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RELATIVISTIC QUANTUM MECHANICS
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This article is a pedagogical introduction to relativistic quantum me-
chanics of the free Majorana particle. This relatively simple theory differs
from the well-known quantum mechanics of the Dirac particle in several
important aspects. First, we present its three equivalent formulations.
Next, a so-called axial momentum observable is introduced, and the gen-
eral solution of the Dirac equation is discussed in terms of eigenfunctions
of that operator. We also present pertinent irreducible representations of
the Poincaré group. Finally, we show that in the case of massless Majorana
particle, the quantum mechanics can be reformulated as a spinorial gauge
theory.
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1. Introduction

The concept of Majorana particles is very popular in particle physics
nowadays. The physical object of interest is a spin 1/2, electrically neu-
tral, fermionic particle, which does not have its anti-particle. The common
spin-1/2 particles such as electrons or quarks do possess anti-particles. The
Majorana particles are hypothetical objects as yet, but it is not excluded
that there exist neutrinos of this kind [1, 2]. Anyway, theory of such particles
is interesting on its own right. The Majorana (quasi-)particles are intensely
studied also in condensed matter physics, but we shall not touch upon this
line of research.

The theory of Majorana particles can be developed on two levels: as
a quantum field theory or relativistic quantum mechanics. Of course, the
state-of-the-art approach is the field theoretic one. Nevertheless, the rela-
tivistic quantum mechanics also offers some advantages, in particular, it is
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much simpler — the field theory is hard to use except some rather narrow
range of problems like scattering processes at energies lying within a per-
turbative regime. The usefulness of the relativistic quantum mechanics is
well-documented in the theory of electrons, either bound in atoms or trav-
eling in space. The electron is the example of Dirac particle. Relativistic
quantum mechanical theories of the Majorana and the Dirac particle are sig-
nificantly different. The Dirac particle is a well-understood textbook item,
as opposed to the Majorana particle where several subtleties are present.

In this paper, we attempt to give a pedagogical introduction to relativis-
tic quantum mechanics of the free Majorana particle. It is not comprehen-
sive, we rather focus on selected topics: the problem of momentum observ-
able; the general solution of the Dirac equation for the Majorana bispinor;
and relativistic invariance in terms of representations of the Poincaré group.
We also describe in detail the path from quantum mechanics of the Dirac
particle to quantum mechanics of the Majorana particle. We emphasize the
fact that in the case of Majorana particle, the quantum mechanics employs
only the algebraic field of real numbers R, while in the Dirac case, the com-
plex numbers are essential. Such real quantum mechanics is less known, but
it is thoroughly discussed in literature, see, e.g., [3–5]. There is an inter-
esting aspect of the theory of massless Majorana particle, namely a local
gauge invariance in the momentum representation for bispinors, presented
in Section 5.2. To the best of our knowledge, such gauge invariance has not
been discussed in literature.

Few words about our conventions. We use the natural units c = ~ = 1.
Metric tensor (ηµν) in the Minkowski space-time is diagonal with the en-
tries (1,−1,−1,−1). Summation over repeated indices is understood. Four-
vectors and three-component vectors have components with upper indices,
for example p = (p0, p1, p2, p3)T or x = (x1, x2, x3)T, unless stated other-
wise. Three-component vectors are denoted by the boldface. T denotes the
matrix transposition. In the matrix notation, x is a column with three, and
p with four elements. Bispinors are columns with four elements. For con-
venience, we do not avoid complex numbers when it is natural to use them.
For example, we stick to the standard notation for the Dirac matrices γµ. In
the Majorana quantum mechanics they are imaginary, hence we use the real
matrices iγµ, where i is the imaginary unit. Of course, we could get rid of
the complex numbers completely at the price of introducing a new notation.

The paper is organized as follows. In Section 2, we introduce charge
conjugation and we define the Majorana bispinors. Section 3 is devoted
to the momentum observable for the Majorana particle. In Section 4, we
study general solution of the Dirac equation in the case of Majorana particle.
Relativistic invariance and pertinent representations of the Poincaré group
are discussed in Section 5. Remarks are collected in Section 6.
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2. The Majorana bispinors and the Majorana mass term

Let us begin from the Dirac equation for complex four-component bi-
spinor ψ(x)

iγµD(∂µ + iqAµ(x))ψ(x)−mψ(x) = 0 , (2.1)

where m and q are real constants, the index µ takes values 0, 1, 2 and 3,
Aµ(x) is a fixed four-potential of the electromagnetic field. The argument
of ψ, x = (t,x), denotes points in the Minkowski space-time.

The matrices γµD have the following form:

γ0D =

(
σ0 0
0 −σ0

)
, γiD =

(
0 σi
−σi 0

)
, (2.2)

known as the Dirac representation. Here σi are the Pauli matrices, the
index i takes values 1, 2 and 3, σ0 denotes the two-by-two unit matrix. The
matrices γµD obey the condition

γµDγ
ν
D + γνDγ

µ
D = 2ηµνI , (2.3)

where I denotes four-by-four unit matrix. Note that γ2D is imaginary, while
the remaining matrices are real.

The information given above is purely mathematical. The physical mean-
ing of it is established by interpreting ψ(x) as the wave function of certain
particle. The constants m and q then give, respectively, the rest mass and
the electric charge of this particle (in fact, the rest mass is given by |m|, not
by m). Equation (2.1) and such interpretation of ψ are the basic ingredients
of the theory called the quantum mechanics of the Dirac particle. It is the
most important example of relativistic quantum mechanics. Scalar product
of two wave functions ψ1, ψ2 — necessary in quantum mechanics — has the
form of

〈ψ1|ψ2〉 =

∫
d3x ψ̄1(t,x)γ0Dψ2(t,x) =

∫
d3x ψ†1(t,x)ψ2(t,x) , (2.4)

where ψ̄ = ψ†γ0D and † denotes the Hermitian conjugation. The bispinors
ψ are columns with four elements, and ψ̄’s are one-row matrices with four
elements. One can prove that the scalar product (2.4) does not depend on
time t provided that ψ1, ψ2 are solutions of the Dirac equation (2.1).

Alternative interpretation of ψ(x), which is not used here, is that it is a
classical field known as the Dirac field.

