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Abstract. In this article a wavelet and artificial neural networks theory
is used to predict economic time series in a described computer appli-
cation. Its predicting capabilities were tested on a USD/PLN average
exchange ratio and discussed in this paper. The achieved results are
satisfactory.

1. Introduction

The main theme of this article is the mathematical theory needed to
develop a computer application that helps to predict economic data, which
contain an element of time. This is the case of stock markets, currency
exchange rates, inflation rates, etc. In the second part of this paper an
example application and its forecasting results are described. The application
was used to predict USD/PLN average exchange rates.

Financial forecasting is undoubtedly the most advanced artificial neural
networks application in economical sciences. There are many references con-
cerning problems of stock, currency, debentures market processes’ analysis
[2, 4, 5, 19, 22, 24, 25, 28].

A similar prediction problem is covered in D. Witkowska’s book [26]. The
author discusses a neural model and statistical methods used to forecast an
inflation ratio. The model consists of one neural network, with no wavelet
transforms applied to input data. The average percentage error of predicted
values is 0,95–3,68% ([26], p. 116), depending on details of the neural model
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used. The application described in this paper achieves an average percentage
error of 0,54–1,22%.

This work is inspired with P. Lula’s book [14], where several economical
applications of artificial neural networks are covered. Lula conducts an em-
pirical verification of the market efficiency hypothesis, using a neural-wavelet
model and basing on Warsaw Stock Exchange index data, achieving some
very interesting results, although not confirming the hypothesis ([14], pp.
156–164). However, he states that this model may lead to prognosis of prac-
tical usefulness and that Discrete Wavelet Transform is an adequate tool for
time series analysis.

2. Discrete wavelet transform

The wavelet theory evolved in mid-eighties of the past century ([3, 12,
16, 21]), though some constructions and theoretical results were discovered
much earlier ([6, 7, 20, 21]). It can be regarded as Fourier analysis extension,
specially in the scope of signal processing. Wavelets are functions, whose
localizations in time and frequency can be fully controlled. This leads to
improved and new signal processing applications. Wavelet transforms are
used in physics, geophysics, astronomy, biology, chemistry, image processing
(NMR, tomography), sound processing, data compression and – economics.

2.1. Basic facts from the wavelet theory

Definition 1. A function Ψ(t) ∈ L2(R) is a wavelet, if the functions

Ψj,k := 2
j

2 Ψ(2jt− k), j, k ∈ Z

create an orthonormal basis in L2(R), where L2(R) denotes the set of func-
tions f : R → C, such that:

∫

∞

−∞

|f(t)|2dt <∞

with the inner product defined by:

f ◦ g =

∫

∞

−∞

f(t)g(t)dt.
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An example is the Haar wavelet, defined as follows:

Ψ :=







1 for t ∈ [0, 1
2),

−1 for t ∈ [12 , 1],
0 otherwise.

Definition 2. A multiresolution analysis (MRA) is a nested sequence

. . . ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ . . .

of subspaces of L2(R) satisfying

1.
⋃

n∈Z Vn is dense in L2(R),

2.
⋂

n∈Z Vn = {0},

3. f(t) ∈ Vn if and only if f(2−nt) ∈ V0,

4. there exists a function Φ(t), called a scaling function, such that
{Φ(t− k)}k∈Z is an orthonormal basis for V0.

Fact 1. Because Φ ∈ V0 ⊂ V1, condition 3 of MRA definition implies,
that Φ(x/2) ∈ V0. This leads to

Φ(x/2) =
∑

n∈Z

anΦ(x− n).

We define mΦ:

mΦ(ξ) =
1

2

∑

n∈Z

ane
−inξ.

There exists a relationship between wavelets and a multiresolution analy-
sis ([27], p.45):

Theorem 1. Let us suppose, that we have a MRA. A function Ψ ∈
W0 = V1 ⊖ V0 is a wavelet if and only if

Φ̂(ξ/2) = eiξ/2v(ξ)mΦ(ξ/2 + π)Ψ̂(ξ/2),

where Φ̂ and Ψ̂ are Fourier transforms of Φ and Ψ respectively, v(ξ) is a
2π-periodic function such that |v(ξ)| = 1.

