
S C H E D A E I N F O R M A T I C A E

MCCLIX VOLUME 11 2002

The Object Oriented Platform for the Process
Migration in the Heterogeneous Networks

Piotr Uhruski, Zdzislaw Onderka
Institute of Computer Science, Jagiellonian University,

Nawojki 11, 30-072 Krakow, Poland

e-mail: uhruski, onderka@ii.uj.edu.pl

Abstract. This paper describes the object oriented approach to the
design of a task migration platform in a heterogeneous computer net-
work. The load sharing and load balancing problems are discussed. The
load sharing problem consisting of three parts: an information policy, a
location policy and a transfer policy was presented [3]. The migration
Software Development Kit (SDK) for an application, which should meet
the well defined requirements, is defined. The above mentioned SDK
was applied to the example of multiplying the given vector by the given
matrix, which is a frequent subproblem in the CAE calculations.

Keywords: Process migration, heterogeneous network, distributed ap-
plication, object oriented design and programming, Java, CORBA, load
sharing, load balancing.

1. Introduction

The networks of the heterogeneous workstations become a standard com-
puting environment for calculations of the Grand Challenge Problems [14].
For example, it could be any CAE (Computer Aided Engineering) application
for the large scale problem [16, 15]. The real time of the sequential execution
of such computation is very long and it is often enlarged by the frequent
disk transmitions when the RAM memory is not large enough to store all
the computation data. Such problem occurs when the computer RAM is

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Jagiellonian Univeristy Repository

https://core.ac.uk/display/288120895?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

100

too small at all, but also when other applications, requiring a huge memory
for their own calculations, are executed at the same time on the same ma-
chine. Moreover, the users require sometimes the peek of a computing power
on a single workstation. The computing power of the computer network is
under-utilized most of the time [1, 2]. A consequence of the above mentioned
features is utilization of the dynamic load sharing mechanisms i.e. if there
are computers with a very low load and free resources (like a big amount of
the RAM memory), they can be used to relieve over-utilized workstations. It
could be achieved by the preemptive process migration [3, 4]. In such migra-
tion the execution of the task is suspended on the current machine and then
resumed on the other one [4].

In this paper the object oriented (OO) approach to the preemptive process
migration is presented. The migrated process is an object, whose execution
could be stopped, serialized on the current machine and then deserialized on
the other one and resumed there. Additionally, the OO techniques enable to
define the base classes, which can be used to define the inherited classes of
objects for the user-specific calculations. These base classes are created in
the form of the Software Development Kit defined for the presented migration
platform.

2. Process migration facility

Processes migration has been implemented in various systems to gain
more computing power from a workstations network understand as a virtual
machine. The paper [5] summarizes these implementations and gives a good
background to processes migration problems. The mentioned paper divides
all migration efforts into the following groups:

• Processes migration over UNIX, which bases on an operating system
acting as a common interface for any hardware. The Freedman and
Condor systems are mentioned here as examples.

• Different process migration platforms, working both in homogeneous
(Charlotte, Accent, RHODOS) and heterogeneous (Amoeba, Locus,
MOSIX, Sprite) networks. The presented systems were created as ex-
perimental systems to investigate such issues as a transparent access,
failure notification, resources protection, load distribution strategies
and fault tolerance.

• Migration facilities in systems based on the micro−kernel paradigm,
such as Mach and Chorus. Because of the kernel low complexity, the
process must incorporate many data within itself, what makes it easier
to migrate.

101

• Systems providing object migration are the last group. In addition
to the systems presented in the paper (e.g., Olsen, Chorus/COOL,
Emerald, SOS) it is worth to mention new systems utilizing the mobile
agents paradigm. The object migration focuses on abstract entities −
objects, with different levels of granularity. Such migration problems
include defining (and leading an object to) a persistent state before
migration and migrating complex objects like linked lists.

The mentioned paper [5] presents also very extensive bibliography for all
mentioned systems.

3. Migration object model

The presented migration platform design is focused on easy-defined mi-
gratable tasks that should simplify the platform usage and allow users to
incorporate migratable tasks in their applications. We have assumed that
many task functions are common for any task that can be created by the
user, so a base class for a task has been proposed. This base class imple-
ments the main properties of the tasks that are described in the following
sections, so the custom task developer can focus only on task-specific details.

