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Abstract. The purpose of this work is to introduce and investigate a complicated variational–hemivariational inequality of
parabolic type with history-dependent operators. First, we establish an existence and uniqueness theorem for a first-order
nonlinear evolution inclusion problem, which is driven by a convex subdifferential operator for a proper convex function and a
generalized Clarke subdifferential operator for a locally Lipschitz superpotential. Then, we employ the fixed point principle
for history-dependent operators to deliver the unique solvability of the parabolic variational–hemivariational inequality.
Finally, a dynamic viscoelastic contact problem with the nonlinear constitutive law involving a convex subdifferential
inclusion is considered as an illustrative application, where normal contact and friction are described, respectively, by two
nonconvex and nonsmooth multi-valued terms.
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1. Introduction

The contact processes between deformable bodies around in industry and our real-life and, for this reason,
a considerable effort for modeling, mathematical analysis, numerical simulation and optimal control of
various frictional contact problems are quite interesting and important.

The theory of variational inequalities can be used to describe the principles of virtual work and power
which was initially proposed by Fourier in 1823. The prototypes, which lead to a class of variational
inequalities, are the problems of Signorini–Fichera and frictional contact in elasticity. However, the first
complete proof of unique solvability to Signorini Problem was provided by Signorini’s student Fichera in
1964. The solution of the Signorini Problem coincides with the birth of the field of variational inequalities.
For more on the initial developments of elasticity theory and variational inequalities, cf. e.g., [1]. With the
gradual improvement of the theory of variational inequalities, there are numerous monographs dedicated
to solving various complex phenomena in contact problems with different bodies and foundations, see
for instance [7,8,12,32] and others. As the generalization of variational inequalities, the theory of hemi-
variational inequalities was first introduced and studied by Panagiotopoulos in [30]. The mathematical
theory of hemivariational inequalities has been of great interest recently, which is due to the intensive
development of applications of hemivariational inequalities in contact mechanics, control theory, games
and so forth. Some comprehensive references are [4,13,15–19,21,24–27,29,31].

Recently, Han–Migórski–Sofonea [11], Migórski–Ogorzaly [22] and Migórski–Bai [23] studied the history-
dependent variational–hemivariational inequality of parabolic type as follows

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

find w ∈ W such that for a.e. t ∈ [0, T ] and all v ∈ V,
〈
w′(t) + A

(
t, w(t)

)
+ (S1w)(t) − f(t), v − w(t)

〉

V ∗×V
+ φ0

(
t, (S3w)(t), w(t); v − w(t)

)

+ ϕ(t, (S2w)(t), v) − ϕ(t, (S2w)(t)w(t)) ≥ 0,

w(0) = w0.

(1.1)
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It is worth mentioning that problem (1.1) cannot able to be a mathematical model to handle with the
following problem with constraints

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

find w ∈ W with w(t) ∈ K for a.e. t ∈ [0, T ] such that for a.e. t ∈ [0, T ] and all v ∈ K,
〈
w′(t) + A

(
t, w(t)

)
+ (S1w)(t) − f(t), v − w(t)

〉

V ∗×V
+ ϕ(v) − ϕ(w(t))

+ φ0
(
t, (S2w)(t), w(t); v − w(t)

) ≥ 0,

w(0) = w0.

(1.2)

However, we know that the problem (1.2) can be used as a powerful mathematical tool to describe precisely
various mechanical contact phenomena, such as unilateral constraint models. Based on this motivation, in
the present paper, we are interested in the study of Problem 4.1, which expresses a generalized formulation
of problem (1.2).

More precisely, the intention of the current work contains twofold. The first goal of the paper is
to explore a generalized existence and uniqueness theorem to Problem 4.1. Our approach is based on
the surjectivity theorem for the sum of operators together with the theory of nonsmooth and nonconvex
analysis. However, the second purpose of the work is to apply the theoretical results established previously
to investigate a complicated and new dynamic viscoelastic contact problem, in which the nonlinear
constitutive law is characterized by a convex subdifferential inclusion. Also, the boundary conditions are
described by two Clarke subdifferential terms for two locally Lipschitz potentials, which are nonconvex
in general.

We arrange our paper in the following way. In Sect. 2, some preliminary materials of mathematics
and mechanics are provided. Section 3 is devoted to treat a first-order nonlinear evolution inclusion
problem involving a convex subdifferential operator and a generalized Clarke subgradient term within
the framework of an evolution triple of spaces, and to prove a new existence and uniqueness result.
Section 4 explores the unique solvability of the variational–hemivariational inequality of parabolic type
under consideration by using the fixed point principle for history-dependent operators. In Sect. 5, a dy-
namic viscoelastic contact problem with the nonlinear constitutive law involving a convex subdifferential
inclusion is considered as an illustrative application, where normal contact and friction are described,
respectively, by two nonconvex and nonsmooth multi-valued terms.

2. Preliminaries

In this section, we briefly review basic notation and some results which are needed in the sequel. For
more details, we refer to monographs [4–6,21].

Throughout the paper, we denote by 〈·, ·〉X∗×X the duality pairing between a Banach space X and
its dual X∗. A single-valued mapping A : X → X∗ is called to be demicontinuous, if for all w ∈ X, the
functional u → 〈Au,w〉X∗×X is continuous. Let K be a nonempty subset of X. In what follows, by the
notation 2K , we represent the so-called power set of K, i.e., the set of all of its subsets. The domain,
image and graph of a multi-valued operator B : X → 2X∗

are defined by D(B) = {x ∈ X |Bx �= ∅},

R(B) =
⋃

x∈X

Bx and Gr(B) =
{
(x, x∗) ∈ X × X∗ |x∗ ∈ Bx

}
,

respectively. Recall that a multi-valued mapping B : X → 2X∗
is said to be

(i) bounded, if it maps bounded sets of X into bounded sets of X∗.
(ii) strongly quasi-bounded, if for each M > 0, there exists KM > 0 satisfying if u ∈ D(B) and u∗ ∈ Bu

are such that

〈u∗, u〉X∗×X ≤ M and ‖u‖X ≤ M,

then we have ‖u∗‖X∗ ≤ KM .
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(iii) maximal monotone, if it is monotone such that (y, y∗) ∈ X × X∗ satisfying

〈x∗ − y∗, x − y〉X∗×X ≥ 0 for all (x, x∗) ∈ Gr(B),

implies that x∗
2 ∈ B(x2).

(iv) coercive, if it holds

lim
‖u‖X→∞,u∈D(B)

inf
{〈u∗, u〉X∗×X | u∗ ∈ Bu

}

‖u‖X
= +∞.

We now recall the definition of L-pseudomonotonicity of multi-valued operators.

