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A REMARK ON BISHOP’S MULTIVALUED PROJECTIONS

by Kamil Drzyzga

Abstract. We present a proof of an extension theorem for holomorphic
functions based on holomorphic multivalued projections.

1. Introduction. Let M be a complex submanifold of a Stein mani-
fold X. It is known (cf. e.g. [3], Chapter VIII, Section A, Theorem 18) that
O(X)|M = O(M), i.e. each function holomorphic on M extends holomorphi-
cally to X. In [2] E. Bishop proposed a proof of the above result based on the
use of special analytic polyhedra (without sheaves methods). The central part
of Bishop’s proof is to show that for every relatively compact domain U ⊂ X
with U ∩M 6= ∅ we have O(U)|U∩M = O(M)|U∩M . At the end of his proof E.
Bishop suggested that an alternative proof may be performed in the language
of holomorphic multivalued projections. The aim of our note is to realize this
idea.

The paper is organized as follows. First, in Sections 2 and 3 we recall some
basic facts related to holomorphic functions on symmetric products. The defi-
nition of a system of holomorphic multivalued projections is given is Section 4.
The main result of the paper is the following theorem.

If M is an analytic submanifold of a Stein manifold X and U is a relatively
compact domain with U ∩M 6= ∅, then there exists a system of holomorphic
multivalued projections U −→M . Consequently, there exists a linear continu-
ous extension operator L : O(M) −→ O(U).

Section 5 collects some auxiliary results. The proof of the main theorem is
in Section 6.

2. Symmetric products. The aim of this section is to present some
properties of the symmetric products. For details see [5, Appendix V].
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Let X be a topological Hausdorff space. We define an equivalence rela-

tion on Xk by (x1, . . . , xk) ∼ (y1, . . . , yk)
def⇐⇒ (y1, . . . , yk) is a reordering of

(x1, . . . , xk). We will denote the quotient set Xk/∼ with
←→
Xk and call it the

k-symmetric product of X. In the case k = 1, we get
←→
X1 = X. Now, we

define the projection π : Xk −→
←→
Xk, π(x) := [x]. We put [x1, . . . , xk] :=

[(x1, . . . , xk)], {[x1, . . . , xk]} := {x1, . . . , xk}. Moreover, we put

[x1 :µ1, . . . , x` :µ`] := [

µ1-times︷ ︸︸ ︷
x1, . . . , x1, . . . ,

µ`-times︷ ︸︸ ︷
x`, . . . , x`],

provided that xj 6= xt for j 6= t, µ1, . . . , µ` ∈ N, µ1 + · · ·+ µ` = k. We define

[A1, . . . , Ak] :=
{
[x1, . . . , xk] : xi ∈ Ai, i = 1, . . . , k

}
,

The topology on
←→
Xk is defined by the basis

[U1, . . . , Um], Ui is open in X, i = 1, . . . , k.

Observe that π is continuous and open, and
←→
Xk is Hausdorff.

Definition 2.1. Let Y be Hausdorff topological space and let F : X −→←→
Y n be continuous. Then we put

X
(k)
F := {x ∈ X : #{F (x)} = k},

χF := max{k : X
(k)
F 6= ∅}, XF := X

(χF )
F .

Note that XF is open.

Proposition 2.2. Let F be as above. Suppose that

a ∈ XF , F (a) = [b1 :µ1, . . . , bk :µk], k := χF .

Then there is a neighborhood U ⊂ XF of a and there are uniquely defined
continuous functions fi : U −→ Y, i = 1, . . . , k, such that

F (x) = [f1(x) :µ1, . . . , fk(x) :µk], x ∈ U.

In the above situation, we will write F = µ1f1 ⊕ · · · ⊕ µkfk on U .

Proposition 2.3. Let F : Xk −→ Y be continuous. Then there exists a

continuous function
←→
F :
←→
Xk −→ Y such that F =

←→
F ◦ π if and only if F is

symmetric.
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3. Holomorphic multivalued functions.