Charge conjugate bispinor ψc(x) is defined as follows:

ψc(x) = iγ2Dψ
∗(x) , (2.5)
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where ∗ denotes the complex conjugation. Taking complex conjugation of
Eq. (2.1) and using the relation γ2D(γµD)∗γ2D = γµD, we obtain the equation

iγµD(∂µ − iqAµ(x))ψc(x)−mψc(x) = 0 , (2.6)

which differs from Eq. (2.1) by the sign in the first term. In consequence,
ψc(x) is the wave function of another Dirac particle which has the electric
charge −q .

Let us now consider the Poincaré transformations of the Cartesian co-
ordinates in the Minkowski space-time, x′ = Lx + a. The corresponding
transformations of the bispinor ψ(x) have the form of

ψ′(x) = S(L)ψ
(
L−1(x− a)

)
, (2.7)

where S(L) = exp(ωµν [γµD, γ
ν
D]/8). The bracket [ , ] denotes the commutator

of the matrices. The real numbers ωµν = −ωνµ parameterize the proper
orthochronous Lorentz group in a vicinity of the unit element I, namely
L = exp(ωµν ), where ωµν = ηµλωλν . Using definition (2.5) and formula
(2.7), we find that ψc has the same transformation law as ψ

ψ′c(x) = S(L)ψc

(
L−1(x− a)

)
. (2.8)

This fact inspired Majorana [6] to proposing an interesting modification of
the quantum mechanics of the Dirac particle.

The modification consists in generalizing equation (2.1) by including the
term mMψc(x), often called the Majorana mass term,

iγµD(∂µ + iqAµ(x))ψ(x)−mψ(x)−mMψc(x) = 0 ,

where we assume for simplicity that the constant mM is a real. Such a
modification, however, cannot be done without a price. We know from
classical electrodynamics that all four-potentials which differ by a gauge
transformation are physically equivalent, that is, Aµ(x) is equivalent to
A′µ(x) = Aµ(x) + ∂µχ(x), where χ(x) is an arbitrary smooth real func-
tion which vanishes quickly when x → ∞ (in mathematical terms, it is a
test function of the Schwartz class). Thus, let us write Eq. (2.1) with A′µ(x)

iγµD(∂µ + iqA′µ(x))ψ′(x)−mψ′(x) = 0 , (2.9)

where ψ′(x) denotes solutions of this new equation. It is clear that this equa-
tion is equivalent to (2.1) — it suffices to substitute ψ′(x) = exp(−iqχ(x))ψ(x)
and to divide both sides of equation (2.9) by exp(−iqχ(x)). We say that
Eq. (2.1) is gauge invariant. The gauge invariance is lost when we include
the Majorana mass term. The reason is that ψ′c(x) = exp(iqχ(x))ψc(x), as
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follows from definition (2.5) and, therefore, the exponential factors cannot
be removed. The Majorana mass term breaks the gauge invariance. There-
fore, such a mass term can be considered only if q = 0, that is, when the
particle is electrically neutral. For such an electrically neutral particle, we
may consider the equation

iγµD∂µψ(x)−mψ(x)−mMψc(x) = 0 (2.10)

known as the Dirac equation with the Majorana mass term.
The inclusion of the Majorana mass term has a deep implication for the

structure of the theory — it partially breaks the superposition principle of
quantum mechanics of the Dirac particle. The original Dirac equation (2.1)
is linear over C, that is, any complex linear combination of its solutions also
is a solution. Because ψc involves the complex conjugation, Eq. (2.10) allows
for linear combinations with real coefficients only. On the other hand, the
bispinor ψ is still complex, that is the Hilbert space of the wave functions
is linear over C. It is clear that one can avoid this discrepancy by taking
a smaller Hilbert space in which only real linear combinations are allowed.
The crucial condition for such restriction is that it should be compatible
with the Poincaré invariance.

Equation (2.10) can be transformed into equivalent equation for ψc,
namely

iγµD∂µψc(x)−mψc(x)−mMψ(x) = 0 . (2.11)

Let us introduce new bispinors ψ±(x) = 1
2(ψ(x) ± ψc(x)). It follows from

Eqs. (2.10), (2.11) that

iγµD∂µψ±(x)− (m±mM)ψ±(x) = 0 . (2.12)

These equations for ψ± have the Dirac form (2.1) (with q = 0), but the rest
masses are different if m 6= 0 and mM 6= 0, namely m+ = |m+mM|, m− =
|m −mM|. Thus, instead of single equation (2.10), we now have two inde-
pendent equations (2.12). The bispinor ψ is split into the ψ± components:
ψ(x) = ψ+(x) + ψ−(x). It turns out that also scalar product (2.4) is split,

〈ψ1|ψ2〉 = 〈ψ1+|ψ2+〉+ 〈ψ1−|ψ2−〉 .

The Poincaré transformations of ψ± have the same form as for ψ or ψc,
cf. formulas (2.7), (2.8). To summarize, quantum mechanics of the Dirac
particle with the Majorana mass term has been split into two independent
sectors. The splitting is preserved by the Poincaré transformations.

The components ψ± are characterized by their behavior under the charge
conjugation. The component ψ+ is charge conjugation even while ψ− is odd,
namely

(ψ+)c(x) = ψ+(x), (ψ−)c(x) = −ψ−(x) . (2.13)
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The decomposition of ψ into even and odd components is unique: if ψ =
χ+ + χ−, where χ+ is even and χ− odd, then one can easily show that
χ+ = ψ+, χ− = ψ−. Conditions (2.13) define two subspaces of bispinors
which are linear spaces over R, not over C. For example, let us consider a
linear combination of two charge conjugation even bispinors c1ψ+ + c2χ+.
The charge conjugation acting on it gives

(c1ψ+ + c2χ+)c = c∗1ψ+ + c∗2χ+ .

Thus, the linear combination is charge conjugation even only if c1, c2 are
real numbers.

