2009

A PROOF OF PALAMODOV'S THEOREM

by Arkadiusz Płoski

Abstract. We give a simple proof based on the Weierstrass Preparation Theorem of the following result due to V. P. Palamodov: if f_1, \ldots, f_n is a system of parameters of the formal power series ring $S = K[[x_1, \ldots, x_n]]$ then S is a finitely generated free module over $R = K[[f_1, \ldots, f_n]]$.

1. Introduction. Let $K[[\vec{x}]]$ be the ring of formal power series in n variables $\vec{x} = (x_1, \ldots, x_n)$ with coefficients in a field K of arbitrary characteristic. For any sequence $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ of power series without constant term we put $K[[\vec{f}]] = \{ g \circ \vec{f} = g(f_1, \ldots, f_n) : g \in K[[\vec{y}]], \vec{y} = (y_1, \ldots, y_n) \}.$ Then $K[[\vec{f}]]$ is a subring of $K[[\vec{x}]].$

A sequence $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ of power series without constant term is said to be a system of parameters (s.o.p.) if the ideal $I(\vec{f}) =$ $(f_1, \ldots, f_n)K[[\vec{x}]]$ generated by (f_1, \ldots, f_n) in $K[[\vec{x}]]$ is of finite codimension. We call $\mu = \dim_K K[[\vec{x}]]/I(\vec{f})$ the multiplicity of \vec{f} . Let us recall

Theorem 1.1 (The Generalized Weierstrass Preparation Theorem). Let $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ be a s.o.p. and let $e_0, e_1, \ldots, e_{\mu-1}$ be a basis mod $I(\vec{f})$ i.e. a sequence of power series such that the images of $e_0, e_1, \ldots, e_{\mu-1}$ under the natural epimorphism $K[[\vec{x}]] \to K[[\vec{x}]]/I(\vec{f})$ form a K-linear basis of $K[[\vec{x}]]/I(\vec{f})$. Then for every power series $g \in K[[\vec{x}]]$ there exist power series $g_0, g_1, \ldots, g_{\mu-1} \in K[[\vec{y}]]$ such that

$$
g = \sum_{i=0}^{\mu-1} (g_i \circ \vec{f}) e_i.
$$

The above version of the Weierstrass Preparation Theorem appeared first in Cartan's Seminar [[5](#page-7-0)] in the following form: 'an algebra homomorphism of formal (analytic) algebras is finite if and only if it is quasi-finite.'

It was popularised by Malgrange in his famous monograph [[7](#page-7-1)] (see also [[4](#page-7-2)]). The formulation cited above is due to Arnold (see [[2](#page-7-3)]). The case of formal series considered by us is easy to prove: we may write for any $g \in K[[\vec{x}]]$: $g = \sum_{i=0}^{\mu-1} c_i e_i + \sum_{j=1}^n g^{(j)} f_j$ with $c_i \in K$. Writing the same formula for $g^{(j)}$ and repeating the procedure we get the representation of g stated in Theorem [1.1](#page-0-0) (see [[2](#page-7-3)], Chapter 1 for more details). The Division Theorem and the Weierstrass Preparation Theorem are direct consequences of [\(1.1\)](#page-0-0).

The Palamodov's Theorem [[10](#page-7-4)] (§ 3, Theorem 2) tells us that the coefficients $q_i = q_i(\vec{y}), i = 0, 1, \ldots, \mu - 1$ in the Generalized Preparation Theorem are uniquely determined by g :

THEOREM 1.2 (Palamodov's Theorem). Let $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ be a s.o.p. and let $e_0, e_1, \ldots, e_{\mu-1}$ be a basis mod $I(\vec{f})$. Then we have for any sequence of power series $g_0, g_1, \ldots, g_{\mu-1} \in K[[\vec{y}]]$:

$$
\sum_{i=0}^{\mu-1} (g_i \circ \vec{f}) e_i = 0 \Rightarrow g_i = 0 \text{ in } K[[\vec{y}]] \text{ for } i = 0, 1, \dots, \mu - 1.
$$

The aim of this note is to give a simple proof of Theorem [1.2](#page-1-0) based on the Weierstrass Preparation Theorem. We will assume that the field K is infinite.

Our proof is given in Section [5.](#page-5-0) The original Palamodov's Theorem uses homological algebra and provides a Tor-criterion for finite modules over rings of convergent power series with coefficients in $\mathbb C$ (see [[10](#page-7-4)] and Orlik's survey [[9](#page-7-5)] for different proofs of Palamodov's result).