Definition 3.1. Let M,N be complex manifolds and let M be connected.

We say a continuous mapping F : M −→
←→
Nn is holomorphic on M (F ∈

O(M,
←→
Nn)) if:

• M \MF is thin, i.e. every point x0 ∈ M \MF has an open connected
neighborhood V ⊂M and exists a function ϕ ∈ O(V ), ϕ 6≡ 0, such that
(M \MF ) ∩ V ⊂ ϕ−1(0),
• for every a ∈MF , if F = µ1f1 ⊕ · · · ⊕ µkfk on V as in Proposition 2.2,

then f1, . . . , fk ∈ O(V ).

If M is disconnected, then we say that F is holomorphic on M , if F |C ∈
O(C,

←→
Nn) for any connected component C ⊂M .

Proposition 3.2. Let M,N,K be complex manifolds and let f ∈ O(M,N),

g ∈ O(N,
←→
Kn). Assume that f(M) ∩ Ng 6= ∅ and M is connected. Then

g ◦ f ∈ O(Mg◦f ,
←→
Kn).

Proof. Observe that χg◦f = χg. We may assume that Mg◦f is connected.
Fix an x0 ∈Mg◦f . Then f(x0) ∈ Ng. Thus g = µ1g1 ⊕ · · · ⊕ µkgk on U , where
U is an open neighborhood of f(x0). Therefore, g ◦ f = g1 ◦ f ⊕ · · · ⊕ gk ◦ f on
V , where V := f−1(U).

Proposition 3.3. Let f ∈ O(M,
←→
Nn) and g ∈ O(Nn,K) be symmetric.

Then ←→g ◦ f ∈ O(M,K).

Proof. We may assume that M is connected. By Definition 3.1 for a ∈
Mf , we get f = µ1f1 ⊕ · · · ⊕ µkfk on U , where U is a neighborhood of a.

We see that ←→g ◦ f = g(

µ1-times︷ ︸︸ ︷
f1, . . . , f1, . . . ,

µk-times︷ ︸︸ ︷
fk, . . . , fk) on U . Hence ←→g ◦ f ∈

O(Mf ,K)∩C(M,K). Since M \Mf is thin, we obtain ←→g ◦ f ∈ O(M,K).

4. Bishop’s multivalued projections.

Definition 4.1. Let M be an analytic submanifold of a manifold X. Let
U ⊂ X be a domain such that U ∩M 6= ∅. We say a holomorphic function

∆ : U −→
←−−−−−→
(M × C)n

is a holomorphic multivalued projection U −→ M if for any x ∈ U ∩M such
that ∆(x) = [(x1, z1), . . . , (xn, zn)] we have xj0 = x for some j0 ∈ {1, . . . , n}
and zj = 0 for each j ∈ {1, 2, . . . , n} \ {j0}.

Let P denote the set of all holomorphic multivalued projections U −→M .
Then we define the map

Ξ : (U ∩M)× P −→ C, Ξ(x,∆) := zj0 .
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Observe that Ξ is well defined.

Definition 4.2. We say Π = (∆j)
k
s=1 is a system of holomorphic multi-

valued projections U −→ M , if ∆s : U −→
←−−−−−−→
(M × C)ks , s = 1, . . . , k, are holo-

morphic multivalued projections and
∑k

s=1 Ξ(x,∆s) = 1 for any x ∈ U ∩M .

Now, we are going to construct a linear continuous extension operator
LΠ : O(M) −→ O(U), where O(M) and O(U) are endowed with the locally
uniform convergence topologies.

Theorem 4.3. Assume that there exists a system Π of holomorphic mul-
tivalued projections on U . Then there exists a linear continuous operator

LΠ : O(M) −→ O(U)

such that LΠ(u)(x) = u(x) for x ∈ U ∩M .

Proof. Let Π := (∆s)
k
s=1 and let u ∈ O(M). Put

←→us ([(x1, λ1), . . . , (xks , λks)]) :=

ks∑
j=1

u(xj)λj ,

LΠ(u) :=
k∑
s=1

←→us ◦∆s.