The relativistic quantum mechanics of the Majorana particle is obtained
by taking only the charge conjugation even sector. In accordance with con-
siderations presented above, the Hilbert space consists of (in general) com-
plex bispinors — we now denote them by ψ instead of ψ+ — which obey the
condition

ψc(x) = ψ(x) . (2.14)

This Hilbert space is linear over R. The scalar product still has the form
of (2.4). Time evolution of ψ is governed by the Dirac equation (2.12), in
which we rename m+mM to m. Here, we consider only the free Majorana
particle. More general theory can be obtained by including a certain fixed
potential in the Dirac equation.

Condition (2.14) can be solved. To this end, we write ψ =

(
ξ
ζ

)
, where

ξ, ζ are two-component spinors. Using definition (2.5) and the explicit form
of γ2D given by (2.2), we find that ζ = −iσ2ξ∗. Therefore,

ψ =

(
ξ

−iσ2ξ∗
)
, (2.15)

where ξ is arbitrary complex spinor. The scalar product of ψ and χ =
(η,−iσ2η∗)T is expressed by ξ and η,

〈ψ|χ〉 =

∫
d3x

(
ξ†η + η†ξ

)
. (2.16)

The Dirac equation is equivalent to the following equation for the spinor ξ:

i∂0ξ(x) + σiσ2∂iξ
∗(x)−mξ(x) = 0 . (2.17)

Formulas (2.15), (2.16) and Eq. (2.17) constitute the so-called two-component
formulation of the quantum mechanics of the Majorana particle. It is used,
for example, in [7].
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Yet another formulation is obtained by decomposing the spinor ξ into
real and imaginary parts, ξ = (ξ′+ iξ′′)/

√
2, and rewriting formula (2.15) in

the following form:

ψ(x) =
1√
2

(
σ0 iσ0
−iσ2 −σ2

) (
ξ′

ξ′′

)
. (2.18)

The coefficient 1/
√

2 is introduced for convenience. The four-by-four matrix
on the r.h.s. of formula (2.18) is nonsingular — in fact, it is unitary. There-
fore, the Dirac equation for ψ can be equivalently rewritten as equation for
the real bispinor Ξ = (ξ′, ξ′′)T. This new equation also has the form of Dirac
equation

iγµM∂µΞ(x)−mΞ(x) = 0 , (2.19)

with the following matrices γµM in place of γµD:

γ0M = i

(
0 σ0
−σ0 0

)
, γ1M = −i

(
0 σ3
σ3 0

)
,

γ2M = i

(
−σ0 0

0 σ0

)
, γ3M = i

(
0 σ1
σ1 0

)
. (2.20)

These matrices are unitarily equivalent to the matrices γµD. Note that all ma-
trices γµD are purely imaginary1. They, of course, satisfy the Dirac condition
(2.3). For the scalar product, we obtain

〈ψ1|ψ2〉 =

∫
d3x

(
ξ′T1 (x)ξ′2(x) + ξ′′T1 (x)ξ′′2 (x)

)
=

∫
d3xΞT

 (x)Ξ(x) , (2.21)

where Ξ (Ξ) corresponds to ψ1 (ψ2). In the remaining part of this article,
we will use this last formulation.

Quantum mechanics with (bi)spinorial wave functions is also used in
theory of the Weyl particle. Relations between the Dirac, Majorana, and
Weyl quantum particles are elucidated in, e.g., [8].

3. The axial momentum

Let us dig a bit deeper into the relativistic quantum mechanics of the
Majorana particle. We will use the third formulation presented above. In
order to facilitate the considerations, we now adjust the notation and list
the basic tenets of the theory. From now on, the Majorana real bispinor is

1 In such a case, we say that we have the Majorana representation for γµ matrices.
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denoted by ψ instead of Ξ. As the Dirac matrices in the Majorana repre-
sentation, we take (for a personal reason) the following matrices:

γ0 =

(
0 σ2
σ2 0

)
, γ1 = i

(
−σ0 0

0 σ0

)
, γ2 = i

(
0 σ1
σ1 0

)
,

γ3 = −i
(

0 σ3
σ3 0

)
, γ5 = iγ0γ1γ2γ3 = i

(
0 σ0
−σ0 0

)
, (3.1)

which are unitarily equivalent to the matrices γµM. The matrices γ0, γ5 are
Hermitian and anti-symmetric, γi are anti-Hermitian and symmetric. The
pertinent Hilbert space H consists of all normalizable real bispinors. It is
linear space over R, not over C. The scalar product is defined as follows:

〈ψ1|ψ2〉 =

∫
d3x ψT

1 (t,x)ψ2(t,x) . (3.2)

Observables are represented by linear operators which are Hermitian with re-
spect to this scalar product. Time evolution of the real bispinors is governed
by the Dirac equation

iγµ∂µψ(x)−mψ(x) = 0 (3.3)

with imaginary γµ matrices (3.1). It is convenient to rewrite this equation
in the Hamiltonian form

∂tψ = ĥψ , (3.4)

where
ĥ = −γ0γk∂k − imγ0 .

This operator is real, but it is not Hermitian. Nevertheless, the scalar prod-
uct turns out to be constant in time because ĥ is anti-symmetric as operator
in H, that is, 〈

ψ1|ĥψ2

〉
= −

〈
ĥψ1|ψ2

〉
.

We shall study solutions of Eq. (3.4) in the next section.
The quantum mechanical framework described above has certain unusual

features. First, the Hamiltonian ĥ is not Hermitian, hence it is not an ob-
servable. Let us stress that it is not a disaster for the quantum mechanics —
what really matters is constant in time scalar product. Simple calculation
shows that scalar product (3.2) is constant in time provided that ψ1, ψ2 obey
equation (3.4). Of course, the question arises whether there is a certain Her-
mitian energy operator. The form of general solution of Eq. (3.4) presented
in the next section, see formula (4.5), suggests the operator

Ê =
√
m2 −∇2 .
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In the present section, we focus on another peculiarity: the standard
momentum operator p̂ = −i∇ turns real bispinors into imaginary ones,
hence it is not operator in the Hilbert spaceH. To the best of our knowledge,
this problem was noticed first in [9] and later readdressed in [10]. Is there
a replacement for p̂? The momentum operator is usually associated with
transformation of the wave function ψ under spatial translations, ψ′(x) =
ψ(x− a), where a is a constant vector. For infinitesimal translations,

ψ′(x) = ψ(x)− (a∇)ψ(x) +O
(
a2
)
.