Note that Theorems [1.1](#page-0-0) and [1.2](#page-1-0) imply

THEOREM 1.3. Let \vec{f} be a s.o.p. with multiplicity $\mu = \dim_K K[[\vec{x}]]/I(\vec{f}).$ Then K[$\vert \vec{x} \vert$] is a finitely generated free module over K[$\vert \vec{f} \vert$] of rank μ .

In [[8](#page-7-6)] (Appendix B, Problem 3) Milnor indicates that Theorem [1.3](#page-1-1) for $K = \mathbb{C}$ can be deduced from the coherence theorem for direct images under finite maps (a particular case of Grauert's Theorem [[3](#page-7-7)]).

Let $(K[[\vec{x}]] : K[[\vec{f}]])$ denote the degree of the field of fractions of $K[[\vec{x}]]$ over the field of fractions of $K[[\vec{f}]]$. A direct corollary of [\(1.3\)](#page-1-1) is

THEOREM 1.4. If \vec{f} is a s.o.p. with multiplicity μ then $\mu = (K[[\vec{x}]]$: $K[[\vec{f}]]).$

Theorem [1.4](#page-1-2) implies that the algebraic multiplicity is equal to the covering (geometric) multiplicity (see $[9]$ $[9]$ $[9]$, p. 419, Theorem 5.13 and $[6]$ $[6]$ $[6]$, pp. 258–259). Note that a direct proof of this fact due to Kouchnirenko is outlined in [[2](#page-7-3)].

2. Parameters in power series rings. In this section we prove some properties of parameters that we need in the proof of Palamodov's Theorem.

LEMMA 2.1. Let $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ be a sequence of power series without constant term. Then the following three conditions are equivalent

- (i) \vec{f} is a s.o.p. in $K[[\vec{x}]],$
- (ii) K[$\vert \vec{x} \vert \vert$ is a finite K[$\vert \vec{f} \vert \vert$ -module,
- (iii) K[$\vert \vec{x} \vert$] is integral over K[$\vert \vec{f} \vert$].

Proof. Implication (i) \Rightarrow (ii) follows from the Generalized Weierstrass Preparation Theorem. Any finite extension of rings is integral, hence we get (ii) \Rightarrow (iii). To prove that (iii) \Rightarrow (i) consider the equations of integral dependence for x_i : $x_i^{m_i} + a_{i,1}(\vec{f})x_i^{m_i-1} + \cdots + a_{i,m_i}(\vec{f}) = 0$ $(i = 1, \ldots, n)$ of minimal degree $m_i > 0$. Using the Weierstrass Preparation Theorem we check that the power series $a_{i,j}$ are without constant term so that $a_{i,j}(\vec{y}) \in (\vec{y})K[[\vec{y}]]$. Therefore $a_{i,j}(\vec{f}) \in I(\vec{f})$ and $x_i^{m_i} = -a_{i,1}(\vec{f})x_i^{m_i-1} - \cdots - a_{i,m_i}(\vec{f}) \equiv 0 \bmod I(\vec{f})$ for $i = 1, \ldots, n$. Therefore $I(\vec{f})$ like the ideal $(x_1^{m_1}, \ldots, x_n^{m_n}) K[[\vec{x}]]$ is of finite codimension.

LEMMA 2.2. If $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ and $\vec{g} = (g_1, \ldots, g_n) \in K[[\vec{y}]]^n$ are s.o.p. then $\vec{g} \circ \vec{f} = (g_1(f_1, \ldots, f_n), \ldots, g_n(f_1, \ldots, f_n)) \in K[[\vec{x}]]^n$ is a s.o.p. *Proof.* The extensions $K[[\vec{x}] \supset K[[\vec{f}]]$ and $K[[\vec{f}] \supset K[[\vec{g} \circ \vec{f}]]$ are finite by the Generalized Weierstrass Preparation Theorem. Therefore the extension $K[[\vec{x}] \supset K[[\vec{g} \circ \vec{f}]]$ is finite and $\vec{g} \circ \vec{f}$ is a s.o.p. by Lemma [2.1.](#page-2-0)

COROLLARY TO LEMMA 2.2. If $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ is a s.o.p. then for any integers $m_1, \ldots, m_n > 0$ the sequence $(f_1^{m_1}, \ldots, f_n^{m_n}) \in K[[\vec{x}]]^{n}$ is also a s.o.p.