Obviously, LΠ is linear, us ∈ O((M × C)ks) and for x ∈ U ∩M we have

LΠ(u)(x) =
k∑
j=1

u(x)Ξ(x,∆j) = u(x)
k∑
j=1

Ξ(x,∆j) = u(x).

By Proposition 3.3 LΠ(u) ∈ O(U). Moreover, L is a continuous operator.
Indeed, let K ⊂ U be compact. We see that the functions

Λs :
←−−−−−−→
(M × C)ks 3 [(x1, λ1), . . . , (xks , λks)] 7−→ [x1, . . . , xk] ∈

←−→
Mks ,

Λ̂s :
←−−−−−−→
(M × C)ks 3 [(x1, λ1), . . . , (xks , λks)] 7−→ [λ1, . . . , λk] ∈

←→
Cks ,

s = 1, . . . , k, are continuous. Obviously, Λs ◦∆s(K) ⊂ [Ks
1 , . . . ,K

s
ks
], where

Ks
j is compact for j = 1, . . . , ks, and s = 1, . . . , k. Similarly, Λ̂s ◦ ∆s(K) ⊂

[K̂s
1 , . . . , K̂

s
ks
], where K̂s

j is compact for j = 1, . . . , ks, and s = 1, . . . , k. Put

L :=
⋃k
s=1

⋃ks
j=1K

s
j and L̂ :=

⋃k
s=1

⋃ks
j=1 K̂

s
j . Note that the above sets are

compact. Next, we set C := kmax{|λ| : λ ∈ L̂}. We obtain

‖LΠ(u)‖K ≤ C‖u‖L, u ∈ O(M).
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In view of Theorem 4.4 it is natural to try to find a class of triples (X,M,U)
for which a system of holomorphic multivalued projections U −→ M exists.
Using Bishop’s method we will get the following result.

Theorem 4.4. Let M be an analytic submanifold of a Stein manifold X.
Let U be a relatively compact domain of X such that U ∩M 6= ∅. Then there
exists a system of multivalued holomorphic projections U −→M .

The proof of Theorem 4.4 will be presented in Section 6. Theorems 4.5
and 4.4 immediately imply the following result.

Theorem 4.5. Let M be an analytic submanifold of a Stein manifold X.
Let U be a relatively compact domain of X such that U ∩M 6= ∅. Then exists
a linear continuous extension operator L : O(M) −→ O(U).

5. Auxiliary Results. Let M be a d-dimensional submanifold of a Stein
manifold X.

Definition 5.1. Let f ∈ O(X,Ck). We say that a set P ⊂ P0 := M ∩
f−1(Dk) is an analytic polyhedron in M (P ∈ P(M,k, f)) iff P ⊂⊂ M and P
is the union of a family of connected components of P0.

We say that an analytic polyhedron P ∈ P(M,k, f) is special if d = k.

Theorem 5.2 (cf. [2]). Assume that P ∈ P(M,k, f), S ⊂ P , T ⊂ f−1(Dk)
are compact. Then there exists a special analytic polyhedron Q ∈ P(M,d, g)
such that S ⊂ Q ⊂ P and g(T ) ⊂ Dd.

Theorem 5.3 (cf. [2]). Assume that X is Stein, T ⊂ X is compact,

and U is an open neighborhood of T such that (U \ T ) ∩ T̂O(X) = ∅. Let
A := clC(T )(O(U)|T ). Then Spec(A) = T , i.e. every non-zero character (ho-
momorphism) ξ : A −→ C is an evaluation (i.e. there exists an x0 ∈ T such
that ξ(f) = f(x0) for every f ∈ A).

Consequently (cf. [1], Chapter I, Section II, Corollary 10), if w1, . . . , wm ∈
A have no common zeros on T , then there exist c1, . . . , cm ∈ A such that
c1w1 + · · ·+ cmwm = 1.

