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A PROOF OF PALAMODOV’S THEOREM

by Arkadiusz P loski

Abstract. We give a simple proof based on the Weierstrass Preparation
Theorem of the following result due to V. P. Palamodov: if f1, . . . , fn is a
system of parameters of the formal power series ring S = K[[x1, . . . , xn]]
then S is a finitely generated free module over R = K[[f1, . . . , fn]].

1. Introduction. Let K[[~x]] be the ring of formal power series in n vari-
ables ~x = (x1, . . . , xn) with coefficients in a field K of arbitrary characteristic.
For any sequence ~f = (f1, . . . , fn) ∈ K[[~x]]n of power series without constant
term we put K[[~f ]] =

{
g ◦ ~f = g(f1, . . . , fn) : g ∈ K[[~y]], ~y = (y1, . . . , yn)

}
.

Then K[[~f ]] is a subring of K[[~x]].
A sequence ~f = (f1, . . . , fn) ∈ K[[~x]]n of power series without constant

term is said to be a system of parameters (s.o.p.) if the ideal I(~f) =
(f1, . . . , fn)K[[~x]] generated by (f1, . . . , fn) in K[[~x]] is of finite codimension.
We call µ = dimK K[[~x]]/I(~f) the multiplicity of ~f . Let us recall

Theorem 1.1 (The Generalized Weierstrass Preparation Theorem). Let
~f = (f1, . . . , fn) ∈ K[[~x]]n be a s.o.p. and let e0, e1, . . . , eµ−1 be a basis mod
I(~f) i.e. a sequence of power series such that the images of e0, e1, . . . , eµ−1

under the natural epimorphism K[[~x]]→ K[[~x]]/I(~f) form a K-linear basis of
K[[~x]]/I(~f). Then for every power series g ∈ K[[~x]] there exist power series
g0, g1, . . . , gµ−1 ∈ K[[~y]] such that

g =
µ−1∑
i=0

(gi ◦ ~f)ei.

The above version of the Weierstrass Preparation Theorem appeared first
in Cartan’s Seminar [5] in the following form: ‘an algebra homomorphism of
formal (analytic) algebras is finite if and only if it is quasi-finite.’
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It was popularised by Malgrange in his famous monograph [7] (see also [4]).
The formulation cited above is due to Arnold (see [2]). The case of formal
series considered by us is easy to prove: we may write for any g ∈ K[[~x]]:
g =

∑µ−1
i=0 ciei +

∑n
j=1 g

(j)fj with ci ∈ K. Writing the same formula for g(j)

and repeating the procedure we get the representation of g stated in Theo-
rem 1.1 (see [2], Chapter 1 for more details). The Division Theorem and the
Weierstrass Preparation Theorem are direct consequences of (1.1).

The Palamodov’s Theorem [10] (§ 3, Theorem 2) tells us that the coeffi-
cients gi = gi(~y), i = 0, 1, . . . , µ − 1 in the Generalized Preparation Theorem
are uniquely determined by g:

Theorem 1.2 (Palamodov’s Theorem). Let ~f = (f1, . . . , fn) ∈ K[[~x]]n be
a s.o.p. and let e0, e1, . . . , eµ−1 be a basis mod I(~f). Then we have for any
sequence of power series g0, g1, . . . , gµ−1 ∈ K[[~y]]:

µ−1∑
i=0

(gi ◦ ~f)ei = 0 ⇒ gi = 0 in K[[~y]] for i = 0, 1, . . . , µ− 1.

The aim of this note is to give a simple proof of Theorem 1.2 based on
the Weierstrass Preparation Theorem. We will assume that the field K is
infinite.

Our proof is given in Section 5. The original Palamodov’s Theorem uses
homological algebra and provides a Tor-criterion for finite modules over rings
of convergent power series with coefficients in C (see [10] and Orlik’s survey
[9] for different proofs of Palamodov’s result).

Note that Theorems 1.1 and 1.2 imply

Theorem 1.3. Let ~f be a s.o.p. with multiplicity µ = dimK K[[~x]]/I(~f).
Then K[[~x]] is a finitely generated free module over K[[~f ]] of rank µ.

In [8] (Appendix B, Problem 3) Milnor indicates that Theorem 1.3 for
K = C can be deduced from the coherence theorem for direct images under
finite maps (a particular case of Grauert’s Theorem [3]).