3. Exchange Property. A power series $P \in K[[\vec{x}]]$ is x_n -regular of order $k > 0$ if ord $P(0, \ldots, 0, x_n) = k$. Let $n > 1$. For any $c = (c_1, \ldots, c_{n-1}) \in K^{n-1}$ we put $\sigma_c(P) = P(x_1 + c_1x_n, \ldots, x_{n-1} + c_{n-1}x_n, x_n)$ for $P \in K[[\vec{x}]]$. Suppose that K is an infinite field. The following lemma is well-known.

LEMMA 3.1. Let $P \in K[[\vec{x}]]$ be a non-zero power series in $n > 1$ variables without constant term. Then there is a non-zero polynomial $Q = Q(\vec{z})$, $\vec{z} =$ (z_1, \ldots, z_{n-1}) such that the power series $\sigma_c(P)(0, \ldots, 0, x_n)$ is of order ord P if and only if $Q(\vec{c}) \neq 0$.

PROOF. (see [[4](#page-7-2)], Chapter I, Theorem 3). Let $k = \text{ord } P$ and write $P =$ $P_k + P_{k+1} + \cdots$ where P_i are homogeneous forms of degree i (or $P_i = 0$). Then $\sigma_c(P)(0,\ldots,0,x_n) = P_k(c_1,\ldots,c_{n-1},1)x_n^k + higher order terms.$ We put $Q(\vec{z}) = P_k(z_1, \ldots, z_{n-1}, 1).$ \Box

PROPOSITION 3.2 (The Exchange Property). Let $\vec{f} = (f_1, \ldots, f_n) \in$ $K[[\vec{x}]^n$ $(n > 1)$ be a s.o.p. and let $g \in K[[\vec{x}]]$ be a nonzero power series without constant term. Then there is a non-zero polynomial $\tilde{Q} = Q(\vec{z}),$ $\vec{z} = (z_1, \ldots, z_{n-1})$ such that if $Q(c) \neq 0$ then the sequence $f_1 - c_1f_n, \ldots, f_{n-1} - c_nf_n$ $c_{n-1}f_n, g$ is a s.o.p. in $K[[\vec{x}]].$

PROOF. By Lemma [2.1](#page-2-0) the ring $K[[\vec{x}]]$ is integral over $K[[\vec{f}]]$. Let g^m + $P_1(\vec{f})g^{m-1} + \cdots + P_m(\vec{f}) = 0$ be the equation of integral dependence for g of minimal degree $m > 0$. Then $P_m(\vec{y}) \neq 0$ in $K[[\vec{y}]]$ and $P_m(0) = 0$. By Lemma [3.1](#page-2-1) there is a non-zero polynomial $Q = Q(\vec{z})$ such that $\sigma_c(P_m) = P_m(y_1 + \vec{z})$ $c_1y_n, \ldots, y_{n-1} + c_{n-1}y_n, y_n$ is y_n -regular of order $k = \text{ord } P_m$ if $Q(c) \neq 0$. Let $P(\vec{y}, t) = t^m + P_1(\vec{y})t^{m-1} + \cdots + P_m(\vec{y}) \in K[[\vec{y}]][t]$ and $\sigma_c(P)(\vec{y}, t) =$ $t^m + \sigma_c(P_1)(\vec{y})t^{m-1} + \cdots + \sigma_c(P_m)(\vec{y})$. Fix $c \in K^{n-1}$ such that $Q(c) \neq 0$. Since $\sigma_c(P)(0, y_n, 0) = \sigma_c(P_m)(0, y_n)$ is of order $k > 0$ then we get by the Weierstrass Preparation Theorem

(1)
$$
\sigma_c(P) = (y_n^k + Q_1(y_1, \ldots, y_{n-1}, t)y_n^{k-1} + \cdots + Q_k(y_1, \ldots, y_{n-1}, t))U(\vec{y}, t)
$$

in $K[[\vec{y}, t]]$ where $Q_i(0) = 0$ for $i = 1, ..., k$ and $U(0, 0) \neq 0$. Let $f_i^{(c)} = f_i - c_i f_n$ for $i = 1, \ldots, n-1$ and $f_n^{(c)} = f_n$. Then