Theorem 5.4 (cf. [2]; see also [4], Chapter 7). Assume that P ∈ P(M,d, f)

is special. Then there exist a k ∈ N and a holomorphic mapping ω : Dd −→
←→
P k

such that:

• f−1(z) ∩ P = {ω(z)}, z ∈ Dd,
• #{ω(z)} = k for z ∈ Dd \ Σ′, where Σ′ is a proper analytic set.

Proposition 5.5. Let ω, f , X,P be as above. Additionally assume that

f(U) ⊂ Dd, where U ⊂ X is a domain and U∩P 6= ∅. Then ω◦f |U ∈ O(U,
←→
P k).
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Proof. By Proposition 3.2, it is sufficient to show that U \Uω◦f|U is thin.

Recall (Theorem 5.4) that (Dd)ω = Dd \Σ′, where Σ′ ⊂ Dd is a proper analytic
set. Since U is connected and U ∩ P 6= ∅, we conclude that f−1(Σ′) ∩ U is a
proper analytic set. It remains to observe that U \ Uω◦f ⊂ f−1(Σ′) ∩ U .

Proposition 5.6. Let ω, f , X,P be as above. Then ω ◦ f |P ∈ O(P,
←→
P k).

Proof. We apply Proposition 5.5 to each connected component of P .

6. Proof of Theorem 4.4. We point out that the main idea of the proof
is due to E. Bishop ([2]).

Proof. Since X is Stein and U is relative compact, we can find an analytic

polyhedron Q ∈ P(X,n, f̃) such that U ⊂ Q. Thus Q ∩ M ∈ P(M,n, f̃)
and by Theorem 5.2 there exists an f ∈ O(X,Cd) such that f(U) ⊂ Dd and
U ∩M ⊂ P for some special polyhedron P ∈ P(M,d, f). Let r0 ∈ (0, 1) be

such that f(U) ⊂ Dd(r0). Fix r0 < r < r1 < 1 and define T := P ∩f−1(Dd(r)).
Note that T is compact. One can easily prove that (P \ T ) ∩ T̂O(M) = ∅.

Take a p ∈ T . Since X is Stein, there exists an h ∈ O(X,Cd) giving local
coordinates on M at p. One can prove that there exists an η ∈ C, 0 < |η| << 1
such that:

• the mapping g := f + ηh gives local coordinates on M at p,
• g(U) ⊂ Dd(r0),
• the set R1 := P ∩ g−1(Dd(r1)) is a special analytic polyhedron in M ,

and
• U ∩M ⊂ T ⊂ R1 ⊂ P.

In particular, by Theorem 5.4, there exist a k ∈ N and holomorphic mapping

ω : Dd(r1) −→
←→
Rk1 such that:

• g−1(z) ∩R1 = {ω(z)}, z ∈ Dd(r1),
• #{ω(z)} = k for z ∈ Dd(r1) \H, where H is an analytic set.

For x ∈ V1 := g−1(Dd(r1)), let ω(g(x)) = [x1 :µ1, . . . , xs :µs], where µ1 + · · ·+
µs = k. To simplify notations we assume that x1 = x for x ∈ R1. Observe
that p = p1 must be of multiplicity 1 (µ1 = 1). Since X is Stein, there exists
a w ∈ O(X) such that w(p1) 6= w(pj), j = 2, . . . , k. We define

w̃(x) :=

k∑
j=1

∏
µ∈{1,...,k}

µ 6=j

(w(x)− w(xµ)), x ∈ R1.

We have

w̃(x) =
k−1∑
ν=0

←→
Sν (ω(g(x)))wν(x), x ∈ R1,
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where Sν : Rk1 −→ C is given by following formulas

Sk−1(t) := k,

Sν(t) := (−1)k−1−ν
k∑
j=1

σk−1−ν(w(t1), . . . , w(tj−1), w(tj+1), . . . , w(tk)),

ν = 0, . . . , k − 2, t = (t1, . . . , tk) ∈ Rk1 ,

and σ1, . . . , σk−1 : Ck−1 −→ C are standard symmetric polynomials. Observe
that each function Sν : Rk1 −→ C is holomorphic and symmetric. Thus, by
Proposition 3.3 and Proposition 5.6, w̃ ∈ O(R1).