Additionally, for Ψ and every s ∈ Z span{ψj,k}k∈Z,j<s = Vs.
If v = 1, the wavelet Ψ is defined by:

Ψ(x) =
∑

n∈Z

an(−1)nΦ(2x+ n+ 1),
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where an =
∫

∞

−∞
Φ(x/2)Φ(x− n)dx.

Definition 3. Having a MRA, we define an orthogonal subspace V ⊥
j ⊂

L2(R) to subspace Vj ⊂ L2(R) with the following condition:

Vj ⊕ V ⊥
j = Vj+1.

The MRA definition implies (see [27], p. 41) that

L2(R) = ⊕
∑

j∈Z

V ⊥
j .

The theory of a multiresolution analysis states that if a MRA is given, we can
find a function Ψ, which generates an orthonormal wavelet basis for Vs for all
s ∈ Z, in other words, span{ψj,k}k∈Z,j<s = Vs. In practical applications we
are interested in examining the orthogonal projections Pn(f) of a function
f ∈ L2(R) onto wavelet spaces Vn. This process is realized by using wavelet
filters (see [1], p. 70, [10] 7.1–7.8).

2.2. Signal processing by wavelets

A given signal s = [. . . , s−1, s0, s1, . . .] defines a function f ∈ Vn by

f =
∑

k∈Z

skψk,n. (1)

Now the wavelet filters process this signal by using two operators, H (the
low-pass filter) and G (the high-pass filter), where

H(s)k =
∑

j∈Z

hj−2ksj

and

G(s)k =
∑

j∈Z

gj−2ksj .

The sequences {hk}, {gk} arise from MRA and inner product properties
(see [1], p. 70) and are unique for every wavelet family.

Having a signal s, and the associated function f ∈ Vn (as in 1), H(s)
are coefficients of the orthogonal projection Pn−1(f) onto Vn−1 and G(s)
coefficients of Pn−1(f) onto V ⊥

n−1. A good practical interpretation of this is
that H(s) and G(s) contain the low and the high frequencies respectively.
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Once we know how to decompose a signal s, it is equally important to
have a tool to recompose it. Each of the operators H and G has a so-called
dual operator, denoted H∗ and G∗ respectively, defined by

H∗(s∗)k =
∑

j∈Z

hk−2js
∗
j

and
G∗(d∗)k =

∑

j∈Z

gk−2jd
∗
j .

The filters and their dual operators act as follows

s = H∗(H(s)) +G∗(G(s)).

In real world we cannot deal with sequences of the infinite length. The
wavelet families that are used (Daubechies, CDF, etc.) have a finite number
of non-zero {hk}, {gk} filter coefficients. And the solutions for the assumption
of the infinite length of the signal s are periodization, mirroring, Gram-
Schmidt boundary filters and zero-padding (see [10], Section 10).

2.3. Mallat’s pyramid algorithm

The algorithm for processing a signal using wavelet filters is called a
Mallat’s pyramid algorithm.

Let us consider a finite signal s = [s0, s1, . . . , s2n−1], and wavelet filters H,
G with {hk}, {gk} coefficients from a chosen wavelet family. Frequencies in s
range from 0 to fN , where fN is the Nyquist frequency, the highest frequency
one can observe in a signal sampled with sampling frequency fS, fN = fS

2 .

We compute s1 = H(s) and d1 = G(s). The length of s1, d1 is 2n−1 (see

[1], p.72). The frequencies contained in s1 range from 0 to fN

2 (the low part)

while in d1 from fN

2 to fN (the high part).

Then we apply the same procedure to s1, obtaining s2 and d2, each of
length 2n−2. The available frequencies are: 0 to fN

4 (s2) and fN

4 to fN

2 (d2).
After n steps the algorithm stops and we get a vector

s∗ = [sn
0 , d

n
0 , d

n−1
0 , dn−1

1 , . . . , d2
2n−2−1, d

1
0, . . . , d

1
2n−1−1].