Definition 2.1. Let L : D(L) ⊂ X → X∗ be a linear maximal monotone operator and B : X → 2X∗
. We

say that B is L-pseudomonotone (or B is pseudomonotone with respect to L), if the following conditions
are satisfied
(a) for each u ∈ X, Bu is nonempty, bounded, convex and closed in X;
(b) B is upper semicontinuous from each finite-dimensional subspace of X to X∗ endowed with the

weak∗ topology;
(c) {un} ⊂ D(L), u∗

n ∈ Bun with un → u weakly in X, Lun → Lu weakly in X∗, u∗
n → u∗ weakly in

X∗ and

lim sup
n→∞

〈u∗
n, un − u〉X∗×X ≤ 0,

entail that u∗ ∈ Bu and 〈u∗
n, un〉X∗×X → 〈u∗, u〉X∗×X .

In general, it is difficult to verify that an operator is strongly quasi-bounded by using its definition.
Fortunately, the following proposition provides a useful criterion to guarantee an operator is strongly
quasi-bounded, where its proof can be found in [2, Proposition 14].

Proposition 2.2. Assume that B : D(B) ⊂ X → 2X∗
is a monotone operator such that 0 ∈ int(D(B)),

then B is strongly quasi-bounded.

Let ϕ : X → R∪{+∞} be a proper, convex and lower semicontinuous function. We denote the (convex)
subdifferential operator ∂cϕ : X → 2X∗

of ϕ by

∂cϕ(u) :=
{
u∗ ∈ X∗ | ϕ(v) − ϕ(u) ≥ 〈u∗, v − u〉X∗×X for all v ∈ X

}

for all u ∈ D(ϕ).

Proposition 2.3. Let ϕ : X → R ∪ {+∞} be a proper, convex and lower semicontinuous function. Then,
∂cϕ : X → 2X∗

is a maximal monotone operator.

Let h : X → R be a locally Lipschitz function. The (Clarke) generalized directional derivative of h at
u ∈ X in the direction v ∈ X is defined by

h0(u; v) = lim sup
y→u, λ↓0

h(y + λv) − h(y)
λ

.

In the meantime, the Clarke subdifferential operator ∂h : X → 2X∗
of h is given by

∂h(u) = { ζ ∈ X∗ | h0(u; v) ≥ 〈ζ, v〉X∗×X for all v ∈ X } for all u ∈ X.

The generalized gradient and generalized directional derivative of a locally Lipschitz function enjoy
many nice properties and rich calculus. Here we just collect below some basic and crucial results, see for
instance, [21, Proposition 3.23].

Proposition 2.4. Let h : X → R be a locally Lipschitz function, then the following statements are true
(i) for each x ∈ X, ∂h(x) is nonempty, convex and weakly compact in X∗.



32 Page 4 of 23 J. Han, L. Lu and S. Zeng ZAMP

(ii) The graph of ∂h is closed in X × (w∗ − X∗) topology, i.e., if {xn} ⊂ X and {ξn} ⊂ X∗ are such
that ξn ∈ ∂h(xn) and xn → x in X, ξn → ξ weakly∗ in X∗, then it holds ξ ∈ ∂h(x).

(iii) The multi-valued mapping X � x �→ ∂h(x) ⊆ X∗ is upper semicontinuous from X into w∗ − X∗.

Furthermore, we shall review the well-known surjectivity result for L-pseudomonotone multi-valued
operators, which will play a significant role in the proof of the main theorem in Sect. 4. For more details
concerning the surjectivity theorem, one can find in [9, Theorem 3.1].

Theorem 2.5. Let X be a reflexive Banach space, and L : X ⊂ D(L) → X∗ be a linear maximal monotone
operator. If A : X → 2X∗

is coercive, bounded and L-pseudomonotone, and B : X → 2X∗
is maximal

monotone and strongly quasi-bounded with 0 ∈ B(0), then the mapping L + A + B is surjective, i.e.,
R(L + A + B) = X∗.

At the end, we shall introduce the usual notation, symbols, and function spaces, which will be used
in the study of the dynamic viscoelastic contact problem in Sect. 5.

Let Ω be a bounded and connected domain in R
d, where (d = 2, 3), such that the boundary Γ = ∂Ω

is Lipschitz continuous. The normal and tangential components of a vector field ξ on the boundary are
given by ξν = ξ · ν and ξτ = ξ − ξνν, respectively, where ν = (νi) denotes the outward unit normal at
the boundary. Likewise, the notation σν and στ represents the normal and tangential components of the
stress field σ on the boundary, that is, σν = (σν) · ν and στ = σν − σνν. Furthermore, Sd denotes the
space of real symmetric d × d matrices. On R

d and S
d we use the standard notation for inner products

and norms which are defined by

ξ · η = ξiηi, ‖ξ‖ = (ξ · ξ)1/2 for ξ = (ξi),η = (ηi) ∈ R
d,

σ · τ = σijτij , ‖σ‖ = (σ · σ)1/2 for σ = (σij), τ = (τij) ∈ S
d.

Here, i, j, k, l ∈ {1, . . . , d} and the summation convention over repeated indices is used.
We also consider the following function spaces

H = L2(Ω;Rd), H = L2(Ω;Sd), H1 =
{
v ∈ H | ε(u) ∈ H}

,

and H1 =
{
τ ∈ H | Div τ ∈ H

}
, where ε and Div, respectively, stand for the deformation and divergence

operators given by

ε(u) =
(
εij(u)

)
, εij(u) =

1
2
(ui,j + uj,i), Div σ = (σij,j), i, j = 1, . . . , d,

and the index following a comma indicates a partial derivative. By defining the following inner products

〈u,v〉H =
∫

Ω

u · v dx, 〈σ, τ 〉H =
∫

Ω

σ : τ dx,

〈u,v〉H1 = 〈u,v〉H + 〈ε(u), ε(v)〉H,

〈σ, τ〉H1 = 〈σ, τ 〉H + 〈 Div σ,Div τ 〉H ,

it is obvious that the spaces H,H,H1 and H1 are Hilbert spaces.

3. First-order nonlinear evolution inclusion problems with nonsmooth and nonconvex
potentials

This section is devoted to explore the existence and uniqueness for a generalized first-order evolution
inclusion problem, which is driven by a generalized Clarke subdifferential of a locally Lipschitz function
and a subdifferential operator of a convex potential, within the framework of an evolution triple of spaces
V ⊂ H ⊂ V ∗ (see, e.g., [21, Definition 1.52]).
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Given 0 < T < +∞, in what follows, we adopt the following function spaces in the evolution triple of
spaces V ⊂ H ⊂ V ∗

V = L2(0, T ;V ), Ĥ = L2(0, T ;H), V∗ = L2(0, T ;V ∗)

and W = {v ∈ V | v′ ∈ V∗}, where the time derivative v′ = ∂v/∂t is understood in the sense of vector-
valued distributions. It is not difficult to prove that the space W endowed with the norm

‖v‖W = ‖v‖V + ‖v′‖V∗

is a separable and reflexive Banach space, and the embeddings W ⊂ V ⊂ Ĥ ⊂ V∗ are continuous.
Besides, it follows from [21, Proposition 2.54(ii)] that the embedding W ⊂ C(0, T ;H) is continuous as
well. Throughout the paper, we denote by

〈u∗, u〉V∗×V =

T∫

0

〈u∗(t), u(t)〉V ∗×V dt for all (u∗, u) ∈ V∗ × V,

the duality pairing of V∗ and V.
Before proving the main problem, it should be mentioned that all of the convex and Clarke subdiffer-

entials which are appeared in the sequel of the present paper are always understood with respect to the
last variable of the corresponding functions.