Obviously, w̃(p) 6= 0. Notice that in fact all the above objects depend on p.

Consequently, we will write R
(p)
1 , k(p), x

(p)
j , w(p), w̃(p), x

(p)
j , g(p), ω(p). Since T is

compact and w̃(p)(p) 6= 0, there exists a finite number of points p1, . . . , pm ∈ T
such that the functions w̃(p1), . . . , w̃(pm) have no common zeros on T . Now,

we apply Theorem 5.3 with (X,T, U) := (M,T,W ), where W :=
⋂m
s=1R

(ps)
1 .

Consequently, we get c1, . . . , cm ∈ A ⊂ O(intMT ) such that c1w̃
(p1) + · · · +

cmw̃
(pm) = 1 on T .

Put ks := k(ps), ωs := ω(ps), gs := g(ps), xs,j := x
(ps)
j , ws := w(ps), s =

1, . . . ,m. Let x0 ∈ Uωs◦gs|U . Therefore, by Proposition 5.5, ωs ◦ gs|U = F̃s,1 ⊕
· · · ⊕ F̃s,ks on As, where As is a neighborhood of x0, s = 1, . . . ,m. Set

Fs,j(x) := xs,j ,

Gs,j(x) := cs(xs,j)
∏

µ∈{1,...,ks}
µ6=j

(ws(x)− ws(xs,µ)),

G̃s,j(x) := cs(F̃s,j(x))
∏

µ∈{1,...,ks}
µ 6=j

(ws(x)− ws(F̃s,µ(x)), x ∈ As,

Ĝs,j(x, (y1, . . . , yks)) := cs(yj)
∏

µ∈{1,...,ks}
µ6=j

(ws(x)− ws(yµ)).

We define the projections

∆s := (Fs,1, Gs,1)⊕ · · · ⊕ (Fs,ks , Gs,ks) on U, s = 1, . . . ,m.

We see that

(Fs,1, Gs,1)⊕ · · · ⊕ (Fs,ks , Gs,ks) = (F̃s,1, G̃s,1)⊕ · · · ⊕ (F̃s,ks , G̃s,ks) on As,

s = 1, . . . ,m. Therefore, we get ∆s ∈ O(Uωs◦gs|U ,
←−−−−−−→
(M × C)ks).

It remains to check that ∆s, s = 1, . . . ,m, are continuous on U . For x0 ∈
U \Uωs◦gs|U , let (xn)∞n=1 ⊂ U be an arbitrary sequence such that lim

n→∞
xn = x0.
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We obtain ωs ◦ gs|U (xn) = [y1
n, . . . y

ks
n ]. Put yn := (y1

n, . . . , y
ks
n ). Obviously,

we may assume that limn→∞ y
j
n = yj0 for j = 1, . . . , ks, where ωs ◦ gs|U (x0) =

[y1
0, . . . , y

ks
0 ]. We have ∆s(xn) = [(y1

n, Ĝs,1(xn, yn)), . . . , (yksn , Ĝs,ks(xn, yn)]−→
[(y1

0, Ĝs1(x0, y0)), . . . , (yks0 , Ĝs,ks(x0, y0))] = ∆s(x0). Thus ∆s is continuous on
U for any s = 1, . . . ,m.

Note that, Uωs◦gs|U ⊂ U∆s and thus ∆s ∈ O(U,
←−−−−−−→
(M × C)ks), s = 1, . . . , k.

Hence Π := (∆s)
m
s=1 is a system of holomorphic projections. Indeed, we ob-

serve that Ξ(x,∆s) = cs(x)w̃(ps)(x) for x ∈ U ∩ M , s = 1, . . . ,m, hence∑m
s=1 Ξ(x,∆s) = 1.
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