(2)
$$
\sigma_c(P)(f_1^{(c)}, \dots, f_n^{(c)}, g) = P(\vec{f}, g) = 0 \text{ in } K[[\vec{x}]]
$$

and by (1) and (2) we get

(3)
$$
f_n^k + Q_1(f_1^{(c)}, \ldots, f_{n-1}^{(c)}, g) f_n^{k-1} + \cdots + Q_k(f_1^{(c)}, \ldots, f_{n-1}^{(c)}, g) = 0.
$$

Since Q_i $(i = 1, ..., k)$ are without constant term we get from [\(3\)](#page-3-2):

(4)
$$
f_n^k \equiv 0 \mod (f_1^{(c)}, \ldots, f_{n-1}^{(c)}, g) K[[\vec{x}]].
$$

Since $(f_1^{(c)}$ $f_1^{(c)}, \ldots, f_{n-1}^{(c)}, f_n)K[[\vec{x}]] = (f_1, \ldots, f_n)K[[\vec{x}]]$ is of finite codimension the sequence $f_1^{(c)}$ $t_1^{(c)}, \ldots, f_{n-1}^{(c)}, f_n^k$ is a s.o.p. by Corollary to Lemma [2.2.](#page-2-2)

By (4) we have
$$
(f_1^{(c)}, \ldots, f_{n-1}^{(c)}, f_n^k)K[[\vec{x}]] \subset (f_1^{(c)}, \ldots, f_{n-1}^{(c)}, g)K[[\vec{x}]]
$$
 and $f_1^{(c)}, \ldots, f_{n-1}^{(c)}, g$ is a s.o.p.

REMARK 3.3. Another version of the exchange property (for graded poly-nomial rings, based on dimension theory) is given in [[12](#page-7-9)], Chapter 2, Section on the Cohen–Maclaulay property. For the underlying geometric idea see Shafarevich treatment of intersection theory [[11](#page-7-10)], Chapter 4.

4. Preparatory lemmas. A sequence of power series $\vec{f} = (f_1, \ldots, f_n) \in$ $K[\vec{x}]^n$ without constant term will be called Palamodov's sequence (in short: P-sequence) if there exist power series $e_0, e_1, \ldots, e_{m-1} \in K[[\vec{x}]] \ (m > 0)$ such that

 (P_1) for any $g \in K[[\vec{x}]]$ there is a sequence $g_0, g_1, \ldots, g_{m-1} \in K[[\vec{y}]]$ such that $g =$ \sum^{m-1} $i=0$ $(g_i \circ \vec{f})e_i$ in $K[[\vec{x}]],$

 (P_2) if $g_0, g_1, \ldots, g_{m-1} \in K[[\vec{y}]]$ are such that \sum^{m-1} $i=0$ $(g_i \circ \vec{f})e_i = 0$ in $K[[\vec{x}]]$ then $g_i = 0$ for $i = 1, ..., m - 1$ in $K[[\vec{y}]]$.

LEMMA 4.1. Suppose that $\vec{f} \in K[[\vec{x}]]^n$ is a P-sequence. Then

(a) the series $f_1, \ldots, f_n \in K[[\vec{x}]]$ are analytically independent i.e. for any power series $g_0 \in K[[\vec{y}]]$:

$$
g_0(f_1,...,f_n) = 0
$$
 in $K[[\vec{x}]] \Rightarrow g_0 = 0$ in $K[[\vec{y}]].$

(b) For any $k > 0$: f_k is not a zero-divisor mod $(f_1, \ldots, f_{k-1})K[[\vec{x}]]$ i.e. for any $g \in K[[\vec{x}]]$ if $gf_k \equiv 0 \mod (f_1, \ldots, f_{k-1})K[[\vec{x}]]$ then $g \equiv 0 \mod (f_1, \ldots, f_{k-1})K[[\vec{x}]].$

PROOF. The first part of the lemma is a direct consequence of (P_2) . To prove the second part we write by (P_1) $g = \sum_{i=0}^{m-1} (g_i \circ \vec{f})e_i$. From (P_2) it follows that the above representation is unique.

Let $k > 0$.

CLAIM. $g \in (f_1, \ldots, f_{k-1})K[[\vec{x}]]$ if and only if $g_i \circ \vec{f} \in (f_1, \ldots, f_{k-1})K[[\vec{f}]]$ for $i = 0, 1, \ldots, m - 1$.