Let (K[[~x]] : K[[~f ]]) denote the degree of the field of fractions of K[[~x]]
over the field of fractions of K[[~f ]]. A direct corollary of (1.3) is

Theorem 1.4. If ~f is a s.o.p. with multiplicity µ then µ = (K[[~x]] :
K[[~f ]]).

Theorem 1.4 implies that the algebraic multiplicity is equal to the covering
(geometric) multiplicity (see [9], p. 419, Theorem 5.13 and [6], pp. 258–259).
Note that a direct proof of this fact due to Kouchnirenko is outlined in [2].
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2. Parameters in power series rings. In this section we prove some
properties of parameters that we need in the proof of Palamodov’s Theorem.

Lemma 2.1. Let ~f = (f1, . . . , fn) ∈ K[[~x]]n be a sequence of power series
without constant term. Then the following three conditions are equivalent

(i) ~f is a s.o.p. in K[[~x]],
(ii) K[[~x]] is a finite K[[~f ]]-module,
(iii) K[[~x]] is integral over K[[~f ]].

Proof. Implication (i) ⇒ (ii) follows from the Generalized Weierstrass Prepa-
ration Theorem. Any finite extension of rings is integral, hence we get (ii) ⇒
(iii). To prove that (iii) ⇒ (i) consider the equations of integral dependence
for xi: xmi

i + ai,1(~f)xmi−1
i + · · ·+ ai,mi(~f) = 0 (i = 1, . . . , n) of minimal degree

mi > 0. Using the Weierstrass Preparation Theorem we check that the power
series ai,j are without constant term so that ai,j(~y) ∈ (~y)K[[~y]]. Therefore
ai,j(~f) ∈ I(~f) and xmi

i = −ai,1(~f)xmi−1
i − · · · − ai,mi(~f) ≡ 0 mod I(~f) for

i = 1, . . . , n. Therefore I(~f) like the ideal (xm1
1 , . . . , xmn

n )K[[~x]] is of finite
codimension. �

Lemma 2.2. If ~f = (f1, . . . , fn) ∈ K[[~x]]n and ~g = (g1, . . . , gn) ∈ K[[~y]]n

are s.o.p. then ~g ◦ ~f = (g1(f1, . . . , fn), . . . , gn(f1, . . . , fn)) ∈ K[[~x]]n is a s.o.p.

Proof. The extensions K[[~x]] ⊃ K[[~f ]] and K[[~f ]] ⊃ K[[~g ◦ ~f ]] are finite by
the Generalized Weierstrass Preparation Theorem. Therefore the extension
K[[~x]] ⊃ K[[~g ◦ ~f ]] is finite and ~g ◦ ~f is a s.o.p. by Lemma 2.1. �

Corollary to Lemma 2.2. If ~f = (f1, . . . , fn) ∈ K[[~x]]n is a s.o.p. then
for any integers m1, . . . ,mn > 0 the sequence (fm1

1 , . . . , fmn
n ) ∈ K[[~x]]n is also

a s.o.p.

3. Exchange Property. A power series P ∈ K[[~x]] is xn-regular of order
k > 0 if ordP (0, . . . , 0, xn) = k. Let n > 1. For any c = (c1, . . . , cn−1) ∈ Kn−1

we put σc(P ) = P (x1 + c1xn, . . . , xn−1 + cn−1xn, xn) for P ∈ K[[~x]]. Suppose
that K is an infinite field. The following lemma is well-known.

Lemma 3.1. Let P ∈ K[[~x]] be a non-zero power series in n > 1 variables
without constant term. Then there is a non-zero polynomial Q = Q(~z), ~z =
(z1, . . . , zn−1) such that the power series σc(P )(0, . . . , 0, xn) is of order ordP
if and only if Q(~c) 6= 0.

Proof. (see [4], Chapter I, Theorem 3). Let k = ordP and write P =
Pk + Pk+1 + · · · where Pi are homogeneous forms of degree i (or Pi = 0).
Then σc(P )(0, . . . , 0, xn) = Pk(c1, . . . , cn−1, 1)xkn+ higher order terms. We put
Q(~z) = Pk(z1, . . . , zn−1, 1).
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Proposition 3.2 (The Exchange Property). Let ~f = (f1, . . . , fn) ∈
K[[~x]]n (n > 1) be a s.o.p. and let g ∈ K[[~x]] be a nonzero power se-
ries without constant term. Then there is a non-zero polynomial Q = Q(~z),
~z = (z1, . . . , zn−1) such that if Q(c) 6= 0 then the sequence f1−c1fn, . . . , fn−1−
cn−1fn, g is a s.o.p. in K[[~x]].