Because of a task easy-definition requirement we have decided to use an
object oriented programming techniques. Every custom task class is inherited
from the task base class, so each task interacts in the same way with its
environment (via the task base class), only internal information processing
is different. Actually, we have created a task framework where the custom
task internal processing is encapsulated by the base class.

On the other side, a simple task definition results in task class implemen-
tation complexity. The task uses high-level calls, which must be translated
into low-level machine calls. For example, consider network communication,
with OSI/ISO layers [11]. Usage of the communication protocol from the
OSI/ISO application layer is easier than using it from the OSI/ISO network
layer, but network layer calls have only to go through 3 OSI/ISO layers to
reach the destination host. The same efficiency decrease is natural for all
object oriented applications.

To develop the OO migration platform, Java programming language and
CORBA communication framework have been used.

3.1. Java Programming Language

Among many languages, Java gives us the possibility to use the same,
compiled code, on any computers in a heterogeneous network. Java classes

102

are compiled into machine independent byte-code, which is interpreted by a
machine and operating system dependent Java Virtual Machine (JVM) [12].

3.2. CORBA framework

To migrate tasks in a heterogeneous network, we need to provide a trans-
parent network communication protocol for computation servers. The second
requirement is the protocol specification that gives servers the mechanism to
find each others in the network. These two requirements are satisfied by the
CORBA framework, as described in [13].

In addition, using the CORBA Naming Service, the task executing on
a given host can be exposed to any application from a different machine
in the network. This feature enables the developer to create a migratable
or non-migratable (dedicated to a certain server machine architecture) task
performing specialized computations that resides on one machine and receives
requests from foreign applications. The described feature can improve the
presented migration platform, but it is not yet implemented.

4. Migration algorithm

The migration algorithm must be based on a well-defined load sharing
policy. As defined in [1] the load sharing algorithm is based on three main
parts: an information policy, a transfer policy and a location policy. The
information policy specifies, which information is used while deciding about
the process migration and how this information is available in the system.
The transfer policy defines the need to migrate for each process and the
location policy defines target a migration host for each task.

4.1. The information policy

In our work, we wanted not only to monitor the current state of the
machine loads, but also to get the certain machines hardware parameters
and to calculate the machine load forecast. Therefore we have decided to
create a separate system described in [9]. Its main functions are:

• Monitoring the current machines load in the network.

• Predicting the machines load in different time horizons.

103

• Collecting information about machine various hardware parameters in-
cluding the free and total amount of the machine RAM memory, free
and total amount of the total machine memory (including virtual mem-
ory) and the machine type (e.g., parallel, vector).

The separate agent system mentioned above is available through the
CORBA services on the examined machines, so it can be accessible to any
foreign application.

Using previously listed information provided by that agent system, a mi-
gration platform can be widely used in distributed CAE tasks, which require
to be well-fitted to available machines. As described in [6, 15], the CAE
mesh generator can create many small tasks using given information about
the available machines RAM memory. Finally we get well-fitted tasks that
can be allocated and computed without exceeding machines hardware limi-
tations (RAM). Such a solution is possible thanks to the presented problem
fine granularity. Smaller tasks can also be distributed more efficiently in the
network.

4.2. The transfer policy

As defined in [1], the request of the task to migrate is defined by the
transfer policy. The presented platform provides three decision ways. The
first is a migration-on-demand, which is the simplest one. We gave the pos-
sibility to migrate any running task to a specified machine. The migration
server administrator is able to select a task from its user interface, enter a
destination host address and then request selected tasks migration. We as-
sume, that a destination host cannot refuse received tasks, but it might not
resume them immediately. It can forward new tasks to any other hosts that
it is connected with. Therefore, this transfer policy can be used to solve any
potential task migration deadlocks, resulting from task-decided (see below)
migration with unreachable requirements.

The server implements the second server-decided migration algorithm.
This transfer policy is similar to the one described in [1]. It includes two
load thresholds, Tlow and Thigh, that are used by the server internal migration
decision algorithm. This algorithm shall work as a local server load guard.
If the current server load is high or a high load is predicted, the algorithm
decides that the server is overloaded (system resources are fully used) and
requests migration of the local tasks to another computation servers. On the
other hand, the migration server uses the decision algorithm, if it is asked by
another server to receive new tasks. If the current load is low or a low load
is predicted in the future, a new task can be accepted and resumed locally.
Here is the decision algorithm skeleton sketch for the current machine load
case:

104

1. The current machine load < Tlow. The server is available. It accepts
tasks.

2. Tlow <= the current machine load < Thigh. The server does not accept
tasks and it does not request migration too. It is in normal load state.