PROOF OF THE CLAIM. If $g_i \circ \vec{f} \in (f_1, \ldots, f_{k-1})K[[\vec{f}]]$ then obviously $g =$ $\sum_{i=0}^{m-1} (g_i \circ \vec{f}) e_i \in (f_1, \ldots, f_{k-1}) K[[\vec{x}]].$ \Box

Suppose that $g \in (f_1, \ldots, f_{k-1})K[[\vec{x}]]$. Then we can write $g = \sum_{j=1}^{k-1} h_j f_j =$ $\sum_{j=1}^{k-1} \left(\sum_{i=0}^{m-1} (h_{j,i} \circ \vec{f}) \vec{e_i} \right) f_j = \sum_{i=0}^{m-1} \left(\sum_{j=1}^{k-1} (h_{j,i} \circ \vec{f}) f_j \right) e_i.$

On the other hand $g = \sum_{i=0}^{m-1} (g_i \circ \vec{f}) e_i$ and by the uniqueness of representation (P_1) we get $g_i \circ \vec{f} = \sum_{j=1}^{k-1} (h_{j,i} \circ \vec{f}) f_j$ for $i = 0, 1, ..., m - 1$.

To check Part (b) of the lemma suppose that $gf_k \equiv 0 \mod 1$ $(f_1,\ldots,f_{k-1})K[[\vec{x}]]$. Then $gf_k = \sum_{i=0}^{m-1}((g_i \circ \vec{f})f_k)e_i$ and by the claim $f_k(g_i \circ \vec{f}) \in (f_1, \ldots, f_{k-1})K[[\vec{f}]].$ Hence $y_k g_i(\vec{y}) \in (y_1, \ldots, y_{k-1})K[[\vec{y}]]$ by (a) and $g_i(\vec{y}) \in (y_1, \ldots, y_{k-1})K[[\vec{y}]]$ since y_k does not divide zero mod $(y_1, \ldots, y_{k-1})K[[\vec{y}]]$. This implies $g_i(\vec{f}) \in (f_1, \ldots, f_{k-1})K[[\vec{f}]]$ and $g =$ $\sum_{i=0}^{m-1} (g_i \circ \vec{f}) e_i \in (f_1, \ldots, f_{k-1}) K[[\vec{x}]].$

If $n > 1$ we put $\vec{x}' = (x_1, \ldots, x_{n-1})$ and for any $f \in K[[\vec{x}]]$ we let $f' =$ $f(x_1, \ldots, x_{n-1}, 0) \in K[[\vec{x}']]$.

LEMMA 4.2. Let $f_1,\ldots,f_{n-1}\in K[[\vec{x}]]$ $(n>1)$ be power series such that f'_1, \ldots, f'_{n-1} is a P-sequence. Then f_1, \ldots, f_{n-1} and $f_n = x_n$ form a Psequence.

PROOF. Let $\vec{f}' = (f'_1, \ldots, f'_{n-1})$ and take a sequence $(e_i)_{i=0,\ldots,m-1}, e_i \in$ $K[[\vec{x}$ ^{''}]] such that

- (P'_1) for any $h \in K[[\vec{x}']]$ there is a sequence $h_0, \ldots, h_{m-1} \in K[[\vec{y}']]$, $\vec{y}' = (y_1, \ldots, y_{n-1})$ such that $h = \sum_{i=0}^{m-1} (h_i \circ \vec{f}) e_i$,
- (P'_2) if $h_0, \ldots, h_{m-1} \in K[[\vec{y}']]$ are such that $\sum_{i=0}^{m-1} (h_i \circ \vec{f}')e_i = 0$ then $h_i = 0$ for $i = 1, ..., m - 1$ in $K[[\vec{y}]]$.

Let $\vec{f} = (f_1, \ldots, f_{n-1}, x_n)$. We will check properties (P_1) and (P_2) . Fix $g \in K[[\vec{x}]]$ and write $g = \sum_{k=0}^{\infty} h_k x_n^k$ where $h_k \in K[[\vec{x}']]$ for $k = 0, 1, \ldots$. By (P'_1) we get $h_k = \sum_{i=0}^{m-1} (h_{k,i} \circ \vec{f}') e_i$.