Proof. By Lemma 2.1 the ring K[[~x]] is integral over K[[~f ]]. Let gm +
P1(~f)gm−1 + · · · + Pm(~f) = 0 be the equation of integral dependence for g of
minimal degree m > 0. Then Pm(~y) 6= 0 in K[[~y]] and Pm(0) = 0. By Lemma
3.1 there is a non-zero polynomial Q = Q(~z) such that σc(Pm) = Pm(y1 +
c1yn, . . . , yn−1 + cn−1yn, yn) is yn-regular of order k = ordPm if Q(c) 6= 0.
Let P (~y, t) = tm + P1(~y)tm−1 + · · · + Pm(~y) ∈ K[[~y]][t] and σc(P )(~y, t) =
tm+σc(P1)(~y)tm−1 + · · ·+σc(Pm)(~y). Fix c ∈ Kn−1 such that Q(c) 6= 0. Since
σc(P )(0, yn, 0) = σc(Pm)(0, yn) is of order k > 0 then we get by the Weierstrass
Preparation Theorem

(1) σc(P ) =
(
ykn +Q1(y1, . . . , yn−1, t)yk−1

n + · · ·+Qk(y1, . . . , yn−1, t)
)
U(~y, t)

in K[[~y, t]] where Qi(0) = 0 for i = 1, . . . , k and U(0, 0) 6= 0. Let f (c)
i = fi−cifn

for i = 1, . . . , n− 1 and f
(c)
n = fn. Then

(2) σc(P )(f (c)
1 , . . . , f (c)

n , g) = P (~f, g) = 0 in K[[~x]]

and by (1) and (2) we get

(3) fkn +Q1(f (c)
1 , . . . , f

(c)
n−1, g)fk−1

n + · · ·+Qk(f
(c)
1 , . . . , f

(c)
n−1, g) = 0.

Since Qi (i = 1, . . . , k) are without constant term we get from (3):

(4) fkn ≡ 0 mod (f (c)
1 , . . . , f

(c)
n−1, g)K[[~x]].

Since (f (c)
1 , . . . , f

(c)
n−1, fn)K[[~x]] = (f1, . . . , fn)K[[~x]] is of finite codimension the

sequence f (c)
1 , . . . , f

(c)
n−1, f

k
n is a s.o.p. by Corollary to Lemma 2.2.

By (4) we have (f (c)
1 , . . . , f

(c)
n−1, f

k
n)K[[~x]] ⊂ (f (c)

1 , . . . , f
(c)
n−1, g)K[[~x]] and

f
(c)
1 , . . . , f

(c)
n−1, g is a s.o.p.

Remark 3.3. Another version of the exchange property (for graded poly-
nomial rings, based on dimension theory) is given in [12], Chapter 2, Section
on the Cohen–Maclaulay property. For the underlying geometric idea see Sha-
farevich treatment of intersection theory [11], Chapter 4.

4. Preparatory lemmas. A sequence of power series ~f = (f1, . . . , fn) ∈
K[~x]]n without constant term will be called Palamodov’s sequence (in short:
P -sequence) if there exist power series e0, e1, . . . , em−1 ∈ K[[~x]] (m > 0) such
that
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(P1) for any g ∈ K[[~x]] there is a sequence g0, g1, . . . , gm−1 ∈ K[[~y]]

such that g =
m−1∑
i=0

(gi ◦ ~f)ei in K[[~x]],

(P2) if g0, g1, . . . , gm−1 ∈ K[[~y]] are such that
m−1∑
i=0

(gi ◦ ~f)ei = 0 in K[[~x]]

then gi = 0 for i = 1, . . . ,m− 1 in K[[~y]].

Lemma 4.1. Suppose that ~f ∈ K[[~x]]n is a P -sequence. Then
(a) the series f1, . . . , fn ∈ K[[~x]] are analytically independent i.e. for any

power series g0 ∈ K[[~y]]:

g0(f1, . . . , fn) = 0 in K[[~x]] ⇒ g0 = 0 in K[[~y]].

(b) For any k > 0: fk is not a zero-divisor mod (f1, . . . , fk−1)K[[~x]] i.e. for
any g ∈ K[[~x]] if gfk ≡ 0 mod (f1, . . . , fk−1)K[[~x]] then
g ≡ 0 mod (f1, . . . , fk−1)K[[~x]].