The abstract evolution inclusion problem of parabolic type under the consideration is formulated as
follows.

Problem 3.1. Find w ∈ W such that
⎧
⎪⎨

⎪⎩

w′(t) + A(t, w(t)) + ζ(t) + ξ(t) = f(t) for a.e. t ∈ [0, T ],

ζ(t) ∈ ∂ϕ(t, w(t)) and ξ(t) ∈ ∂cψ(w(t)) for a.e. t ∈ [0, T ],

w(0) = w0,

(3.1)

where the function f and initial data w0 are assumed to satisfy the following regularities

f ∈ V∗, w0 ∈ V. (3.2)

To deliver the existence and uniqueness of solution to Problem 3.1, we make the following assumptions.
The nonlinear function A : [0, T ] × V → V ∗ satisfies the following conditions.

H(A) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) t �→ A(t, w) is measurable on [0, T ] for all w ∈ V.

(ii) A(t, ·) is demicontinuous on V for a.e. t ∈ [0, T ].

(iii) there exist a function a1 ∈ L2
+(0, T ) and a positive constant a2 > 0 such that

‖A(t, w)‖V ∗ ≤ a1(t) + a2‖w‖V for all w ∈ V and a.e. t ∈ [0, T ].

(iv) for a.e. t ∈ [0, T ], u �→ A(t, u) is strongly monotone, i.e.,

〈A(t, w1) − A(t, w2), w1 − w2〉V ∗×V ≥ α‖w1 − w2‖2
V

with α > 0 for all w1, w2 ∈ V.
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The functions ϕ : [0, T ] × V → R and ψ : V → R ∪ {+∞}, respectively, read the next assumptions H(ϕ)
and H(ψ).

H(ϕ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(i) ϕ(·, w) is measurable on [0, T ] for all w ∈ V.

(ii) ϕ(t, ·) is locally Lipschitz continuous on V for a.e. t ∈ [0, T ].

(iii) there exist a function c1 ∈ L2
+(0, T ) and a constant c2 > 0

such that for all w ∈ V, a.e. t ∈ [0, T ], and all ζ(t) ∈ ∂ϕ(t, w)

‖ζ(t)‖V ∗ ≤ c1(t) + c2‖w‖V .

(iv) there exists a constant β ≥ 0 such that
〈
ζ1(t) − ζ2(t), w1 − w2

〉

V ∗×V
≥ −β‖w1 − w2‖2

V

for all w1, w2 ∈ V, a.e. t ∈ [0, T ] with ζi(t) ∈ ∂ϕ(t, wi), i = 1, 2.

H(ψ) :

{
(i) ψ(·) is proper, convex and l.s.c. on V.

(ii) w0 ∈ intD(ψ) and 0 ∈ ∂cψ(w0).

The main result of the section concerning the existence and uniqueness for Problem 3.1 is provided
as follows.

Theorem 3.2. Under the assumptions of H(A),H(ϕ),H(ψ) and (3.2), and if, in addition, the inequality

max{β, 2c2} < α (3.3)

holds, then Problem 3.1 admits a unique solution w ∈ W.

We shall employ the surjectivity result, Theorem 2.5, to obtain the desired conclusion in Theorem 3.2,
by formulating Problem 3.1 to an abstract operator inclusion problem. To the end, we define an operator
A : V → V∗ by

〈Aw, v〉V∗×V =

T∫

0

〈A(t, w(t)), v(t)〉V ∗×V dt for all w, v ∈ V,

and introduce a convex function Φ: V → R ∪ {+∞} by

Φ(v) =

T∫

0

ψ(v(t)) dt for all v ∈ V. (3.4)

For any v ∈ V and t ∈ [0, T ] fixed, we may restate Problem 3.1 to the inequality problem, by
multiplying the first equation of (3.1) with v(t) − w(t) and integrating the resulting over [0, T ]

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

find w ∈ W such that

〈w′ + Aw + ζ − f, v − w〉V∗×V + Φ(v) − Φ(w) ≥ 0 for all v ∈ V,

ζ(t) ∈ ∂ϕ(t, w(t)) for a.e. t ∈ [0, T ],

w(0) = w0.

(3.5)

In the meantime, consider the functions Aw0 : V → V∗, Fw0 : V → 2V∗
, and Φw0 : V → R ∪ {+∞} by

⎧
⎪⎨

⎪⎩

Aw0w = A(w + w0),

(Fw0w)(t) =
{
ζ̂ ∈ V∗ |ζ̂(t) ∈ ∂ϕ(t, w(t) + w0)

}
for a.e. t ∈ [0, T ],

Φw0(w) = Φ(w + w0)

(3.6)
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for all w ∈ V, and introduce the operator L : D(L) ⊂ V → V∗ by

Lw = w′ for all w ∈ D(L) :=
{
w ∈ W | w(0) = 0

}
. (3.7)

Then, under the above definitions, it is easy to see that u ∈ W is a solution to problem (3.5), if and only
if, z := u − w0 ∈ D(L) solves the following operator inclusion problem

{
find z ∈ D(L) such that

Lz + Aw0z + Fw0z + ∂cΦw0(z) � f.
(3.8)

Proof of Theorem 3.2. With respect to the existence of solutions to Problem 3.1, the proof will be based
on Theorem 2.5.

Invoking [21, Lemma 3.64], it is well-known that the operator L defined in (3.7) is densely defined,
linear, and maximal monotone. We assert that the mapping Qw0 : V → 2V∗

defined by

Qw0z = Aw0z + Fw0z for z ∈ V
is coercive and bounded.

By virtue of hypotheses H(A)(iii), (iv), Hölder inequality and the element inequality (a + b)2 ≥
(a2/2) − b2(a, b ∈ R), we have that, for all z ∈ V,

〈Aw0z, z〉V∗×V =

T∫

0

〈
A(t, z(t) + w0) − A(t, 0), z(t) + w0

〉

V ∗×V
dt

+

T∫

0

〈
A(t, 0), z(t) + w0

〉

V ∗×V
dt −

T∫

0

〈A(t, z(t) + w0), w0〉V ∗×V dt

≥ α

T∫

0

‖z(t) + w0‖2
V dt −

T∫

0

a1(t)‖z(t) + w0‖V dt −
T∫

0

a1(t)‖w0‖V dt

− a2

T∫

0

‖z(t) + w0‖V ‖w0‖V dt ≥ α

2
‖z‖2

V − (α + a2)T‖w0‖2
V

− (‖a1‖L2(0,T ) + a2

√
T‖w0‖V )‖z‖V − 2

√
T‖a1‖L2(0,T )‖w0‖V .

