true optimum (see Table 1). MELC on the
other hand seems to better approximate the underlying Bayesian risk function and
results in the solutions with comparable error (even if the solution itself is far away
from the true optimum, like in the case of fourth dataset).

5. Conclusions

In this paper Multithreshold Entropy Linear Classifier is analyzed in terms of its
consistency with 0/1 loss function in the class of multithreshold linear classifiers. It
has been shown that it is truly consistent with some simple distribution classes and
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that in general its objective function upper bounds the 0/1 loss in a similar manner
as hinge or square losses upper bounds 0/1 loss. Experiments on the synthetic, low
dimensional data showed that in practise, one can expect that optimization of MELC
objective function truly leads to the nearly optimal classifier with sample size growing
to infinity.
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Figure 1. Visualization of sampled points for each dataset (first column), hinge loss
and Bayesian risk of linear models (second column), underlying dataset distribution
(third column) and finally square root of the cross information potential and the
Bayesian risk of multithreshold models (last column). X axis corresponds to the
angle of the v vector. Large dots correspond to minima of each function, additionally
for both hinge loss and \/1p_>< there is another dot denoting the value of true error
obtained if solution is selected using these objectives.
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Table 1. Comparison of solutions given by optimization of hinge loss and optimal
linear classifier and between non-regularized MELC and optimal multithreshold linear
classifier. Error function is the relative increase in the corresponding error measure

when using a particular optimization scheme E(m, f) = mnrzu_nmiw

projection given by hinge loss optimization, vy, by 0/1 loss optimization, v;,x by
non-regularized MELC and vgr,, the optimal multithreshold linear projection in the
Bayesian sense.

. vy is a linear

Dataset E(vw,loy)  cos(vi,vosi)  E(vipx, REaa)  08(Vipx, VRgas)
2 Gauss 2d 6% 1.00 3% 1.00
4 Gauss in line 0% 0.96 0% 1.00
4 Gauss mixed 34% 0.56 5% 1.00
fourclass 1% 1.00 7% 0.05
MNIST 2% 0.99 1% 1.00
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