Proof. The first part of the lemma is a direct consequence of (P2). To
prove the second part we write by (P1) g =

∑m−1
i=0 (gi ◦ ~f)ei. From (P2) it

follows that the above representation is unique.
Let k > 0.

Claim. g ∈ (f1, . . . , fk−1)K[[~x]] if and only if gi ◦ ~f ∈ (f1, . . . , fk−1)K[[~f ]]
for i = 0, 1, . . . ,m− 1.

Proof of the claim. If gi ◦ ~f ∈ (f1, . . . , fk−1)K[[~f ]] then obviously g =∑m−1
i=0 (gi ◦ ~f)ei ∈ (f1, . . . , fk−1)K[[~x]].

Suppose that g ∈ (f1, . . . , fk−1)K[[~x]]. Then we can write g =
∑k−1

j=1 hjfj =∑k−1
j=1

(∑m−1
i=0 (hj,i ◦ ~f)~ei)

)
fj =

∑m−1
i=0

(∑k−1
j=1(hj,i ◦ ~f)fj)

)
ei.

On the other hand g =
∑m−1

i=0 (gi ◦ ~f)ei and by the uniqueness of represen-
tation (P1) we get gi ◦ ~f =

∑k−1
j=1(hj,i ◦ ~f)fj for i = 0, 1, . . . ,m− 1.

To check Part (b) of the lemma suppose that gfk ≡ 0 mod
(f1, . . . , fk−1)K[[~x]]. Then gfk =

∑m−1
i=0 ((gi ◦ ~f)fk)ei and by the claim

fk(gi ◦ ~f) ∈ (f1, . . . , fk−1)K[[~f ]]. Hence ykgi(~y) ∈ (y1, . . . , yk−1)K[[~y]]
by (a) and gi(~y) ∈ (y1, . . . , yk−1)K[[~y]] since yk does not divide zero
mod (y1, . . . , yk−1)K[[~y]]. This implies gi(~f) ∈ (f1, . . . , fk−1)K[[~f ]] and g =∑m−1
i=0 (gi ◦ ~f)ei ∈ (f1, . . . , fk−1)K[[~x]].

If n > 1 we put ~x′ = (x1, . . . , xn−1) and for any f ∈ K[[~x]] we let f ′ =
f(x1, . . . , xn−1, 0) ∈ K[[~x′]].
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Lemma 4.2. Let f1,. . . , fn−1 ∈ K[[~x]] (n > 1) be power series such that
f ′1,. . . , f ′n−1 is a P -sequence. Then f1,. . . , fn−1 and fn = xn form a P -
sequence.

Proof. Let ~f ′ = (f ′1, . . . , f
′
n−1) and take a sequence (ei)i=0,...,m−1, ei ∈

K[[~x′]] such that
(P ′1) for any h ∈ K[[~x′]] there is a sequence h0, . . . , hm−1 ∈ K[[~y′]],

~y′ = (y1, . . . , yn−1) such that h =
∑m−1

i=0 (hi ◦ ~f ′)ei,
(P ′2) if h0, . . . , hm−1 ∈ K[[~y′]] are such that

∑m−1
i=0 (hi ◦ ~f ′)ei = 0

then hi = 0 for i = 1, . . . ,m− 1 in K[[~y]].

Let ~f = (f1, . . . , fn−1, xn). We will check properties (P1) and (P2). Fix
g ∈ K[[~x]] and write g =

∑∞
k=0 hkx

k
n where hk ∈ K[[~x′]] for k = 0, 1, . . . .

By (P ′1) we get hk =
∑m−1

i=0 (hk,i ◦ ~f ′)ei.
Therefore g =

∑m−1
i=0

(∑∞
k=0(hk,i ◦ ~f ′)xkn

)
ei. Let gi(~y) =

∑∞
k=0 hk,i(~y

′)ykn for

i = 0, 1, . . . ,m− 1. Then g =
∑m−1

i=0 (gi ◦ ~f)ei which proves (P1).
Suppose that g0, . . . , gm−1 ∈ K[[~y]] are such that

∑m−1
i=0 (gi ◦ ~f)ei = 0 i. e.∑m−1

i=0 gi(f1(~x), . . . , fn−1(~x), xn)ei = 0 in K[[~x]].
Then

∑m−1
i=0 gi(f1(~x′, 0), . . . , fn−1(~x′, 0), 0)ei = 0 and gi(y1, . . . , ym−1, 0) = 0

for i = 0, . . . ,m − 1 in K[[~y′]] by (P ′2). Therefore we may write gi = yng̃i for
i = 0, . . . ,m− 1. Repeating this reasoning we check that gi ≡ 0 (mod yqn) for
all q ≥ 0 and gi = 0 in K[[~y]] for i = 0, . . . ,m− 1. This proves (P2).