On the other hand, H(ϕ)(iii) and Hölder inequality deduce

∣
∣〈Fw0z, z〉V∗×V

∣
∣ ≤

T∫

0

∣
∣〈∂ϕ(t, z(t) + w0), z(t)〉V ∗×V

∣
∣ dt

≤
T∫

0

(
c1(t) + c2‖z(t) + w0‖V

)‖z(t)‖V dt

≤
T∫

0

(
c2‖z(t)‖2

V +
(
c1(t) + c2‖w0‖V

)‖z(t)‖V

)
dt

≤ c2‖z‖2
V + (‖c1‖L2(0,T ) + c2

√
T‖w0‖V )‖z‖V

for all z ∈ V, hence,

〈Fw0z, z〉V∗×V ≥ −c2‖z‖2
V − (‖c1‖L2(0,T ) + c2

√
T‖w0‖V )‖z‖V
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for all z ∈ V. Notice that

〈Qw0z, z〉V∗×V = 〈Aw0z + Fw0z, z〉V∗×V ≥ (α

2
− c2

)‖z‖2
V

− (‖a1‖L2(0,T ) + ‖c1‖L2(0,T ) + a2

√
T‖w0‖V + c2

√
T‖w0‖V )‖z‖V

− (α + a2)T‖w0‖2
V − 2

√
T‖a1‖L2(0,T )‖w0‖V for all z ∈ V,

we are now in a position to utilize the smallness condition (3.3) to conclude that Qw0 is coercive.
Applying conditions H(A)(iii), H(ϕ)(iii), it yields that, for all z ∈ V,

‖Qw0z‖2
V∗ ≤ 2‖Aw0z‖2

V∗ + 2‖Fw0z‖2
V∗ ≤ 2

T∫

0

‖A(t, z(t) + w0)‖2
V ∗ dt

+ 2

T∫

0

‖∂ϕ(t, z(t) + w0)‖2
V ∗ dt ≤ 2(a2

2 + c2
2)‖z‖2

V

+ 4(a2‖a1‖L2(0,T ) + c2‖c1‖L2(0,T ) + a2
2

√
T‖w0‖V + c2

2

√
T‖w0‖V )‖z‖V

+ 2T (a2
2 + c2

2)‖w0‖2
V + 4

√
T‖w0‖V (a2‖a1‖L2(0,T ) + c2‖c1‖L2(0,T ))

+ 2(‖a1‖2
L2(0,T ) + ‖c1‖2

L2(0,T )),

i.e.,

‖Qw0z‖V∗ ≤ r1‖z‖V + r2

√
‖z‖V + r3 for all z ∈ V, (3.9)

where the constants r1, r2, r3 ≥ 0 are all independent of z. Therefore, Qw0 is a bounded mapping.
Next, we shall demonstrate that Qw0 is L-pseudomonotone in the sense of Definition 2.1. To the end

of this, we make the following three claims.

Claim 1. The set Qw0z is nonempty, bounded, closed and convex in V∗ for every z ∈ V.
Let z ∈ V be fixed. Proposition 2.4(i) implies that the set Fw0z is a nonempty and convex in V∗, so

does Qw0z. However, the inequality (3.9) guarantees the boundedness of Qw0z. To illustrate that the set
of Qw0z is closed, let {ηn} ⊂ Qw0z be such that ηn → η in V∗, as n → ∞. So, there exists a sequence
{ζn} ⊂ Fw0z such that ηn = ζn + Aw0z and ζn → η − Aw0z in V∗, as n → ∞. Then, passing to a
subsequence if necessary, we assume that ζn(t) → η(t)−Aw0(z)(t) in V ∗ for a.e. t ∈ [0, T ]. In accordance
with Proposition 2.4(ii), it finds that the set of η − Aw0z ∈ Fw0z. Therefore, the set Qw0z is also closed.

Claim 2. Qw0 is upper semicontinuous from V to V∗ endowed with the weak topology.

From [21, Proposition 3.8], it is enough to verify that for each weakly closed set C in V∗, the set

Q−
w0

(C) =
{
z ∈ V |Qw0z ∩ C �= ∅}

is closed in V.
We now show that Aw0 : V → V∗ is demicontinuous. Let {zn} ⊂ V be such that zn → z in V, as

n → ∞. By passing to a subsequence if necessary, we may say

zn(t) → z(t) in V for a.e. t ∈ [0, T ]. (3.10)

In view of the condition H(A)(ii), it reads

〈A(t, zn(t) + w0), w(t)〉V ∗×V → 〈A(t, z(t) + w0), w(t)〉V ∗×V
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for all w ∈ V and a.e. t ∈ [0, T ]. The latter combined with hypothesis H(A)(ii) and Lebesgue-dominated
convergence theorem implies

lim
n→∞

T∫

0

〈A(t, zn(t) + w0), w(t)〉V ∗×V dt →
T∫

0

〈A(t, z(t) + w0), w(t)〉V ∗×V dt

for all w ∈ V, which means

Aw0zn → Aw0z weakly in V∗,

so, Aw0 is demicontinuous. In addition, we shall prove that Fw0 : V → 2V∗
has a closed graph in V × (w −

V∗). Let zn → z in V and ζ̂n → ζ̂ weakly in V∗ with

ζ̂n(t) ∈ ∂ϕ(t, zn(t) + w0) for a.e. t ∈ [0, T ].

Invoking Proposition 2.4 and [21, Theorem 3.13] indicates

ζ̂(t) ∈ ∂ϕ(t, z(t) + w0) for a.e. t ∈ [0, T ],

hence ζ̂ ∈ Fw0z. Therefore, Fw0 is closed in the topology of V × (w − V∗).
Let {wn} ⊂ Q−

w0
(C) be a sequence such that wn → w in V, as n → ∞; thus, there is ζ̄n = Aw0wn + ζ̂n

with ζ̂n ∈ Fw0wn. From the boundedness of Fw0 , we may assume that ζ̂n → ζ̂ weakly in V, as n → ∞,
whereas by the demicontinuity of Aw0 and the fact, operator Fw0 is closed in V × (w − V∗) topology, it
finds

ζ̄ = Aw0w + ζ̂ ∈ Qw0w with ζ̂ ∈ Fw0w. (3.11)

Furthermore, recall that the subset C ⊂ V∗ is weakly closed, so it holds w ∈ C. Therefore, we have that
w ∈ Q−

w0
(C). This proves that Q−

w0
(C) is closed in V. Consequently, Qw0 is u.s.c. from V to V∗ endowed

with the weak topology.

Claim 3. Qw0 is L-pseudomonotone.

Let {zn} ⊂ D(L), ζ̄n ∈ Qw0zn with zn → z weakly in V, Lzn → Lz and ζ̄n → ζ̄ both weakly in V∗,
be such that

lim sup
n→∞

〈ζ̄n, zn − z〉V∗×V ≤ 0. (3.12)

We are going to show ζ̄ ∈ Qw0z and

〈ζ̄n, zn〉V∗×V → 〈ζ̄ , z〉V∗×V . (3.13)

We now assert the convergence holds

zn → z strongly in V. (3.14)

Let ζ̂n ∈ Fw0zn be such that ζ̄n = ζ̂n + Aw0zn. For any ζ̂ ∈ Fw0z, H(ϕ)(iv) turns out

〈ζ̂n − ζ̂, zn − z〉V∗×V =

T∫

0

〈
ζ̂n(t) − ζ̂(t), zn(t) − z(t)

〉

V ∗×V
dt

≥ −β‖zn − z‖2
V .