This is the discrete wavelet transform (DWT) of s. To this form of s one
can apply some operations like zero-padding of high-frequency coefficients for
noise reduction or to separate only the desirable frequencies in order to get
data to train an ANN, which was important in the described application.

Obviously an inverse process is also possible, using H∗ and G∗ operators
and a reversed version of the Mallat’s algorithm. It is called the inverse
discrete wavelet transform (iDWT).
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3. Artificial neural networks

In recent years artificial neural networks (ANNs) have been a topic of
very intensive research. A lot of papers have been devoted to various ANNs
applications, like speech and pattern recognition, robotics, expert systems,
control theory. A large number of applications is present [8, 15, 18, 14, 17,
23, 26, 29].

ANNs are eagerly used because of their properties to approximate non-
linear functions and good generalization abilities that help to predict data
not included in the learning patterns.

3.1. Basic definitions

Definition 4. A neuron is a function

F : X ∋ x 7−→ f(w ◦ x) ∈ R,

where:

1. X is a set of signals, X ⊂ R
k,

2. w ∈ R
k is a vector of weights,

3. x ∈ X is a signal,

4. g : R → R is an activation function.

In the described application the logistic activation function
g(x) := 1

1+exp(−x) is used.

Definition 5. A layer of neurons is a vector function

L : X ∋ x 7−→ [F1(w1, x), F2(w2, x), . . . , Fl(wl, x)] ∈ R
l,

where:

1. X is a set of signals, X ∈ R
k,

2. Fi, i = 1 . . . l are the layer’s neurons,

3. wi, i = 1 . . . l are their vectors of weights.

Definition 6. Given a set of layers, L1, . . . , Ln, satisfying:

1. L1 : X1 → X2, X1 ⊂ R
k1, X2 ⊂ R

k2
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2. L2 : X2 → X3, X3 ⊂ R
k3

3. . . .

4. Ln : Xn → Xn+1, Xn+1 ⊂ R
kn+1

we define a feed-forward, multilayer neural network as a function

N : X1 ∋ x 7−→ y = Ln(Ln−1(. . . L1(x) . . .)) ∈ Xn+1.

This kind of ANN is also called a Multilayer Perceptron (MLP).
All ANNs that are in the scope of this article are MLPs, because they are

frequently used as universal approximating functions.

3.2. The process of learning

The problem of training an MLP looks as follows. We have a set of n
pairs {(xi, yi)}i=1..n, where xi ∈ R

k, yi ∈ R
l. The pairs are called patterns,

xi is the input pattern, yi the network’s expected output. We expect the
MLP N : R

k → R
l to realize a mapping N(xi) = yi, i = 1 . . . n. A typical

learning algorithm consists of estimating errors ǫi = ‖yi − yi‖, i = 1 . . . n,

then δ
(i)
k,j = δ

(i)
k,j(ǫi) and changing the weights wnew

k,j := wold
k,j + δ

(i)
k,j, Where wk,j

means the j-th entry in the vector of weights of the k-th neuron of network
N. The process stops as the total error ǫ =

∑n
i=1 ǫi is small enough.

The quality of an ANN and of its learning process is not necessarily
the value of final error at the end of training. We could use a well known
approximation or interpolation method from numerical analysis to find a
function realizing the xi to yi, i = 1 . . . n mapping. What we expect from an
ANN is a good generalization. In order to test this, another set of patterns
is created, {(xtest

i , ytest
i )}i=1..m, but they do not take part in the learning

process. Instead, one can check the ability of generalization of an MLP,
computing the total error ǫtest =

∑n
i=1 ‖N(xtest

i ) − ytest
i ‖. That is a good

ANN’s quality measure.
An important fact from the ANNs theory, is that the theorem of Hecht-

Nielsen (see [9]) states that for a given continuous function f : R
k → R and an

awaited approximation error ǫ there always exists a three-layer (input layer,
hidden layer and output layer) MLP, which approximates the function. The
approximation error of this MLP is below ǫ. The theorem does not describe
the activation functions needed for this MLP.