5. Proof of Palamodov’s Theorem. We omit the easy proof of Palam-
odov’s Theorem in the case n = 1. Suppose that n > 1 and Palamodov’s
Theorem is true for s.o.p. in the ring of formal power series in n− 1 variables.

Fix a s.o.p. ~f = (f1, . . . , fn) ∈ K[[~x]]n and suppose that there exist two
finite families of power series (gi)i∈I , gi ∈ K[[~y]] and (ei)i∈I , ei ∈ K[[~x]], I 6= ∅
such that

(5) gi 6= 0 for i ∈ I and
∑
i∈I

(gi ◦ ~fi)ei = 0 in K[[~x]].

We will check that the family (ei)i∈I is K-linearly dependent modI(~f). This
will prove Palamodov’s Theorem for the case of n variables.

From (5) we get

(6)
∑
i∈I

gi(0)ei ≡ 0 mod I(~f).

If there is i ∈ I such that gi(0) 6= 0 then the family (ei)i∈I is K-linearly
dependent mod I(~f) and the assertion is proved. Therefore we assume in the
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sequel that

(7) gi(0) = 0 for all i ∈ I.
Let c = (c1, . . . , cn−1) ∈ Kn−1. In the notation introduced in Section 3 we get

(8)
∑
i∈I

(
σc(gi) ◦ ~f (c)

)
ei = 0 in K[[~x]]

and (we recall that f (c)
n = fn)

(9)
∑
i∈I

(
σc(gi)(0, fn)

)
ei ≡ 0 mod (f (c)

1 , . . . , f
(c)
n−1)K[[~x]].

By Lemma 3.1 and Proposition 3.2 we can choose c ∈ Kn−1 such that

(10) σc(gi)(0, yn) is of order ord gi for all i ∈ I,

(11) f
(c)
1 , . . . , f

(c)
n−1, xn is a s.o.p. in K[[~x]].

We claim that

(12) fn is not a zero-divisor mod (f (c)
1 , . . . , f

(c)
n−1)K[[~x]].

To check (12) let J = (f (c)
1 , . . . , f

(c)
n−1)K[[~x]] and suppose that gfn ≡ 0 mod

J for a series g ∈ K[[~x]]. Since f (c)
1 , . . . , f

(c)
n−1, fn is a s.o.p. there is a series

h ∈ K[[~x]] such that xqn ≡ hfn mod J for an integer q > 0. Now we get
ghfn ≡ 0 mod J and gxqn ≡ 0 mod J .

Since Palamodov’s Theorem holds in K[[~x′]] the sequence
f

(c)
1 (x′, 0), . . . , f (c)

n−1(x′, 0) is a P -sequence and by Lemmas 4.2 and 4.1

f
(c)
1 , . . . , f

(c)
n−1, xn is a P -sequence. Consequently xn (and therefore xqn) is not

a zero-divisor (mod J). Thus we get g ≡ 0 mod J and (12) is proved.
Let us put r = min{ ord gi : i ∈ I } and write σc(gi)(0, yn) = yrnhi(yn) for

i ∈ I. From (5) we get

(13) f rn
∑
i∈I

hi(fn)ei ≡ 0 mod (f (c)
1 , . . . , f

(c)
n−1)K[[~x]].

Hence by (12) we obtain∑
i∈I

hi(fn)ei ≡ 0 mod (f (c)
1 , . . . , f

(c)
n−1)K[[~x]]

and ∑
i∈I

hi(0)ei ≡ 0 mod I(~f)

for (f (c)
1 , . . . , f

(c)
n−1, fn)K[[~x]] = I(~f). By definition of r there is an i ∈ I such

that hi(0) 6= 0 and we are done. �
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Remark 5.1. We could extend our proof to the case of finite field
K by replacing the linear change of coordinates (x1, . . . , xn) → (x1 +
c1xn, . . . , xn−1 + cn−1xn, xn) by the polynomial automorphism (x1, . . . , xn)→
(x1 + xp1n , . . . , xn−1 + x

pn−1
n , xn).
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