Thus, the actual generator of translations is just the ∇ operator, but it is
not Hermitian. When complex numbers are allowed, we multiply ∇ by −i
in order to obtain the Hermitian operator p̂. Then we have

ψ′(x) = ψ(x)− i(ap̂)ψ(x) +O
(
a2
)
.

Below we give an argument that in the Majorana case, the natural choice
is to multiply ∇ by the matrix −iγ5. This gives the Hermitian operator
p̂5 = −iγ5∇, called by us the axial momentum. In this case,

ψ′(x) = ψ(x)− iγ5(ap̂5)ψ(x) +O
(
a2
)
,

because γ25 = I.
The argument for p̂5 is as follows. There exists a mapping between the

Majorana bispinors ψ and right-handed (or left-handed) Weyl bispinors φ,
namely ψ = φ+φ∗. By the definition of right-handed bispinors, γ5φ = φ. It
follows that γ5φ∗ = −φ∗. Therefore, γ5ψ = φ−φ∗ and φ = (I+γ5)ψ/2, φ∗ =
(I − γ5)ψ/2. We see that the mapping is invertible. Now, the momentum
operator p̂ = −i∇ is well-defined for the Weyl bispinors because they are
complex. Moreover, because p̂ commutes with γ5, also p̂φ is the right-
handed Weyl bispinor. Let us find the Majorana bispinor that corresponds
to p̂φ:

p̂φ+ (p̂φ)∗ = −i∇(φ− φ∗) = −i∇γ5(φ+ φ∗) = p̂5ψ .

Thus, the axial momentum operator in the space of Majorana bispinors cor-
responds to the standard momentum operator in the space of right-handed
Weyl bispinors.

Normalized eigenfunctions ψp(x) of the axial momentum obey the equa-
tions

p̂5ψp(x) = p ψp(x) ,

∫
d3x ψT

p(x) ψq(x) = δ(p− q) ,

and they have the following form:

ψp(x) = (2π)−3/2 exp(iγ5px) v . (3.5)
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Here, v an arbitrary real, constant, normalized (vTv = 1) bispinor. For the
exponential, we may use the formula

exp(iγ5px) = cos(px)I + iγ5 sin(px) .

The eigenvalues p take arbitrary real values.
The axial momentum is not constant in time in the Heisenberg picture

when m 6= 0. This is a rather unexpected feature, recall that we consider a
free particle. Let us first introduce the Heisenberg picture. Equation (3.4)
has the formal solution

|t〉 = exp
(
tĥ
)
|t0〉 ,

where |t0〉 is an initial state. Time-dependent expectation value of an ob-
servable Ô is given by

〈t|Ô|t〉 = 〈t0| exp
(
−tĥ

)
Ô exp

(
tĥ
)
|t0〉 .

Therefore, we define the Heisenberg picture version of Ô as

Ô(t) = exp
(
−tĥ

)
Ô exp

(
tĥ
)
.

In consequence,
dÔ(t)

dt
=
[
Ô(t), ĥ

]
+
(
∂tÔ

)
(t) , (3.6)

where the last term on the r.h.s. appears when Ô is time-dependent in the
Schroedinger picture. In the case of axial momentum, the r.h.s. of Eq. (3.6)
does not vanish when m 6= 0,[

p̂5, ĥ
]

= 2imγ0p̂5 .

The solution of the Heisenberg equation (3.6) reads [10]

p̂5(t) = −iγ5(t)∇ , (3.7)

where

γ5(t) = γ5 + imÊ−1γ0γ5

[
sin
(

2Êt
)

+ Ĵ
(

1− cos
(

2Êt
))]

, (3.8)

and Ĵ = ĥ/Ê. Since Ĵ2 = −I, the two oscillating terms on the r.h.s of
formula (3.8) are of the same order m/Ê.

Notice that p̂2
5 = −∇2 commutes with ĥ. Therefore, the energy Ê as well

as |p̂5| are constant in time. The evolution of p̂5(t) reminds a precession.
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Matrix elements of the axial momentum can depend on time, for exam-
ple,∫

d3x ψT
p (x)p̂5(t)ψq(x) = p

[
1 +

m2

E2
p

(cos(2Ept)− 1)

] (
vTw

)
δ(p− q)

−pm
Ep

[
i sin(2Ept)

(
vTγ0w

)
+ (1− cos(2Ept))

(
vTγ5

γjpj

Ep
w

)]
δ(p + q) .

Here, v and w are the constant bispinors present in, respectively, ψp and
ψq, see formula (3.5), and Ep =

√
m2 + p2.

The Heisenberg uncertainty relation for the position and the axial mo-
mentum has the same form as with the standard momentum [11],

〈ψ|
(
∆x̂j

)2 |ψ〉〈ψ|(∆p̂k5

)2
|ψ〉 ≥ 1

4
δjk ,

where ∆x̂j = x̂j − 〈ψ|x̂j |ψ〉, ∆p̂k5 = p̂k5 − 〈ψ|p̂k5|ψ〉 .

4. General solution of the Dirac equation

From a mathematical viewpoint, the Dirac equation (3.3), or equivalently
Eq. (3.4), is rather a simple linear partial differential equation with constant
coefficients. It can be solved by the Fourier transform method. The standard
Fourier transform uses the functions exp(ipx) which are eigenfunctions of
the standard momentum p̂. In view of the inadequacy of this momentum
for the Majorana particle, we prefer an expansion into the eigenfunctions of
the axial momentum with the exponential orthogonal matrices exp(iγ5px).

Eigenfunctions (3.5) contain arbitrary real bispinors v. At each fixed
eigenvalue p, they form real four-dimensional space. We choose as the basis
in this space eigenvectors of the real and Hermitian matrix γ0γkpk, i.e., such
v that

γ0γkpk v = E0 v , (4.1)

where the matrices γµ have the form given by (3.1). It turns out that
the eigenvalues E0 = ±|p|. The eigenvectors have the following form: for
E0 = |p|,

v
(+)
1 (p) =

1√
2|p|(|p| − p2)


−p3

p2 − |p|
p1

0

 , v
(+)
2 (p) = iγ5 v

(+)
1 (p) , (4.2)

and for E0 = −|p|

v
(−)
1 (p) = iγ0 v

(+)
1 (p) , v

(−)
2 (p) = iγ5 v

(−)
1 (p) = −γ5γ0v(+)

1 (p) . (4.3)
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These bispinors are real and orthonormal(
v
(ε)
j

)T
(p) v

(ε′)
k (p) = δεε′δjk ,

where ε, ε′ = +,−, and j, k = 1, 2.
Equation (4.1) is equivalent to2

Ê0 ψp(x) = E0 ψp(x) ,

where
Ê0 = γ0γkp̂k5 .