In recent years ANNs have been a topic of an intensive study. Many
training algorithms have been developed, like backpropagation, quickpropa-
gation, genetic algorithms methods and others (see [8, 15, 17, 18, 23, 29]).
However, an exact description of these algorithms is unnecessary in the scope
of this paper. We want to focus on a practical ANN application.
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4. ANNs, wavelets and economic time series

In an application of economic time series prediction a typical set of data
is a signal x = [x1, . . . , xk], containing e.g. stock market index values or
currency exchange rates. Each entry comes from another time point, which
means, that x1 is the exchange rate value at the beginning, x2 the value on
the next day and so on.

4.1. The basic approach

The problem of value forecasting can be defined in the following way.
Having the values x1, . . . , xk of economic data at consecutive time points
(e.g. stock rates at day no. 1, day no. 2, day no. 3) it is desired to estimate
its unknown value on the forthcoming day. In other words, we would like to
have a function ḟ : R

k → R, such as:

xk+1 = ḟ(x1, . . . , xk),

where xk+1 is the expected unknown value.
Obviously, the future is generally unpredictable. And to find such a

function ḟ is not possible. What can be done, to tray to observe as much
regularity of our data as possible and to look for a function f : R

k → R, such
that:

x̃k+1 = f(x1, . . . , xk)

where the distance |xk+1 − x̃k+1| is small enough.
A first idea could be splitting our data into patterns for an MLP. Assum-

ing the data is a vector x = [x1, x2, ..., xm] the patterns look like this:

([x1, x2, ..., xk], xk+1)
([x2, x3, ..., xk+1], xk+2)
([x3, x4, ..., xk+2], xk+3)
. . .
([xm−k, xm−k+1, ..., xm−1], xm),

where k < m.
Next, an architecture for an ANN must be chosen. Lula designed a net-

work ([14], p. 158) for testing the market efficiency hypothesis basing on
Warsaw Stock Exchange index data. The author uses an MLP with three
layers, 6 neurons in the input layer, 6 neurons with a tangensoidal activation
function and 1 neuron in the output layer with a linear activation function.
The value of k = 6 is estimated with a BDS input data test, described in
[13].
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After this MLP is trained, it realizes the function f for k = 6

x7 ≈ f(x1, . . . , x6)
x8 ≈ f(x2, . . . , x7)
x9 ≈ f(x3, . . . , x8)
. . .
xm ≈ f(xm−6, xm−5, ..., xm−1).

That is just an input (known) data approximation. But now we can try
to estimate the unknown values:

x̃m+1 = f(xm−5, xm−4, . . . , xm)
x̃m+2 = f(xm−4, xm−3, . . . , xm, x̃m+1)
x̃m+3 = f(xm−3, xm−2, xm−1, xm, x̃m+1, x̃m+2).
. . .

However, this basic “one-network” idea has not been used in this work,
because of the poor results Lula achieved with the Warsaw Stock Exchange
index. Despite using sophisticated training algorithms the DIR coefficient
(the part of correctly guessed directions of fluctuations) on testing patterns
was only 61% ([14], p. 159). This results are of low practical usefulness.
The MLPs used in an application described in this paper achieved a DIR on
testing patterns of ca. 86%–90%. But the patterns contained wavelet filtered
oscillations, not raw economic data.

4.2. The wavelet approach

The wavelet approach bases on applying the Mallat’s pyramid algorithm
to the given data, splitting the data into separated frequency bands, ap-
proximating each band by an ANN and predicting their values as described
above.

The input data is a vector x = [x0, . . . , x2n−1]. The assumption of its
length is important because of the Mallat’s algorithm. In practical applica-
tions zero-padding can be used to achieve this.