Therefore $g = \sum_{i=0}^{m-1} \left(\sum_{k=0}^{\infty} (h_{k,i} \circ \vec{f}') x_n^k \right) e_i$. Let $g_i(\vec{y}) = \sum_{k=0}^{\infty} h_{k,i}(\vec{y}') y_n^k$ for $i = 0, 1, \dots, m - 1$. Then $g = \sum_{i=0}^{m-1} (g_i \circ \vec{f}) e_i$ which proves (P_1) .

Suppose that $g_0, \ldots, g_{m-1} \in K[[\vec{y}]]$ are such that $\sum_{i=0}^{m-1} (g_i \circ \vec{f}) e_i = 0$ i. e. $\sum_{i=0}^{m-1} g_i(f_1(\vec{x}), \ldots, f_{n-1}(\vec{x}), x_n) e_i = 0$ in $K[[\vec{x}]].$

Then $\sum_{i=0}^{m-1} g_i(f_1(\vec{x}', 0), \ldots, f_{n-1}(\vec{x}', 0), 0) e_i = 0$ and $g_i(y_1, \ldots, y_{m-1}, 0) = 0$ for $i = 0, \ldots, m-1$ in $K[[\vec{y}']]$ by (P'_2) . Therefore we may write $g_i = y_n \tilde{g}_i$ for $i = 0, \ldots, m - 1$. Repeating this reasoning we check that $g_i \equiv 0 \pmod{y_n^q}$ for all $q \geq 0$ and $g_i = 0$ in $K[[\vec{y}]]$ for $i = 0, \ldots, m-1$. This proves (P_2) . \Box

5. Proof of Palamodov's Theorem. We omit the easy proof of Palamodov's Theorem in the case $n = 1$. Suppose that $n > 1$ and Palamodov's Theorem is true for s.o.p. in the ring of formal power series in $n-1$ variables.

Fix a s.o.p. $\vec{f} = (f_1, \ldots, f_n) \in K[[\vec{x}]]^n$ and suppose that there exist two finite families of power series $(g_i)_{i\in I}$, $g_i \in K[[\vec{y}]]$ and $(e_i)_{i\in I}$, $e_i \in K[[\vec{x}]], I \neq \emptyset$ such that

(5)
$$
g_i \neq 0 \text{ for } i \in I \text{ and } \sum_{i \in I} (g_i \circ \vec{f}_i) e_i = 0 \text{ in } K[[\vec{x}]].
$$

We will check that the family $(e_i)_{i\in I}$ is K-linearly dependent mod $I(\vec{f})$. This will prove Palamodov's Theorem for the case of n variables.

From [\(5\)](#page-5-1) we get

(6)
$$
\sum_{i \in I} g_i(0)e_i \equiv 0 \mod I(\vec{f}).
$$

If there is $i \in I$ such that $g_i(0) \neq 0$ then the family $(e_i)_{i \in I}$ is K-linearly dependent mod $I(\vec{f})$ and the assertion is proved. Therefore we assume in the

sequel that

(7)
$$
g_i(0) = 0 \quad \text{for all } i \in I.
$$

 $\sum_{i\in I}$

Let
$$
c = (c_1, ..., c_{n-1}) \in K^{n-1}
$$
. In the notation introduced in Section 3 we get
\n(8)
$$
\sum (\sigma_c(g_i) \circ \vec{f}^{(c)}) e_i = 0 \text{ in } K[[\vec{x}]]
$$

and (we recall that $f_n^{(c)} = f_n$)

(9)
$$
\sum_{i \in I} (\sigma_c(g_i)(0, f_n)) e_i \equiv 0 \mod (f_1^{(c)}, \dots, f_{n-1}^{(c)}) K[[\vec{x}]].
$$

By Lemma [3.1](#page-2-1) and Proposition [3.2](#page-3-4) we can choose $c \in K^{n-1}$ such that

(10)
$$
\sigma_c(g_i)(0, y_n) \text{ is of order } \text{ord } g_i \text{ for all } i \in I,
$$

(11)
$$
f_1^{(c)}, \ldots, f_{n-1}^{(c)}, x_n
$$
 is a s.o.p. in $K[[\vec{x}]].$

We claim that

(12) f_n is not a zero-divisor mod $(f_1^{(c)})$ $f^{(c)}_1,\ldots,f^{(c)}_{n-1})K[[\vec{x}]].$

To check [\(12\)](#page-6-0) let $J = (f_1^{(c)})$ $t_1^{(c)}, \ldots, f_{n-1}^{(c)})K[[\vec{x}]]$ and suppose that $gf_n \equiv 0 \mod 1$ *J* for a series $g \in K[[\vec{x}]]$. Since $f_1^{(c)}$ $t_1^{(c)}, \ldots, f_{n-1}^{(c)}, f_n$ is a s.o.p. there is a series $h \in K[[\vec{x}]]$ such that $x_n^q \equiv hf_n \mod J$ for an integer $q > 0$. Now we get $ghf_n \equiv 0 \mod J$ and $gx_n^q \equiv 0 \mod J$.