As shown in [10], Ê0 is related to the standard helicity operator λ̂ = Si p̂i/|p̂|,
namely

Ê0 = 2|p̂|λ̂ ,

where Sj = iεjkl[γ
k, γl]/8 are spin matrices, and |p̂| =

√
p̂2 =

√
p̂2
5 = |p̂5|.

Both Ê0 and λ̂ are observables (they are real and Hermitian), as opposed
to Si and p̂ which are not real. Thus, Ê0 is essentially equivalent to the
helicity. The plus sign in (4.2) and the minus in (4.3) correspond to the
helicities +1/2 and −1/2, respectively.

The expansion of the wave function we start from reads

ψ(t,x) =
1

(2π)3/2

2∑
α=1

∫
d3p eiγ5px

(
v(+)
α (p)cα(p, t) + v(−)α (p)dα(p, t)

)
.

(4.4)
The time dependence of the axial momentum amplitudes cα(p, t), dα(p, t)
is determined by the Dirac equation (3.3). A series of mathematical steps
described in [11] leads to the following result:

ψ(t,x) =
1

2(2π)3/2

∫
d3p [cos(px− Ept)A+(p) + cos(px + Ept)A−(p)

+ sin(px− Ept)B+(p) + sin(px + Ept)B−(p)] , (4.5)

where

A±(p) = v
(+)
1 (p)A1

±(p) + v
(+)
2 (p)A2

±(p) + v
(−)
1 (p)A3

±(p) + v
(−)
2 (p)A4

±(p) ,

B±(p) = v
(+)
1 (p)B1

±(p) + v
(+)
2 (p)B2

±(p) + v
(−)
1 (p)B3

±(p) + v
(−)
2 (p)B4

±(p) ,

2 Ê0 should not be confused with the energy operator Ê =
√
m2 −∇2. We keep here

the notation introduced in [10].
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and

A1
± =

(
1± p

Ep

)
c1(p, 0)∓ m

Ep
d2(p, 0) ,

A2
± =

(
1± p

Ep

)
c2(p, 0)∓ m

Ep
d1(p, 0) ,

A3
± =

(
1∓ p

Ep

)
d1(p, 0)± m

Ep
c2(p, 0) ,

A4
± =

(
1∓ p

Ep

)
d2(p, 0)± m

Ep
c1(p, 0) ,

B1
± = −

(
1± p

Ep

)
c2(p, 0)∓ m

Ep
d1(p, 0) ,

B2
± =

(
1± p

Ep

)
c1(p, 0)± m

Ep
d2(p, 0) ,

B3
± = −

(
1∓ p

Ep

)
d2(p, 0)± m

Ep
c1(p, 0) ,

B4
± =

(
1∓ p

Ep

)
d1(p, 0)∓ m

Ep
c2(p, 0) .

In these formulas, p ≡ |p|, Ep =
√
p2 +m2, and cα(p, 0), dα(p, 0) are the

initial values of the amplitudes given at t = 0. Let us remind that p is the
eigenvalue of the axial momentum.

Let us return to the question of energy operator raised in the previous
section. Because the Hamiltonian ĥ is not observable when m 6= 0, we have
to look for another operator. Heuristically, energy in quantum physics is
related to frequency. This idea can be embodied in the formula

∂2t ψ(t,x) = −Ê2ψ(t,x) .

Inserting here ψ(t,x) given by formula (4.5), we obtain the condition Ê2 =

−∇2 + m2, from which we would like to determine the energy operator Ê.
The simplest real and Hermitian solution is Ê =

√
m2 −∇2. The square

root can be a multivalued operation — in order to avoid misunderstandings
let us specify that by

√
m2 −∇2 we mean the operator such that√

m2 −∇2 ψp(x) =
√
m2 + p2 ψp(x)

for all eigenfunctions (3.5) of p̂5. The square root on the r.h.s. has only
non-negative values by assumption.
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Single mode with fixed value q of the axial momentum is obtained by
putting in the formulas above

cα(p, 0) = cα δ(p− q) , dα(p, 0) = dα δ(p− q) ,

where cα, dα, α = 1, 2, are constants. Then, in the massless case,

A1
+ = 2c1, A

2
+ = 2c2, A

3
+ = A4

+ = A1
− = A2

− = 0, A3
− = 2d1, A

4
− = 2d2 ,

B1
+ =−2c2, B

2
+ = 2c1, B

3
+ = B4

+ = B1
− = B2

− = 0, B3
− = −2d2, B

4
− = 2d1 .

It is clear that the A+, B+ part on the r.h.s. of formula (4.5) is independent
of the A−, B− part. In particular, we can put one of them to zero in order
to obtain a plane wave propagating in the direction of q or −q. The massive
case is very different — always two components propagating in the opposite
directions, q and −q, are present. If we assume that A− = B− = 0, a
simple calculation shows that then also A+ = B+ = 0, and vice versa.
Such a pairing of traveling plane waves is one more peculiarity of quantum
mechanics of the massive Majorana particle.