We compute the DWT of x, getting a vector

x∗ = [xn
0 , d

n
0 , d

n−1
0 , dn−1

1 , . . . , d2
2n−2−1, d

1
0, . . . , d

1
2n−1−1].

In order to split x into different frequency ranges we need to set all entries
in x∗ responsible for unwanted frequencies to zero.
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Range Vector
fN

2 to fN x(n)∗ = [0, . . . , 0, d1
0, . . . , d

1
2n−1−1]

fN

4 to fN

2 x(n−1)∗ = [0, . . . , 0, d2
0, . . . , d

2
2n−2−1, 0, . . . , 0]

. . . . . .
fN

2n to fN

2n−1 x(1)∗ = [0, dn
0 , 0, . . . , 0]

0 to fN

2n x(0)∗ = [xn
0 , 0, . . . , 0].

Now the inverse DWT of each x(i)∗ is computed:

y(i) = IDWT (x(i)∗),

where i = 0 . . . n.
Note that y(i) contains a range of frequencies from x as shown above and

its length is 2n.
To approximate and predict y(i) for i = 1 . . . n MLPs are used with the

same three layer architecture as shown in the basic approach. The patterns
are in the form:

([y
(i)
1 , y

(i)
2 , ..., y

(i)
6 ], y

(i)
7 )

([y
(i)
2 , y

(i)
3 , ..., y

(i)
7 ], y

(i)
8 )

([y
(i)
3 , y

(i)
4 , ..., y

(i)
8 ], y

(i)
9 )

. . .

([y
(i)
n−6, y

(i)
n−5, ..., y

(i)
n−1], y(i)

n ),

where i = 1 . . . n.
There is no need to build an ANN to approximate y(0) since all the entries

in this vector are equal to the mean value of x0, . . . , x2n−1.
Let N (i) denote the ANN used to approximate y(i). Unknown values of

y(i) can be predicted:

ỹ
(i)
n+1 = N (i)(y

(i)
n−5, y

(i)
n−4, . . . , y

(i)
n )

ỹ
(i)
n+2 = N (i)(y

(i)
n−4, y

(i)
n−3, . . . , y

(i)
n , ỹn+1)(i)

ỹ
(i)
n+3 = N (i)(y

(i)
n−3, y

(i)
n−2, y

(i)
n−1, y

(i)
n , ỹ

(i)
n+1, ỹ

(i)
n+2),

. . .

where i = 1 . . . n.
Thus

x̃n+j =
n

∑

i=1

ỹ
(i)
n+j +M,

where j > 0 and M = y
(0)
0 is the average value of x0, . . . , x2n−1. This is a

consequence of wavelet filter properties and the Orthogonal Decomposition
Theorem ([1], p. 101).
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4.3. A small improvement

There exists a simple method of improving the wavelet-neural prediction.
It can be easy observed, that there is no need to approximate low frequency
ranges with ANNs if it is intended to forecast just a few values.

In the example of the later discussed application a data of length 1561
samples was used. It was intended to predict just the next 5 samples. The
data was zero padded to achieve a length of 211 and split into 11 frequency
ranges.

Range Oscillations length
fN

2 to fN 2-4 samples
fN

4 to fN

2 4-8 samples
. . . . . .

fN

211 to fN

210 2048-4096 samples.

Let us denote with s = [s1, s2, . . . , s1561, 0, . . . , 0] the first data set of
length 211 and with t = [s1, s2, . . . , s1561, s1562, . . . , s1566, 0, . . . , 0] the other,
where s1562, . . . , s1566 are the desired real, not forecasted values.

As there is no way for this future 5 entries s1562, . . . , s1566 to generate
long oscillations (i.e. 1024–2048, 512–1024, . . ., 64–128 samples) they have
very little or no effect on low and medium frequency wavelet coefficients.

So having the s∗ = DWT (s) only high frequency bands are separated
and used as samples for ANNs (as above). The high frequency coefficients
in s∗ are zero padded and the IDWT is applied. The resulting signal s̃ is a
rough approximation of s and of t.