3. Thigh <= the current machine load. The server requests migration, it
is overloaded.

We assume that Thigh must be greater than Tlow + 1 to avoid a boomerang
effect [1]. Each task may implement the task-decided transfer policy. Such
task has the access to the machine load information service through its execu-
tion environment on the server. It might decide that it needs to be migrated
and sends request to the server to initialize migration. The task can specify
its requirements for the destination machine, which include the maximum
machine load and free memory.

The task-decided policy can be widely used in CAE tasks, where the
developer knows the requirements for the created task (memory and CPU
time requirements). For example the task inverting matrix might be started
on any server and wait for matrix data. When it receives the data and the
current machine free memory prohibits inversion, the agent requests to be
migrated into a less memory-loaded machine.

The task-decided transfer policy may be implemented by every agent, but
it uses interfaces exposed by a tasks common base class, which links with the
server environment interfaces to provide an access to the server machine load
system. This is a good example how OO design simplifies an agent structure
and emphasizes an agent encapsulation without loosing agent universality.

4.3. The location policy

When the decision about what should be migrated is taken, we need to
decide where to migrate it. This step might be used to improve load balanc-
ing at any time in the network. Each server computer must be connected
manually by the administrator with all servers that it will migrate tasks to
(sink servers). This configuration step can be done by the administrator us-
ing a server user interface or by a server configuration script, which is read
at the server startup. The list of sink servers can be modified by the admin-
istrator at the server runtime, so the administrator can dynamically adjust
it.

The process of task migration must be designed to avoid any potential
deadlocks (specified migration requirements result in lack of available desti-
nation hosts) and omit migration to a server, which load has changed during
single task migration. Therefore, migration is represented as a logical trans-
action between two server machines. See [10] for more details on transactions
topics. In the designed platform, when migration is requested, a new object

105

representing a migration transaction is created. It receives the task to migrate
and the list of migration sink servers. Migration is done using a two-phase
commit protocol, further described in [10]. Migration transaction stages are
organized as follows:

1. All potential migration sinks are asked, whether they can accept the
migrated task with its requirements.

2. From all sinks, one that matches all requirements is selected. If more
than one sink matches all requirements, the one with the smallest ma-
chine load is selected by the transaction supervisor object. If there is
no machine that matches the request and migration was server-decided,
the server reports this to the administrator, who decides whether the
task must be suspended (the machine load system provides a load prog-
nosis) or migrated manually, as described in Section 4.2.

If migration is task-decided, the task is responsible for the decision
whether migration shall proceed or not. First of all, the task can lower
its destination machine requirements and request migration again. This
gives the ability to dynamically adjust the task behaviour to migration
network load status. The task may check a machine load forecast, send
message to its owner or even end its execution. The task can also report
its state to the administrator, who decides about the task execution as
in the previous server-decided case.

3. Selected migration sink is asked once again for migration. This ac-
knowledgment locks a sink host so it cannot accept migration from any
other hosts until this certain migration has been finished. This guar-
antees that the migrated agent will execute in the environment that it
asked for.

4. The task is serialized on the source host and moved to the sink host.
All messages from the tasks in-coming queue are moved to the sink
host.

5. The sink host resumes the task and notifies the source host when the
task is successfully resumed. The transaction object notifies the task
owner (see Section 5.2) about a new task location.

6. The transaction object is de-allocated and all migration resources are
freed.

106

5. Migration platform

5.1. Task specification

5.1.1. Task execution

Every task implements some logic that the user wants to execute. It might
be computation, messages receiving/posting or any other activity. Task ex-
pects two execution “ways” from its environment.

• The task expects from its environment that it will be executed in a
separate thread, to perform it’s internal computation. This kind of
a task activity can be called an active loop. For example, the simple
CAE task body may implement multiplication of the given matrix by
the given vector.

• Each task, after performing some computations in the active loop, might
want to send a message to its creator or wait for a message from anyone.
The task environment shall contain two message queues: incoming and
outgoing. Message posting is an asynchronous operation, it does not
influence a task execution thread, but the message receiving process
is available in two forms. The task, while it is executed in its own
thread can suspend itself (blocking message check) and wait for any
new messages, or it can wait actively, asking for any new message (non-
blocking message check). The message queues mechanism allows to
developer to create a new kind of task that works as service for any
potential client application. For example, it can be a task multiplying
an array by a vector, which receives computation input data from a
client. It waits suspended for the new data and when it receives it,
the computation is performed. After results are returned (as a message
from this task), the task suspends its execution again, waiting for a
new data. This feature can be joined with CORBA services and as a
result we got a distributed network of easy-accessed services.