Continuing the analysis of the single mode, let us put d1 = d2 = 0 and
keep c1 and c2 finite. In the massless case, we obtain plane wave moving in
the direction q, namely

ψ(x, t) =
1

(2π)3/2

(
cos(qx− Eqt)

(
c1v

(+)
1 (q) + c2v

(+)
2 (q)

)
+ sin(qx− Eqt)

(
−c2v(+)

1 (q) + c1v
(+)
2 (q)

))
. (4.6)

In the massive case, all four components in (4.5) do not vanish. However,
the amplitudes A− and B− of the −q components are negligibly small in
the high-energy limit (m/Eq � 1). In this limit,

A1
+ ≈ 2c1 , A2

+ ≈ 2c2 , A3
+ =

m

Eq
c2 , A4

+ =
m

Eq
c1 ,

B1
+ ≈ −2c2 , B2

+ ≈ 2c1 , B3
+ =

m

Eq
c1 , B4

+ = −m
Eq
c2 ,

and

A1
− ≈

m2

2E2
q

c1 , A2
− ≈

m2

2E2
q

c2 , A3
− = −m

Eq
c2 , A4

− =
m

Eq
c1 ,

B1
− ≈ −

m2

2E2
q

c2 , B2
− ≈

m2

2E2
q

c1 , B3
− = −m

Eq
c1 , B4

− =
m

Eq
c2 .
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On the other hand, in the limit of small energies (Eq ≈ m), magnitudes of
the q and −q components are approximately equal,

A1
± ≈ c1 , A2

± ≈ c2 , A3
± ≈ ±c2 , A4

± ≈ ±c1 ,

and
B1
± ≈ −c2 , B2

± ≈ c1 , B3
± ≈ ±c1 , B4

± ≈ ∓c2 .

5. The relativistic invariance

Relativistic transformations of the Majorana bispinor have the form of
(2.7), where now S(L) = exp(ωµν [γµ, γν ]/8), where the matrices γµ have the
form given by (3.1). Our goal is to check which irreducible representations
of the Poincaré group are hidden in the space of real solutions of the Dirac
equation (3.3), if any.

Instead of ψ(t,x), we shall consider its counterpart in the axial momen-
tum representation — the real bispinor v(p, t) introduced as follows:

ψ(t,x) =
1

(2π)3/2

∫
d3p

Ep
eiγ5px v(p, t) , (5.1)

where Ep =
√
m2 + p2. Equation (3.4) gives time evolution equation for v

v̇(p, t) = −iγ0γkγ5pkv(p, t)− imγ0v(−p, t) . (5.2)

We have v(−p, t) in the last term on the r.h.s. because γ0 exp(iγ5px) =
exp(−iγ5px)γ0. From Eq. (5.2), we obtain equation

v̈(p, t) = −E2
pv(p, t) ,

which has the general solution in the form of

v(p, t) = exp(−iγ5Ept)v+(p) + exp(iγ5Ept)v−(−p) , (5.3)

where v± are arbitrary real bispinors (we write v−(−p) for later conve-
nience). Formulas (5.3) and (5.1) give

ψ(x, t) =
1

(2π)3/2

∫
d3p

Ep

(
eiγ5(px−Ept) v+(p) + e−iγ5(px−Ept) v−(p)

)
. (5.4)

We have changed the integration variable to −p in the v− term. Further-
more, Eq. (5.2) implies the following relations:

Epγ5v±(p) = γ0γkpkγ5v±(p)±mγ0v∓(p) . (5.5)
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Transformation law (2.7) with a = 0 applied to solution (5.4) gives
Lorentz transformation of the bispinors v±(p),

v′±(p) = S(L) v±
(
L−1p

)
. (5.6)

Here, we use the four-vector p instead of p in order to simplify notation
v+(p) ≡ v+(p), where p0 = Ep. In the case of space-time translations
x′ = x+ a, we obtain

v′±(p) = e±iγ5pav±(p) . (5.7)

Further steps depend on whether the particle is massive or massless. The
presented below discussion of the massive case is based on Section 4 of [11],
where all missing details can be found. The massless case is not covered in
that paper — it is presented below for the first time.

5.1. The massive Majorana particle

In this case, v−(p) can be expressed by v+(p), see (5.5). Using formula
(5.4) we find that the scalar product 〈ψ1|ψ2〉 =

∫
d3x ψT

1 (t,x)ψ2(t,x) is
equal to

〈ψ1|ψ2〉 =
2

m2

∫
d3p

Ep
v1+(p)

(
γ0Ep − γkpk

)
v2+(p) , (5.8)

where v1+(p) = vT1+(p)γ0, and v1+ (v2+) corresponds to ψ1 (ψ2) by formula
(5.4). The form (5.8) of the scalar product is explicitly Poincaré-invariant
and time-independent.

Transformations (5.6), (5.7) are unitary with respect to scalar product
(5.8). Thus, we have found certain real unitary, i.e., orthogonal, representa-
tion of the Poincaré group. In order to determine the spin quantum number
for this representation, we recast it to the standard form with the Wigner

rotations [12]. First, we choose the standard momentum
(0)
p = (m, 0, 0, 0)T,

where m > 0, and a Lorentz boost H(p), H(p)
(0)
p = p. At each p, we

introduce the basis of real bispinors

vi(p) = S(H(p))vi(
(0)
p ) , (5.9)

where i = 1, 2, 3, 4. Here, vi(
(0)
p ) is a basis at

(0)
p such that vTi (

(0)
p )vk(

(0)
p ) =

δik/m. Actually, we assume that this basis has the Kronecker form, i.e.,

the ith component of the bispinor vk(
(0)
p ) is equal to δik/

√
m. The factor m
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is present for dimensional reason. In (5.9) the four-momentum notation is
used, as in (5.6). We write v+(p) in this basis

v+(p) = ai(p)vi(p) .

The amplitudes ai(p), i = 1, 2, 3, 4, are real and dimensionless. The scalar
product (5.8) is equal to

〈ψ1|ψ2〉 =
2

m2

∫
d3p

Ep
ai1(p)a

i
2(p) , (5.10)

where ai1, ai2 correspond to ψ1, ψ2, respectively. The remaining steps are
rather technical. For detailed description of them, we refer the reader to
paper [11]. Below, we cite the main results.

It turns out that Lorentz transformations (5.6) imply the following trans-
formation of the amplitudes ai

a′ k(p) = Ski(R(L, p))ai
(
L−1p

)
, (5.11)

where R(L, p) = H−1(p)LH(L−1p) is the Wigner rotation, and Ski are the
matrix elements of the matrix S(L) introduced in formula (2.7). In the case
of translations,

a′ k(p) = (eiγ5pa)kia
i(p) . (5.12)

For an arbitrary rotation R, including the Wigner rotation, the matrix
S(R) has the form of

S(R) = exp
(
1
2

(
ω12γ

1γ2 + ω31γ
3γ1 + ω23γ

2γ3
))
.