The unknown values s1562, . . . , s1566 are approximated in the following
way:

s1561+j ≈

n
∑

i=k

ỹ
(i)
1561+j + s̃1561+j ,

where in the described application j = 1, . . . , 5, n = 11 (the number of

frequency ranges). Ranges k, k+1, . . . , n are approximated by ANNs (ỹ
(i)
1561+j)

and 1, . . . , k− 1 are contained in s̃. k = 8 gave the best results (lowest error)
for forecasting the next 5 values.

The described improvement helped to remove errors generated by ANNs
predicting low frequencies and to reduce time needed to train all networks.
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5. An application

The described wavelet-neural method was applied to a USD/PLN average
exchange rate. The archival data was downloaded from National Bank’s of
Poland web site (http://www.nbp.pl) and covered the period 1996.01.02 –
2002.03.08, that is 1561 values.

To test the prediction method the following procedure was developed and
repeated 5 times:

1. Let k = 100.

2. s = [s1, . . . , s1561−k−5, 0, . . . , 0] is a vector containing the exchange
rates, zero padded to fulfill the Mallat’s algorithm assumptions (length:
211).

3. 5 consecutive values: s̃1561−k−4, . . . , s̃1561−k are forecasted using the
improved wavelet-neural method on s.

4. Predicted data is saved.

5. if k > 1 then k := k − 1 and go to step 2.

6. End.

In step 3 four MLPs were used to approximate the four highest frequency
ranges, since this number of MLP forecasted ranges generated the smallest
prediction error. The filter coefficients came from the Daubechies 4 wavelet
family.

Optimal ANN architectures were estimated using JavaNNS (a Java inter-
face to SNNS kernel, see [11]) and its Optimal Brain Surgeon algorithms.

The networks had an input layer (6 input neurons), one hidden layer
and an output layer (1 neuron). The hidden and output neurons used the
logistic activation function. Table 1 contains details about architectures and
frequency ranges.

Tab. 1. Frequency ranges and ANNs architectures

Network Range Oscillations length Hidden neurons

1 fN

16 to fN

8 16–32 samples 1

2 fN

8 to fN

4 8–16 samples 2

3 fN

4 to fN

2 4–8 samples 6

4 fN

2 to fN 2–4 samples 6

The MLPs were trained with the Backpropagation-momentum algorithm.
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ANNs patterns were split into learning (L) and testing (T) set. The test-
ing set contained 80 randomly selected patterns, the learning set ca. 1380–
1480 (depending on k).

A typical learning result during the prediction test procedure (for a par-
ticular k) is shown in Tab. 2.

Tab. 2. A typical learning result during the prediction test procedure

Net Set SSE MSE RMSE NRMSE R2 DIR

1 U 0,0787 0,00005 0,0073 0,2828 0,920 85,36%

2 U 0,0717 0,00005 0,0069 0,3858 0,851 84,34%

3 U 0,0285 0,00002 0,0044 0,3391 0,884 89,85%

4 U 0,0428 0,00003 0,0054 0,4825 0,767 88,49%

1 T 0,0316 0,00040 0,0198 0,3299 0,891 90,00%

2 T 0,0051 0,00006 0,0080 0,5451 0,702 86,25%

3 T 0,0053 0,00007 0,0081 0,4577 0,790 86,25%

4 T 0,0016 0,00002 0,0044 0,3533 0,875 90,00%

Note that these are error measures computed using learning and testing
patterns, but not prediction errors of the whole, aggregated wavelet-neural
model. These are the measures definitions:

1. Sum of Square Error

SSE =
N

∑

i=1

(yi − ỹi)
2.

2. Mean Square Error

MSE =
1

N

N
∑

i=1

(yi − ỹi)
2.

3. Root of MSE
RMSE =

√
MSE.

4. Normalized RMSE

NRMSE =
RMSE√

σ
.