These two execution ways can be implemented using a thread paradigm.
Operating system defines a thread as a part of a machine process that exe-
cutes within the same memory area and processor time as the whole process.
One process can contain many threads and each of them receives part of
process execution time. In many languages as C++ or Java, a thread body
is defined as a loop. If this loop exits, the thread exits. First implementation
of our system lets the user to create single threaded tasks. Such a task can
be serialized and send to another server. Further implementations may also
consider multi-threaded agents. Remember, that every thread is represented
by a single object, so we are still serializing single objects. Only a migration
server must be modified to launch many threads for one agent.

107

5.1.2. Task data

We assume that each task requires some data to work with. In our imple-
mentation, this data must be incorporated into a task object as an attribute,
so it will be serialized with the task. One important Java feature is that seri-
alization operates not only on a single object, but also on an object’s graph.
A task body can be divided into separate objects, performing different works
and containing different data. This allows the task developer to design a
task better than using only one object. Single objects can implement task
execution stages with their own data structures.

Further improvements will introduce distributed data descriptors, which
might work as distributed handles to the task data. This will allow the task
to migrate without moving large portions of data.

5.1.3. Task environment

Each task is executed in similar the environment, provided by the migra-
tion server that executes the task. To make a task run or stop, that task
has to implement some well known interface, that the environment can use
to operate on every task. As we have defined in previous chapters, the pre-
sented migration platform provides the task framework that the developer
uses to create a custom task. The framework consists of a task base class,
that implements interface used by the execution environment.

5.1.4. Task migration details

In the migration solution presented here, the task class is implemented
using Java language. Java provides a special interface Runnable that defines
an interface of a thread object. It contains only one method, run(), which is
used to define the task execution body. The migration sever treats tasks as
any other threads defined using Java language.

• Task Serialization

To perform the task migration, it must be serialized into some data
stream (string object here) and then it can be migrated. Serialization
support in Java language allows a whole object serialization, with all
attributes (if these attributes types are serializable too). To make a
class serializable, it must only implement the Java Serializable interface.
Of course Java serialization supports objects deserialization too.

108

• Task Pause/Resume

The task might not always be ready to pause, therefore the task devel-
oper has to define points in the task body where the task is ready to
be stopped and migrated. The execution environment asks the task to
stop, and when the task execution reaches the migration-ready point,
then the task is serialized and migrated. The task body can check
the current system environment and if there is not enough resources
to proceed with task execution, the task might request migration. The
task resume process requires then one more task element, an execution
stage. The following example shows how the execution stage works.
Lets consider a task with the following internal structure:

(1) Wait for data >

(2) Perfom computation >

(3) Send Results >

(4) End

The task can migrate after the end of each stage. But if the task were
migrated after it finishes stage (1), it must be resumed not from the
beginning, but from the begining of phase (2). Therefore at the end
of stage (1), the task stores internal information that stage (2) is the
current one and checks if it was requested to stop.

The task can also define its migration-ready points within stage process-
ing. If the presented task stage (2) would multiply the received array
and vector, it can migrate after each matrix row is multiplied by the
vector. The task must store multiplying loop indices internally as at-
tributes and after task resume, start computation from the stored in-
dices values.

5.2. Task SDK

As it was presented above, OO techniques enabled us to separate task
internal logic (which is different for all tasks classes) from basic task opera-
tions. The Migration Software Development Kit (SDK) shall contain a task
base class: TaskBase, which provides all base functionalities that every task
shall contain including the task internal structure and external task environ-
ment interfaces. This class will be recognized by the migration server and
used to perform all task operations. SDK shall also give the user an easy
access to the migration servers. This is accomplished by a TaskController
class, which serves as a gateway for all agents. To send a task to the server,
the user application must complete the following steps:

1. Create an object of a TaskController type, giving a migration host ad-
dress as constructor parameter. The task controller links itself with the

109

specified host by obtaining reference to the CORBA migration service
registered on the host.

2. Create a new instance of a task, prepare it to execution and pass it
to the task controller. The task controller assigns that task a global
unique ID (composed of a machine unique ID string from Java and
a machine IP number) and forwards the task to the migration server
where it is executed.