 $Since$ Palamodov's Theorem holds in $K[[\vec{x}']]$ the sequence $f_1^{(c)}$ $f_1^{(c)}(x',0),..., f_{n-1}^{(c)}(x',0)$ is a P-sequence and by Lemmas [4.2](#page-5-2) and [4.1](#page-4-0) $f_1^{(c)}$ $f_1^{(c)}, \ldots, f_{n-1}^{(c)}, x_n$ is a P-sequence. Consequently x_n (and therefore x_n^q) is not a zero-divisor (mod J). Thus we get $g \equiv 0 \mod J$ and [\(12\)](#page-6-0) is proved.

Let us put $r = \min\{ \text{ ord } g_i : i \in I \}$ and write $\sigma_c(g_i)(0, y_n) = y_n^r h_i(y_n)$ for $i \in I$. From [\(5\)](#page-5-1) we get

(13)
$$
f_n^r \sum_{i \in I} h_i(f_n) e_i \equiv 0 \mod (f_1^{(c)}, \dots, f_{n-1}^{(c)}) K[[\vec{x}]].
$$

Hence by [\(12\)](#page-6-0) we obtain

$$
\sum_{i \in I} h_i(f_n)e_i \equiv 0 \bmod (f_1^{(c)}, \dots, f_{n-1}^{(c)})K[[\vec{x}]]
$$

and

$$
\sum_{i\in I}h_i(0)e_i\equiv 0\ \mod I(\vec{f})
$$

for $(f_1^{(c)}$ $t_1^{(c)}, \ldots, t_{n-1}^{(c)}, f_n)K[[\vec{x}]] = I(\vec{f}).$ By definition of r there is an $i \in I$ such that $h_i(0) \neq 0$ and we are done.

Remark 5.1. We could extend our proof to the case of finite field K by replacing the linear change of coordinates $(x_1, \ldots, x_n) \rightarrow (x_1 +$ $c_1x_n, \ldots, x_{n-1} + c_{n-1}x_n, x_n$ by the polynomial automorphism $(x_1, \ldots, x_n) \rightarrow$ $(x_1+x_n^{p_1},\ldots,x_{n-1}+x_n^{p_{n-1}},x_n).$

References

- 1. Abhyankar S. S., Local analytic geometry, Academic Press, New York, 19, 1964.
- 2. Arnold V. I., Gusein-Zade S. M., Varchenko A. N., Singularities of Differentiable Maps, Vol. I, Birkhauser, 1985.
- 3. Grauert H., Ein Theorem der analytischen Garben theorie und die Modulräume Komplexer Strukturen, Publ. Math. Inst. Hautes Etudes, Paris, No. 5, 1960.
- 4. Grauert H., Remmert R., Analytische Stellenalgebren, Springer Verlag, 1971.
- 5. Houzel C., Geométrie analytique locale, Séminaire H. Cartan, 1960/61, exposés 18–21.
- 6. Lojasiewicz S., Introduction to Complex Analytic Geometry, Birkhauser, 1991.
- 7. Malgrange B., Ideals of differentiable functions, Oxford Univ. Press and Tata Institute of Fundamental Research, 1996.
- 8. Milnor J., Singular Points of Complex Hypersurphaces, Princeton University Press, 1968.
- 9. Orlik P., The multiplicity of a holomorphic map at an isolated critical point, Nordic Summer School/NAVF Symposium in Mathematics, Oslo, August 5–25.
- 10. Palamodov V. P., Multiplicity of holomorphic mappings, Funct. Anal. Appl., 1 (1967), 54–67.
- 11. Shafarevich I., Basic Algebraic Geometry, Springer Verlag, 1977.
- 12. Sturmfels B., Algorithms in Invariant Theory, Springer Verlag, 1993.

Received December 8, 2009

Department of Mathematics Technical University Al. 1000 L PP 7 25-314 Kielce, Poland e-mail: matap@tu.kielce.pl