The latter together with the strongly monotonicity of A (see H(A)(iv)) deduces

〈ζ̄n − ζ̄, zn − z〉V∗×V =

T∫

0

〈
ζ̄n(t) − ζ̄(t), zn(t) − z(t)

〉

V ∗×V
dt

≥ (α − β)‖zn − z‖2
V
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for all ζ̄ ∈ Qw0z and all z ∈ V. Then, if for the above inequality, passing to the upper limit, as n → ∞,
and using (3.12), we derive

(α − β) lim sup
n→∞

‖zn − z‖2
V ≤ lim sup

n→∞
〈ζ̄n − ζ̄, zn − z〉V∗×V

= lim sup
n→∞

〈ζ̄n, zn − z〉V∗×V − lim
n→∞〈ζ̄, zn − z〉V∗×V ≤ 0.

But, the smallness condition (3.3) indicates that α − β > 0, namely (3.14) is valid. In the meanwhile,
employing the demicontinuity of Aw0 and the closedness of Fw0 (see the proof of Claim 2), it yields
ζ̄ ∈ Qw0z. This means that (3.13) is satisfied.

Moreover, we also admit that Φw0 : V → R is proper, convex and lower semicontinuous. The result
Φw0 �≡ +∞ is a direct consequence of hypothesis H(ψ)(i). Also, the convexity of Φw0 can be obtained by
applying the convexity of ψ. Let zn → z in V, as n → ∞. Passing to a subsequence, if necessary, one has

zn(t) + w0 → z(t) + w0 in V for a.e. t ∈ [0, T ].

However, from [28, Lemma 2.5(2)], we are able to find a function h ∈ L1(0, T ) such that h(t) ≤ ψ(zn(t)+
w0) for all t ∈ [0, T ]. Notice that (see the lower semicontinuity of ψ)

ψ(z(t) + w0) ≤ lim inf
n→∞ ψ(zn(t) + w0) for a.e. t ∈ [0, T ],

we can utilize Fatou’s lemma to find
T∫

0

ψ(z(t) + w0) dt ≤
T∫

0

lim inf
n→∞ ψ(zn(t) + w0) dt

≤ lim inf
n→∞

T∫

0

ψ(zn(t) + w0) dt.

Therefore, Φw0 is lower semicontinuous on V. Invoking Proposition 2.3 indicates that ∂cΦw0 : V → 2V∗
is

maximal monotone.
Additionally, we shall demonstrate that ∂cΦw0 is strongly quasi-bounded on V with 0 ∈ ∂cΦw0(0). For

any M > 0 fixed, let z ∈ D(∂cΦw0) and ξ ∈ ∂cΦw0(z) be such that

‖z‖V ≤ M, 〈ξ, z〉V∗×V ≤ M. (3.15)

Recall that w0 ∈ intD(ψ), there exist an ε > 0 and Kε ∈ R such that ψ(y) ≤ Kε < +∞ for all y ∈ {x ∈
V | ‖x − w0‖V < ε} (since ψ is locally Lipschitz continuous in intD(ψ)). Define the open neighborhood
Oε := {z∗ ∈ V | ‖z∗(t) − w0‖V < ε for a.e. t ∈ [0, T ]} of V. It is obvious that Φ(u) ≤ T |Kε| < +∞
for all u ∈ Oε, namely 0 ∈ intD(Φw0). The latter together with the fact intD(Φw0) ⊂ D(∂cΦw0) implies
0 ∈ intD(∂cΦw0). Therefore, by using Proposition 2.2, we conclude that ∂cΦw0 is strongly quasi-bounded
on V. On the other hand, the estimates

Φw0(u) − Φw0(0) =

T∫

0

ψ(u(t) + w0) − ψ(w0) dt ≥
T∫

0

〈ξ, u(t)〉V ∗×V dt

for all ξ ∈ ∂cψ(w0) and all u ∈ V. But, condition H(ψ)(ii) ensures 0 ∈ ∂cΦw0(0).
To conclude, we have verified all conditions of Theorem 2.5. Using this theorem, we conclude that

L+Qw0 +∂cΦw0 is onto; thus, the inclusion (3.8) has a solution z ∈ D(L). Consequently, w = z+w0 ∈ W
solves Problem 3.1.



ZAMP Evolutionary variational–hemivariational inequalities. . . Page 11 of 23 32

We illustrate that Problem 3.1 is unique solvability. Let w1, w2 ∈ W be two solutions to Problem 3.1,
i.e., for i = 1, 2,

⎧
⎪⎨

⎪⎩

w′
i(t) + A(t, wi(t)) + ζi(t) + ξi(t) = f(t) for a.e. t ∈ [0, T ],

ζi(t) ∈ ∂ϕ(t, wi(t)), ξi(t) ∈ ∂cψ(wi(t)) for a.e. t ∈ [0, T ],

wi(0) = w0.

A simple calculation gives

〈w′
1(t) − w′

2(t) + A(t, w1(t)) − A(t, w2(t)), w1(t) − w2(t)〉V ∗×V

+ 〈ζ1(t) − ζ2(t) + ξ1(t) − ξ2(t), w1(t) − w2(t)〉V ∗×V = 0

for a.e. t ∈ [0, T ]. Then, integrating the above equality over on [0, t] with t ∈ [0, T ], and using H(A)(iv),
H(ϕ)(iv) and H(ψ), we have

1
2
‖w1(t) − w2(t)‖2

H + (α − β)

t∫

0

‖w1(s) − w2(s)‖2
V ds ≤ 0

for all t ∈ [0, T ], whereas the smallness condition (3.3) indicates w1 = w2. This concludes the proof of
the theorem. �

4. History-dependent variational–hemivariational inequalities

In this section, we are interesting in the study of existence and uniqueness of solution to a general-
ized variational–hemivariational inequality involving history-dependent operators, in which the history-
dependent operators are, respectively, acted on the elastic operator and locally Lipschitz function. In
what follows, let Yi for i = 1, 2, 3 be Banach spaces. The problem under investigation reads as follows.

Problem 4.1. Find w ∈ W such that for a.e. t ∈ [0, T ] and all v ∈ V ,
⎧
⎪⎨

⎪⎩

〈
w′(t) + A

(
t, (S1w)(t), w(t)

) − f(t), v − w(t)
〉

V ∗×V

+ φ0
(
t, (S2w)(t), (S3w)(t), w(t); v − w(t)

)
+ ψ(v) − ψ(w(t)) ≥ 0,

w(0) = w0.