3. When the task is finished, the task controller receives task results, and
passes it to the user code. Results can be received in the form of a
message from the task or as the task object with internal result data.

Additionally, task SDK is also responsible for defining the task execution
context, in which a task is executed on the server. This execution context
includes in-coming and out-going message queues, a machine load system
interface and interface of the server migration manager allowing the task to
request task-decided migration.

5.2.1. Sample task

The Appendix A presents the code of a sample task multiplying the given
vector by the given matrix. The introduced skeleton code presents the mes-
sage queues and execution stages implemented in the platform. The feature
ofthe message queue that blocks a caller thread execution until a new mes-
sage arrives is used by the task to wait for computation data − the matrix
and vector.

The sample task class depicts how the task computation is divided into
two main stages: an initialization and main computing loop. When a task
object is created by the platform server, first its initComputing() routine
is called, so the task can initialize internal data structures. This routine is
called only once in task life, by the first platform server that enacts the task
execution.

The task main computations are embedded in the run() method. This
routine is called each time the task is resumed after migration (or hibernation
due to the resources lack), thus it requires the previously presented execution
stages − see Section 5.1.4.

6. Migration server

The server works as the execution environment of migratable agents. It
does not need to know any task internal details, since it uses TaskBase in-

110

terfaces as defined in SDK. The server can be decomposed into three main
parts:

• Tasks Executor
This part manages all task threads. It is responsible for serializing/de-
serializing tasks and running them. Each task is wrapped into a con-
tainer, which is a TaskHolder object. The holder provides the message
queues and the task environment interfaces. It is used by the migration
transaction object to hold incoming messages, which are forwarded to
a new task server after the migration is successful.

• Machine Load Monitor System
This subsystem works as a wrapper for the load monitoring system de-
scribed in [9]. The server subsystem exposes load-monitoring interfaces
to both the server migration manager (which performs server-decided
migration) and tasks, which perform task-decided migration.

• Migration Manager
It provides migration transaction objects and the list of available hosts,
see Section 4.2 for details.

7. Experiences

The migration platform presented above has been implemented using Java
JDK1.3 SE, with Java ORB included with this software bundle. It has been
tested on machines working on Linux RedHat 7.0 and Windows 2000. Two
types of agents were implemented:

7.1. Array by vector multiplication

The task was similar to the agent presented in the “Task SDK” section.
After execution it waits for array and vector messages. When both data
structures are received, the agent checks the current machine load state and
depending on it migration is requested or not. After computation is done,
the task is destroyed.

7.2. SBS PCG algorithm

This implementation is based on the SBS PCG implementation presented
in [8]. A new application, playing the role of the SBS master process, was

111

created in Java. It uses the Task SDK to create the slave tasks objects and
send them to the computation server. The SBS slave process is a migratable
task created using the Task SDK.

7.3. Experiences summary

Two presented living applications that were created using the platform
let us make some general observations regarding application effectiveness and
maintainability. First, the SBS PCG algorithm implemented with the plat-
form works about 4–5 times slower than C language. This time estimations
were done in the testing environment with those two applications running
sequentially with a rough total computation time estimation. This putsthe
platform based solution far behind the native application. On the other
side, it took only few days to implement the SBC PCG algorithm using the
platform SDK.

As can be seen from the sample task code in the previous chapters,
the platform provides all required communication, transaction and migra-
tion mechanisms that have to be used by each application. This makes the
platform based solution far more flexible and maintainable than the native
solution, which is created once and can not be easily scaled up.

The platform decreases single task execution time, but in total, it speeds
up a whole application development process. What’s more, thanks to it dif-
ferent scheduling politics, an application can be scaled up without rewriting
core parts. We have here the living sample of a “write once – use many
times” OO programming law.

8. Improvements and future works

This section summarizes all improvements that are mentioned in the ar-
ticle.

• The tasks themselves should be available as CORBA services – Sections
3.2 and 5.1.1.

• The task data shall be separated from the task body, introduce distrib-
uted data descriptors – Section 5.1.2.

• Allow the developer to create migratable multi-threaded tasks – Section
5.1.1.

Additionally, the presented task will be in future used as a base platform for
a CAD system, partially described in [6, 15, 16].

112

9. References

[1] Bernard G., Simatic M.; A Decentralized and Efficient Algorithm for Load
Sharing in Network Workstations, EurOpen ’91 Conference Materials, Tromso,
Norway 1991.