5. R2

R2 = 1 − MSE

σ
,
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where σ = 1
N

∑N
i=1(y − yi)

2, y = 1
N

∑N
i=1 yi. yi, ỹi denote the expected

and obtained MLP’s output value on i-th pattern, respectively. DIR is the
percentage of correctly predicted directions of value alteration.

After the prediction testing procedure was 5 times repeated, 2500 of pre-
dicted exchange rates were obtained. They were divided into 5 groups con-
taining the 1st, 2nd, 3rd, 4th and 5th forecasted rate. In each of these groups
all predicted values were compared to the real data to estimate the prediction
error. Following error measures were used:

1. Root Average Square Error

RASE =

√

√

√

√

1

N

N
∑

i=1

(si − s̃i)2.

2. Mean Absolute Percentage Error

MAPE =
1

N

N
∑

i=1

∣

∣

∣

si − s̃i

si

∣

∣

∣
∗100.

3. Theil’s information coefficient

TR =

√

∑R
i=1(si − s̃i)2

√

∑R
i=1(si − si−1)2

,

where si is the real value, s̃i its prediction, N the number of predictions of a
value.

Note that RASE and MAPE are applied to all N = 500 values in each
of 5 groups, while TR to results of each forecasting. It means that hav-
ing forecasted values s̃k+1, . . . , s̃k+5 and real data sk+1, . . . , sk+5 five Theil’s
coefficients are computed:

TR =

√

∑R
i=1(sk+i − s̃k+i)2

√

∑R
i=1(sk+i − sk+i−1)2

,

where R = 1, . . . , 5. The purpose is to focus on the relationship between a
prediction’s length and quality ([14], p. 87).

The forecasting method results are presented in Tab. 3.
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Tab. 3. Prediction test procedure’s results

Predicted value’s number

Error measure 1 2 3 4 5

RASE 0,028 0,041 0,048 0,056 0,061

MAPE 0,544% 0,789% 0,960% 1,107% 1,227%

Avg(TR) 2,281 1,363 1,492 1,670 1,808

TR < 1 51,4% 33,8% 29,4% 20,8% 16,6%

Avg(TR < 1) 0,322 0,240 0,211 0,155 0,131

σ(TR < 1) 0,278 0,298 0,293 0,279 0,276

DIR 55% 58,6% 64% 51,2% 49,2%

The predicted value’s number equals to R in TR, σ(.) denotes the standard
deviation.

Values of TR < 1 are exposed in Tab. 3 because of their importance.
TR = 0 means there was no prediction error, TR > 1 means it was worse
than the trivial “forecasting with the previous value”.

6. Concluding remarks

The above presented results indicate that the prediction algorithm works
pretty well while generating values for short time periods. The errors rise
as the prognosis length is extended, which is intuitive. Simultaneously the
amount of TR < 1 falls. The MAPE, RASE errors and direction coefficients
from the 1st, 2nd and 3rd forecasted exchange rate are very satisfactory.
The fact that DIR rises achieving the maximum value at the 3rd rate is
rather surprising. This value of 64% may make some practical applications
possible. However, DIR′s next values: 51,2% and 49,2% indicate that there
is no possibility to trust the forecasted 4th and 5th value of the exchange
rate direction change prognosis.

It seems that an improvement of prediction could be achieved adding some
other economical data to the learning patterns (like stock market indexes,
inflation rates) on which the USD/PLN exchange rate may depend.

A summary of the most important results:

1. A high (64%) direction coefficient while forecasting the future 3rd ex-
change rate.

2. A low (0,544%, 0,789%) MAPE error while forecasting the future 1st
and 2nd rates.
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3. A satisfactory (51,4%) amount of good-quality (low TR and its standard
deviation) predictions of the 1st rate.

4. The designed MLPs achieved a high DIR coefficient (86,25–90%) on
testing patterns.
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[19] Refenes A.P.N.; Neural Networks in the Capital Markets, J. Wiley & Sons,
Chichester 1995.

[20] Schauder M.J.; Einige Eigenschaften der Haarschen Orthogonalsysteme, Math.
Zeit. 28 (1928), pp. 317–320.
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