(4.1)

To establish main results on Problem 4.1, we now impose the following assumptions on its data.
H(S): S1 : V → L2(0, T ;Y1), S2 : V → L2(0, T ;Y2), and S3 : V → L2(0, T ;Y3) are three history-dependent
operators, i.e., there exist constants LS1 , LS2 , LS3 > 0 such that for all w1, w2 ∈ V and a.e. t ∈ [0, T ],

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) ‖(S1w1)(t) − (S1w2)(t)‖Y1 ≤ LS1

t∫

0

‖w1(s) − w2(s)‖V ds,

(b) ‖(S2w1)(t) − (S2w2)(t)‖Y2 ≤ LS2

t∫

0

‖w1(s) − w2(s)‖V ds,

(c) ‖(S3w1)(t) − (S3w2)(t)‖Y3 ≤ LS3

t∫

0

‖w1(s) − w2(s)‖V ds.

(4.2)



32 Page 12 of 23 J. Han, L. Lu and S. Zeng ZAMP

H(A): A : [0, T ] × Y1 × V → V ∗ satisfies the conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A(·, y, w) is measurable on [0, T ] for each (y, w) ∈ Y1 × V.

(b) y �→ A(t, y, w) is continuous for a.e. t ∈ [0, T ] and all w ∈ V.

(c) w �→ A(t, y, w) is demicontinuous for a.e. t ∈ [0, T ] and all y ∈ Y1.

(d) there are a2 > 0 and a1 ∈ L2
+(0, T ) such that

‖A(t, y, w)‖V ∗ ≤ a1(t) + a2(‖y‖Y1 + ‖w‖V )

for all (y, w) ∈ Y1 × V and a.e. t ∈ [0, T ].

(e) there exists a constant α > 0 such that

〈A(t, y1, w1) − A(t, y2, w2), w1 − w2〉V ∗×V

≥ α(‖w1 − w2‖V − ‖y1 − y2‖Y1)‖w1 − w2‖V

for all (y1, w1), (y2, w2) ∈ Y1 × V and a.e. t ∈ [0, T ].

(4.3)

H(φ): φ : [0, T ] × Y2 × Y3 × V → R reads the conditions
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) φ(·, z, q, w) is measurable on [0, T ] for all (z, q, w) ∈ Y2 × Y3 × V.

(b) (z, q) �→ φ(t, z, q, w) is continuous for a.e. t ∈ [0, T ] and all w ∈ V.

(c) w �→ φ(t, z, q, w) is locally Lipschitz continuous on for a.e. t ∈ [0, T ] and all (z, q) ∈ Y2 × Y3.

(d) there exist c1 ∈ L2
+(0, T ) and c2 > 0 such that

‖ζ(t)‖V ∗ ≤ c1(t) + c2(‖z‖Y2 + ‖q‖Y3 + ‖w‖V )

for all ζ(t) ∈ ∂φ(t, z, q, w), all (z, q, w) ∈ Y2 × Y3 × V and a.e. t ∈ [0, T ].

(e) there is a constant β > 0 such that

φ0(t, z1, q1, w1;w2 − w1) + φ0(t, z2, q2, w2;w1 − w2)

≤ β(‖z1 − z2‖Y2 + ‖q1 − q2‖Y3 + ‖w1 − w2‖V )‖w1 − w2‖V

for all (z1, q1, w1), (z2, q2, w2) ∈ Y2 × Y3 × V and a.e. t ∈ [0, T ].
(4.4)

The main theorem of the section is delivered as follows.

Theorem 4.2. Assume that (3.2), H(ψ), H(S), H(A), and H(φ) hold. If, in addition, the smallness
condition (3.3) is fulfilled, then Problem 4.1 has a unique solution w ∈ W.

Proof. For (η, θ, ς) ∈ L2(0, T ;Y1 × Y2 × Y3) fixed, first, we consider the intermediate problem:
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

find wηθς ∈ W such that

w′
ηθς(t) + A(t, η(t), wηθς(t)) + ζ(t) + ξ(t) = f(t),

ζ(t) ∈ ∂φ(t, θ(t), ς(t), wηθς(t)), ξ(t) ∈ ∂cψ(wηθς(t)),

wηθς(0) = w0,

(4.5)

for a.e. t ∈ [0, T ]. We shall use Theorem 3.2 to show that problem (4.5) has a unique solution.
Consider the functions A : [0, T ] × V → V ∗ and the function ϕ : [0, T ] × V → R defined by

A(t, w) = A(t, η(t), w) and ϕ(t, w) = φ(t, θ(t), ς(t), w), (4.6)

respectively, for all w ∈ V and a.e. t ∈ [0, T ]. By virtue of hypotheses (4.3)(a)–(e) and (4.4)(a)–(d), it
is not difficult to verify that the operator A and the function ϕ defined in (4.6) enjoy the conditions of
H(A) and H(ϕ)(i)–(iii), respectively. Besides, hypothesis (4.4)(e) and the following estimates
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〈
ζ1(t) − ζ2(t), w1(t) − w2(t)

〉

V ∗×V

≥ −ϕ0
(
t, w1(t);w2(t) − w1(t)

) − ϕ0
(
t, w2(t);w1(t) − w2(t)

)

= −φ0
(
t, θ(t), ς(t), w1(t);w2(t) − w1(t)

) − φ0
(
t, θ(t), ς(t), w2(t);w1(t) − w2(t)

)

≥ −β‖w1(t) − w2(t)‖2
V

for all ζ1(t) ∈ ∂ϕ(t, w1(t)), all ζ2(t) ∈ ∂ϕ(t, w2(t)), and a.e. t ∈ [0, T ], ensure the validity of H(ϕ)(iv).
Therefore, from the conditions (3.2) and (3.3), we are able to employ Theorem 3.2 to obtain that for each
(η, θ, ς) ∈ L2(0, T ;Y1 × Y2 × Y3) fixed, problem (4.5) admits a unique solution wηθς ∈ W .

Observe that for every (η, θ, ς) ∈ L2(0, T ;Y1 × Y2 × Y3) fixed, if wηθς ∈ W is a solution to problem
(4.5), then it solves the following problem too

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

find wηθς ∈ W such that
〈
w′

ηθς(t) + A(t, η(t), wηθς(t)) − f(t), v − wηθς(t)
〉

V ∗×V

+ φ0
(
t, θ(t), ς(t), wηθς(t); v − wηθς(t)

)
+ ψ(v) − ψ(wηθς(t)) ≥ 0,

wηθς(0) = w0,

(4.7)

for all v ∈ V and a.e. t ∈ [0, T ]. We assert that problem (4.7) is unique solvability. Let wηθς1, wηθς2 ∈ W
be two solutions to problem (4.7). A simple calculation gives

〈
w′

ηθς1(t) − w′
ηθς2(t), wηθς1(t) − wηθς2(t)

〉

V ∗×V

+
〈
A(t, η(t), wηθς1(t)) − A(t, η(t), wηθς2(t)), wηθς1(t) − wηθς2(t)

〉

V ∗×V

≤ φ0
(
t, θ(t), wηθς1(t);wηθς2(t) − wηθς1(t)