[2] Theimer M.M., Lantz K.A.; Finding Idle Machines in a Workstation-Based
Distributed System, IEEE Trans. on Software Engineering, Vol 15(11), Nov
1989.

[3] Bernard G., Steve D., Simatic M.; A Survey of Load Sharing in Networks of
Workstations, Distributed Systems Engineering, pp. 75–86, 1993.

[4] Alard E., Bernard G.; Preemptive Process Migration in Networks of Unix
Workstations, Proceedings of the 7th International Symposium on Computer

Science and Information Sciences, Antalaya, Turkey 1992.

[5] Nuttall M.; A brief survey of systems providing process or object migration
facilities, Operating Systems Review, Vol.(24), pp. 64−80, 1994.

[6] Schaefer R., Toporkiewicz W., Grochowski M.; Meshless Partitioning for Par-
allel PDE Solution, Proceedings of the Third International Conference On

Parallel Processing and Mathematics, Kazimierz Dolny, Poland, 1999.

[7] Myśliwiec G., Sipowicz J.; Optimal Management of a Distributed Linear
Solver, Proc. of XIII Intern. Conf. on Computer Methods in Mechanics,
Poznań, May 1997.

[8] Myśliwiec G., Sipowicz J.; Distributed iterative SBS-type linear solvers, Master
Thesis, Jagiellonian University, Institute of Computer Science, Kraków 1997.

[9] Lepiarz M., Onderka Z.; Agent System for Load Monitoring of The Het-
erogenous Computer Network, Accepted to PPAM’2001 conference, Na lȩczów,
Poland, 2001.

[10] Tanenbaum A.S.; Distributed Operating Systems, Prentice-Hall International,
1995.

[11] Stevens W.R.; Unix Network Programming, Prentice-Hall Inc., 1990.

[12] Eckel B.; Thinking In Java. Second Edition, Prentice-Hall Inc., 2000.

[13] Siegel J.; CORBA 3: Fundamentals And Programming, Second Edition, OMG
Press, 2000.

[14] Agarwal R.K.; Parallel Computers and Large Problems in Industry, Proc.

Computational Methods in Applied Sciences, Elsevier Science Publisher, 1992.

[15] Onderka Z.; Stochastic Control of the Distributed Scalable Applications. Ap-

plication in the CAE Technology, Ph.D. Thesis, Technical University AGH,
Department of Computer Science, Kraków, Poland, 1997.

113

[16] Onderka Z.; Schaefer R.; Markov Chain Based Management of Large Scale
Distributed Computations of Earthen Dam Leakages, Lecture Notes in Com-

puter Science, No 1215, pp. 49–64, Springer-Verlag, 1997.

Received May 14, 2002

10. Appendix A

The code of a sample task class is presented. It waits for a matrix and a
vector and then multiplies them.

import Migration.SDK.*;

public class ArrayMulVectorTask extends TaskBase {
//
// Internal task data structures
private double [][] arrayValues;
private double [] vectorValues;
private double [] resultValues;
private int mulRowIndex;
private int mulColIndex;

public ArrayMulVectorTask(double [][] array, double [] vector) {
//
// Allocate internal data structures and copy
// constructor arguments to internal attributes
...

}
//
// TaskBase overloads
public void initComputing() {

this.mulRowIndex = 0;
this.mulColIndex = 0;
super.initComputing();

}
//
// Task body
public void run() {

114

switch (this.runStage) {
case 1:

//
// First we wait for messages.
// These are blocking calls
TaskMsg msg = super.getTaskExecutionContext().

getInMsgQueue().
getMessageBlock();

this.arrayValues = decodeArrayFromMsg(msg);
//
// The same with vector values
...
this.markStage(2); break;
case 2:
//
// Compute
while (this.mulRowIndex ¡ this.arrayValues.length)
{

this.resultValues[this.mulRowIndex] = 0;
this.mulColIndex = 0;
while (this.mulColIndex ¡ his.arrayValues[0].length) {

this.resultValues[this.mulRowIndex]+=
this.arrayValues[this.mulRowIndex] [this.mulColIndex]*
this.vectorValues[this.mulColIndex];

this.mulColIndex ++;
if (pauseRequested() == true) {

return;
}

}
this.mulRowIndex ++;
if (pauseRequested() == true) {

return;
}

}
this.markTaskAsFinished();

}
}