It can be shown that there exists a real orthogonal matrix O such that

OS(R)O−1 = T̂ , (5.13)

where the four-by-four real matrix T̂ has the form of

T̂ =


α′ −α′′ −β′ β′′

α′′ α′ −β′′ −β′
β′ β′′ α′ α′′

−β′′ β′ −α′′ α′

 . (5.14)

The parameters α′, α′′, β′, β′′ are certain functions of ω12, ω31, ω23.
In the last step, we recognize in the matrix T̂ the real form of the spin-

1/2 representation T (u) of SU(2) group. This representation is given by the
transformations T (u)ξ = uξ, where u ∈ SU(2) and ξ is a two-component



2182 H. Arodź

spinor, in general complex. Its real form is obtained simply by using the
real and imaginary parts. Let us take

u =

(
α −β
β∗ α∗

)
, ξ =

(
ξ1
ξ2

)
,

where α = α′ + iα′′, β = β′ + iβ′′, ξ1 = ξ′1 + iξ′′1 , ξ2 = ξ′2 + iξ′′2 , and
αα∗ + ββ∗ = (α′)2 + (α′′)2 + (β′)2 + (β′′)2 = 1. The real forms of ξ and u
read

~ξ =


ξ′1
ξ′′1
ξ′2
ξ′′2

 , T̂ (u) =


α′ −α′′ −β′ β′′

α′′ α′ −β′′ −β′
β′ β′′ α′ α′′

−β′′ β′ −α′′ α′

 .

The real form of the spinor uξ is equal to T̂ (u)~ξ.
We conclude that representation (5.11) is equivalent to the real form of

the spin-1/2 representation T (u) of SU(2) group. Thus, the unveiled rep-
resentation of the Poincaré group is the spin-1/2, m > 0, representation.
Let us emphasize that we have obtained just one such representation. For
comparison, in the case of Dirac particle, two spin-1/2 representations are
present. The representations usually reappear in quantum field theory. Sin-
gle representation in the Majorana case would correspond to a single spin-1/2
particle. In the Dirac case, there are two representations because there is
particle and its anti-particle.

5.2. The massless Majorana particle

We again use formula (5.4) and transformations (5.6), (5.7). The differ-
ence with the massive case is that now the bispinors v+, v− are independent.
Relations (5.5) with m = 0 become constraints for them, namely(

γ0Ep − γkpk
)
v±(p) = 0 , (5.15)

where Ep = |p|. Linear conditions (5.15) define two subspaces of real bi-
spinors v+, v− which are two-dimensional. Each subspace spans the same
representation (5.6), (5.7). It turns out that these representations are irre-
ducible, orthogonal, and characterized by the helicities ±1/2. The reason
for the opposite signs of the helicities in spite of the same transformation law
is that the axial momenta corresponding to v+(p) and v−(p) are p and −p,
respectively, because of the opposite signs in the two exponents in formula
(5.4).
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One can easily show that general solution of conditions (5.15) has the
form of

v±(p) = i
(
γ0|p| − γkpk

)
w±(p) , (5.16)

where real bispinors w±(p)) are arbitrary. The crucial fact here is nilpotency
of the matrix on the l.h.s. of conditions (5.15)(

γ0|p| − γkpk
)2

= 0 .

For a given v±(p), formula (5.16) determines w±(p) up to a gauge transfor-
mation of the form

w′±(p) = w±(p) + i
(
γ0|p| − γkpk

)
χ±(p) (5.17)

with arbitrary real bispinors χ±(p).
Inserting (5.16) into formula (5.4), we obtain the following formula for

the scalar product (3.2):

〈ψ1|ψ2〉 = 2

∫
d3p

|p|

[
w1+(p)

(
γ0|p| − γkpk

)
w2+(p)

+ w1−(p)
(
γ0|p| − γkpk

)
w2−(p)

]
. (5.18)

Notice that the scalar product is invariant with respect to gauge transfor-
mations (5.17).

There is a caveat concerning the r.h.s. of formula (5.18). Namely, it
should not be considered as scalar product of w’s, but rather as scalar prod-
uct of equivalence classes of which the concrete w’s are mere representatives.
The equivalence class contains all bispinors w+(p) (or w−(p)) related to each
other by gauge transformations (5.17). All they give the same v±(p) and
ψ(t,x). The r.h.s. of formula (5.18) does not fulfill the requirement that for
w2±(p) = w1±(p) it vanishes if and only if w1±(p) = 0 — the property of
any true scalar product. The r.h.s. of formula (5.18) vanishes for any w± of
the form of w±(p) = i(γ0|p|−γkpk)χ±(p). All such w± are gauge equivalent
to w± = 0 and they give ψ(t,x) = 0.

We assume that Lorentz transformation of w± has the following form:

w′±(p) = S(L) w±
(
L−1p

)
. (5.19)

It implies transformation law (5.6) for v± given by formula (5.16). In the
case of translations,

w′±(p) = e∓iγ5paw±(p) . (5.20)
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Notice that we could allow for certain gauge transformations on the r.h.s.’s
of these formulas.

Scalar product (5.18) is invariant with respect to transformations (5.19),
(5.20). Therefore, we have two independent unitary (i.e., orthogonal) repre-
sentations of the Poincaré group. In order to identify these representations,
we check the related representations of the so-called little group [12]. In the

massless case, the standard momentum is
(0)
p = (κ, 0, 0, κ)T, where κ > 0 is

fixed. The pertinent little group, called E(2), is the maximal subgroup of the
Lorentz group which leaves the standard momentum invariant. It is three-

dimensional, and it includes spatial rotations around
(0)
p = (0, 0, κ)T as well as

certain combinations of Lorentz boosts and rotations3. Unitary irreducible
representations of E(2) are either infinite-dimensional or one-dimensional
(over complex numbers) [12].