)
+ φ0

(
t, θ(t), wηθς2(t);wηθς1(t) − wηθς2(t)

)

for a.e. t ∈ [0, T ]. Integrating the above inequality over [0, t] for t ∈ [0, T ] and using hypotheses H(A)(e)
and H(φ)(e), it reads

1
2
‖wηθς1(t) − wηθς2(t)‖2

H + (α − β)

t∫

0

‖wηθς1(s) − wηθς2(s)‖2
V ds ≤ 0

for all t ∈ [0, T ]. But, the smallness condition (3.3) indicates wηθς1 = wηθς2. So, (4.7) is unique solvability.
Additionally, let us introduce the mapping Υ: L2(0, T ;Y1 × Y2 × Y3) → L2(0, T ;Y1 × Y2 × Y3) by

Υ(η, θ, ς) = (S1wηθς ,S2wηθς ,S3wηθς) (4.8)

for all (η, θ, ς) ∈ L2(0, T ;Y1×Y2×Y3), in which wηθς is the unique solution to problem (4.7) corresponding
to (η, θ, ς). Indeed, Υ has a unique fixed point in L2(0, T ;Y1 × Y2 × Y3).

For any (η1, θ1, ς1), (η2, θ2, ς2) ∈ L2(0, T ;Y1 × Y2 × Y3), let w1 = wη1θ1ς1 and w2 = wη2θ2ς2 be the
unique solutions of (4.7) associated with (η1, θ1, ς1) and (η2, θ2, ς2), respectively. Carrying out a analogous
procedure as the proof of the uniqueness of solution to problem (4.7), one has

1
2
‖w1(t) − w2(t)‖2

H + (α − β)‖w1 − w2‖2
L2(0,t;V ) − α‖η1 − η2‖L2(0,t;Y1)‖w1 − w2‖L2(0,t;V )

≤
t∫

0

φ0
(
s, θ1(s), ς1(s), w1(s);w2(s) − w1(s)

)
+ φ0

(
s, θ2(s), ς2(s), w2(s);w1(s) − w2(s)

)
ds

for all t ∈ [0, T ]. The latter combined with hypothesis H(φ)(e) and the Hölder inequality finds
1
2
‖w1(t) − w2(t)‖2

H + (α − β)‖w1 − w2‖2
L2(0,t;V )

≤ α‖η1 − η2‖L2(0,t;Y1)‖w1 − w2‖L2(0,t;V )

+ β(‖θ1 − θ2‖L2(0,t;Y2) + ‖ς1 − ς2‖L2(0,t;Y3))‖w1 − w2‖L2(0,t;V ).



32 Page 14 of 23 J. Han, L. Lu and S. Zeng ZAMP

Hence,

‖w1 − w2‖L2(0,t;V ) ≤ c‖η1 − η2‖L2(0,t;Y1) + c(‖θ1 − θ2‖L2(0,t;Y2) + ‖ς1 − ς2‖L2(0,t;Y3)) (4.9)

for all t ∈ [0, T ] with c = max{α/(α−β), β/(α−β)} > 0. Combining the definition of Υ with hypotheses
H(S), inequality (4.9) and Hölder inequality, we conclude

‖Υ(η1, θ1, ς1)(t) − Υ(η2, θ2, ς2)(t)‖2
Y1×Y2×Y3

≤ ‖(S1w1)(t) − (S1w2)(t)‖2
Y1

+ ‖(S2w1)(t) − (S2w2)(t)‖2
Y2

+ ‖(S3w1)(t) − (S3w2)(t)‖2
Y3

≤ (L2
S1

+ L2
S2

+ L2
S3

)
( t∫

0

‖w1(s) − w2(s)‖V ds
)2

≤ 3c2T (L2
S1

+ L2
S2

+ L2
S3

)

t∫

0

‖(η1, θ1, ς1)(s) − (η2, θ2, ς2)(s)‖2
Y1×Y2×Y3

ds

for all t ∈ [0, T ], where we have used the elementary inequality (a + b + d)2 ≤ 3(a2 + b2 + d2) for all
a, b, d ∈ R. We are now in a position to invoke fixed point theorem [14, Lemma 7] to get that Υ has a
unique fixed point in L2(0, T ;Y1 × Y2 × Y3).

Let (η∗, θ∗, ς∗) be the unique fixed point of Υ, and wη∗θ∗ς∗ be the unique solution to problem
(4.7) corresponding to (η∗, θ∗, ς∗). It is obvious that w := wη∗θ∗ς∗ ∈ W is the unique solution to
Problem 4.1. �

We end the section by providing the following particular cases of Problem 4.1. Let K be a nonempty,
closed and convex subset of V such that w0 ∈int(K) �= ∅, consider the function ψ : V → R ∪ {+∞} by

ψ(v) = ϕ(v) + IK(v) for all v ∈ V, (4.10)

where ϕ : V → R is a convex and lower semicontinuous function, and IK : V → R∪{+∞} is the indicator
function of K given by

IK(v) =
{

0, if v ∈ K,
+∞, if v �∈ K.

Obviously, we can see that the function ψ defined in (4.10) satisfies conditions H(ψ). In this case, we
have the following corollary.

Corollary 4.3. Let K be a nonempty, closed and convex subset of V such that w0 ∈int(K) �= ∅. Assume
that (3.2), (3.3), (4.2), H(S), H(A), and H(φ) hold. If ϕ : V → R is a convex and l.s.c. function, then
the problem

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

find w ∈ W with w(t) ∈ K for a.e. t ∈ [0, T ] such that for a.e. t ∈ [0, T ] and all v ∈ K,
〈
w′(t) + A

(
t, (S1w)(t), w(t)

) − f(t), v − w(t)
〉

V ∗×V
+ ϕ(v) − ϕ(w(t))

+ φ0
(
t, (S2w)(t), (S3w)(t), w(t); v − w(t)

) ≥ 0,

w(0) = w0,

(4.11)

has a unique solution w ∈ W.

Indeed, under the suitable assumptions, this corollary, Corollary 4.3, can imply that problem (1.2)
has a unique solution.
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5. A dynamic viscoelastic contact problem

In the present section, we are concerned with the applicability of the results obtained in Sect. 4 to a new
dynamic contact model for a viscoelastic material with the constitutive law involving a convex subdiffer-
ential inclusion, and multi-valued boundary conditions with nonconvex contact and friction potentials.

The physical setting of the model is described as follows. Assume a viscoelastic body occupies a
bounded and connected domain Ω in R

d (d = 2, 3) such that its boundary Γ = ∂Ω is Lipschitz continuous.
The boundary also is considered to be composed of three mutually disjoint and measurable parts ΓD,
ΓN and ΓC with meas(ΓD) > 0 (i.e., the measure of ΓD is positive). In the meanwhile, we adopt the
standard notation and function spaces H, H and H1, which are mentioned in the end of Sect. 2. We set
Q = Ω × [0, T ], Σ = Γ × [0, T ], ΣD = ΓD × [0, T ], ΣN = ΓN × [0, T ] and ΣC = ΓC × [0, T ].