In the considerations presented below, we concentrate on the bispinors
w+. Parallel considerations for w− are essentially identical. Let us introduce

a basis wi(
(0)
p ), i = 1, 2, 3, 4, of bispinors at

(0)
p . Applying Lorentz boosts

H0(p), which transform
(0)
p into p, H0(p)

(0)
p = p, where (p0)2 − p2 = 0 and

p0 > 0, we obtain a basis wi(p) at each p belonging to the upper light-cone

wi(p) = S(H0(p))wi(
(0)
p ) . (5.21)

We decompose w+(p) in this basis,

w+(p) = wi(p)c
i(p) .

Lorentz transformations (5.19) of bispinors are equivalent to certain trans-
formations of the amplitudes ci(p) which give a representation of the little
group E(2). The form of these transformations is deduced from (5.19) as
follows. First,

w′+(p) = wk(p)c
′ k(p) = S(L)w+

(
L−1p

)
= ci

(
L−1p

)
S(L) wi

(
L−1p

)
= ci

(
L−1p

)
S(H0(p)) S

(
H−10 (p)LH0(L

−1p)
)
wi(

(0)
p ) .

Next, we notice that the Lorentz transformation H−10 (p)LH0(L
−1p) — let

us denote it by E(L, p) — leaves the standard momentum
(0)
p invariant, hence

3 In the case of massive Majorana particle, the little group is the SO(3) subgroup of
the Lorentz group.



Relativistic Quantum Mechanics of the Majorana Particle 2185

it belongs to the little group E(2). We decompose bispinor S(E(L, p))wi(
(0)
p )

in the basis wk(
(0)
p ),

S(E(L, p))wi(
(0)
p ) = Dki(E(L, p))wk(

(0)
p ) , (5.22)

and write
wk(p)c

′k(p) = ci(L−1p)Dki(E(L, p))wk(p) .

We see from this formula that

c
′k(p) = Dki(E(L, p)) ci(L−1p) . (5.23)

It is clear that the Lorentz transformation (2.7) of the Majorana bispinors
ψ(x) follows from transformation (5.23) of the amplitudes ci(p) (in the mass-
less case, of course).

Let us consider transformation (5.23) when p =
(0)
p , and L = R(θ) is a

rotation around the vector
(0)
p = (0, 0, κ)T. Such L belongs to the E(2) group.

In this case, (5.22) and (5.23) read

S(R(θ))wi(
(0)
p ) = Dki(R(θ))wk(

(0)
p ) , (5.24)

c
′k(

(0)
p ) = Dki(R(θ)) ci(

(0)
p ) . (5.25)

For the rotations around the third axis,

S(R(θ)) = exp
(
γ1γ2θ/2

)
= cos(θ/2)I + γ1γ2 sin(θ/2) ,

where θ is the angle, and γ1, γ2 are given by (3.1). We obtain

S(R(θ)) =


cos(θ/2) 0 0 sin(θ/2)

0 cos(θ/2) sin(θ/2) 0
0 − sin(θ/2) cos(θ/2) 0

− sin(θ/2) 0 0 cos(θ/2)

 . (5.26)

It remains to specify the basis wk(
(0)
p ). When doing this, we should take

into account the fact that not all directions in the bispinor space are relevant
for physics because of gauge transformations (5.17). In the case at hand,
they have the following form:

w′+(
(0)
p ) = w+(

(0)
p ) + κ

(
χ4 − χ3

)
e3 +

(
χ2 − χ1

)
e4 , (5.27)
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where χi are arbitrary real numbers (components of the bispinor χ+(
(0)
p )

present in (5.17)), and e3 = (1, 1, 0, 0)T, e4 = (0, 0, 1, 1)T. It is clear that e3

and e4 give the nonphysical directions in the space of bispinors w+ at
(0)
p .

The remaining two directions — the physical ones — are given by e1 =
(1,−1, 0, 0)T and e2 = (0, 0, 1,−1)T. Thus, there is a natural choice for the

basis wk(
(0)
p ), namely

wk(
(0)
p ) = ek .

Only the amplitudes c1(
(0)
p ), c2(

(0)
p ) are physically interesting.

Using (5.26) and (5.24), we easily compute Dki(R(θ)) for i, k = 1, 2. The
transformations (5.25) have now the form of

c
′1(

(0)
p ) = cos(θ/2)c1(

(0)
p )− sin(θ/2)c2(

(0)
p ) ,

c
′2(

(0)
p ) = sin(θ/2)c1(

(0)
p ) + cos(θ/2)c2(

(0)
p ) .

These transformations are the real version of the following transformations

of the complex amplitude z(
(0)
p ) = c1(

(0)
p ) + ic2(

(0)
p ):

z′(
(0)
p ) = exp(iθ/2)z(

(0)
p ) .

Such transformations are characteristic for a massless particle with helicity
1/2.

Calculations for the w− bispinors give the same formulas for transfor-
mations, but the helicity is equal to −1/2, because the standard vector
(0)
p = (0, 0, κ)T corresponds to the axial momentum −

(0)
p , recall v−(−p) in

formula (5.3).

6. Remarks

1. We have outlined the basic structure of the relativistic quantum me-
chanics of the Majorana particle. List of its specific elements includes: the
Hilbert space over R, not over C as for other particles; the lack of the stan-
dard momentum operator and the appearance of the axial momentum with
its peculiarities present in the case of massive particle; multiplicities of real
orthogonal irreducible representations of the Poincaré group consistent with
the expected lack of anti-particle in quantum theory of the Majorana field.
One more item, not discussed here, is a relation with quaternions [11]. It is
clear that it is a very interesting theory, worth further studies.
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2. Formula (4.5) can be used for studying time evolution of wave packets
with specified initial content of the axial momentum [13]. This is a rather
interesting problem because the axial momentum is not constant in time
when m 6= 0, hence we do not have any simple intuitions about the time
evolution. Another topic one would like to know more about is behavior of
the Majorana particle in external potentials, which can also be studied with
use of the axial momentum.

3. The results of the analysis of relativistic invariance illustrate the
well-known fact that the theory of massless particle is not a simple m → 0
limit of the theory of massive particle. In particular, in the massive case,
there is a single orthogonal irreducible representation of the Poincaré group,
while for the massless particle, we have two representations. Moreover, the
case of massless Majorana particle is distinguished by the presence of the
gauge structure, as shown in Section 5.2. Gauge structures behind massless
photons and gluons are well-known, but its presence also in the case of
Majorana particle is a surprise.
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