The classical formulation of the contact problem is stated as follows.

Problem 5.1. Find a displacement field u : Q → R
d and a stress field σ : Q → S

d such that

σ(t) ∈ A(
t, ε(u(t)), ε(u′(t))

)
+ ∂cϕ(ε(u′(t))) in Q, (5.1)

u′′(t) = Div σ(t) + f0(t) in Q, (5.2)

u(t) = 0 on ΣD, (5.3)

σ(t)ν = fN (t) on ΣN , (5.4)
⎧
⎪⎪⎨

⎪⎪⎩

− σν(t) ∈ ∂jν(t, uν(t), u′
ν(t)),

− στ (t) ∈ ∂jτ

(
t,

t∫

0

‖uτ (s)‖Rd ds,u′
τ (t)

) on ΣC , (5.5)

u(0) = u0, u′(0) = w0 in Ω. (5.6)

We now provide a brief description on the equations, conditions and relations appeared in Problem 5.1.
Inclusion (5.1) is a nonlinear viscoelastic constitutive law, where ϕ : Sd → R ∪ {+∞} is a proper convex
and lower semicontinuous function, and A : Q × S

d × S
d → S

d presents a viscoelasticity operator (see for
example, [34]), which is considered to read the following conditions.

H(A) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) A(·, ·, ε,η) is measurable on Q, for all ε,η ∈ S
d.

(b) there exists LA > 0 such that

‖A(x, t, ε1,η1) − A(x, t, ε2,η2)‖Sd ≤ LA(‖ε1 − ε2‖Sd + ‖η1 − η2‖Sd)

for a.e. (x, t) ∈ Q and all εi,ηi ∈ S
d for i = 1, 2.

(c) there exists αA > 0 such that
(A(x, t, ε1,η1) − A(x, t, ε2,η2)

)
:
(
η1 − η2

)

≥ αA(‖η1 − η2‖Sd − ‖ε1 − ε2‖Sd)‖η1 − η2‖Sd

for all ε1, ε2,η1,η2 ∈ S
d and a.e. (x, t) ∈ Q.

(d) A(x, t, 0, 0) = 0 for a.e. (x, t) ∈ Q.

As a special case, A can be specialized by the sum of a viscosity operator P and an elasticity operator B,
i.e., A(x, t, ε,η) := P(

t,x, ε(u′(t))
)

+ B(
t,x, ε(u(t))

)
. In this moment, when ∂cϕ ≡ 0, the constitutive

law (5.1) reduces to the nonlinear Kelvin–Voigt constitutive law, thus,

σ(t) = P(
t,x, ε(u′(t))

)
+ B(

t,x, ε(u(t))
)

for a.e. (x, t) ∈ Q,

which has been frequently used to the study of various dynamic or quasi-static contact problems, see for
instance, [23,35,36].
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Equation (5.2) is derived directly by the fundamental principle of momentum conservation which
describes the evolution of the mechanical state of the viscoelastic body; without loss of generality, the
mass density of the body is assumed to be one in (5.2), where the time-dependent volume forces of density
f0 act in Q and fulfills the following regularity

f0 ∈ L2(0, T ;H). (5.7)

Conditions (5.3) and (5.4) reveal the phenomena that the body is clamped on ΓD, but it is subjected
to the surface tractions of density fN on ΓN , where the function fN satisfies the condition

fN ∈ L2(0, T ;L2(ΓN ;Rd)). (5.8)

The multi-valued relations (5.5) characterize a generalized normal contact condition and a frictional
law, where the superpotential functions jν : ΣC × R × R → R and jτ : ΣC × R × R

d → R are locally
Lipschitz, which are nonconvex in general, and fulfill the assumptions

H(jν) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) jν(·, ·, r, s) is measurable on ΣC for all r, s ∈ R and there exists a function

e ∈ L2(ΣC) such that for all w ∈ L2(ΣC), it holds jν(·, ·, w, e) ∈ L1
(
ΣC

)
.

(b) jν(x, t, ·, s) is continuous on R for a.e (x, t) ∈ ΣC and all s ∈ R.

(c) jν(x, t, r, ·) is locally Lipschitz for a.e. (x, t) ∈ ΣC and all r ∈ R.

(d) there exist c0ν ∈ L2
+(ΣC) and a constant c1ν ≥ 0 such that

|∂jν(x, t, r, s)| ≤ c0ν(x, t) + c1ν(|r| + |s|)
for a.e. (x, t) ∈ ΣC and all r, s ∈ R.

(e) there is a constant βjν
≥ 0 such that

j0
ν(x, t, r1, s1; s2 − s1) + j0

ν(x, t, r2, s2; s1 − s2)

≤ βjν
(|r1 − r2| + |s1 − s2|)|s1 − s2|

for all r1, r2, s1, s2 ∈ R and a.e. (t,x) ∈ ΣC .

H(jτ ) :

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a) jτ (·, ·, q,z) is measurable on ΣC for all q ∈ R+ and all z ∈ R
d

and there exists a function e ∈ L2(ΣC ;Rd) such that for all

η ∈ L2(ΣC), we have jτ (·, ·, η(·),e(·)) ∈ L1
(
ΣC

)
.

(b) jτ (x, t, ·,z) is continuous on R for a.e (x, t) ∈ ΣC and all z ∈ R
d.

(c) jτ (x, t, q, ·) is locally Lipschitz for a.e. (x, t) ∈ ΣC and all q ∈ R.

(d) there exist c0τ ∈ L2
+

(
ΣC

)
and c1τ ≥ 0 such that

‖∂jτ (x, t, q,z)‖Rd ≤ c0τ (x, t) + c1τ (|q| + ‖z‖Rd)

for all q ∈ R, all z ∈ R
d, and a.e. (x, t) ∈ ΣC .

(e) there exists βjτ
≥ 0 such that

j0
τ (x, t, q1,z1;z2 − z1) + j0

τ (x, t, q2,z2;z1 − z2)

≤ βjτ
(|q1 − q2| + ‖z1 − z2‖Rd)‖z1 − z2‖Rd

for all (q1,z1), (q2,z2) ∈ R × R
d and a.e. (x, t) ∈ ΣC .

In fact, as we know, many typical laws in various mechanical contact phenomena could be formulated by
the special forms of (5.5); for the detailed explanation, one can refer the monographs [21, Chapter 6.3]
and [10,11,33].
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Condition (5.6) presents the initial displacement and velocity fields, which entail the following condi-
tion

u0, w0 ∈ V with w0 ∈ intD(ψ) and 0Sd ∈ ∂cϕ(ε(w0(x))) for a.e. x ∈ Ω, (5.9)

where ψ : V → R ∪ {+∞} is defined by

ψ(v) :=
∫

Ω

ϕ(ε(v(x))) dx for all v ∈ V, (5.10)

and V is a closed subspace of H1 given by

V =
{

v ∈ H1 | v = 0 on ΓD

}
.

Let V ∗ be the dual space of V . Recall that meas(ΓD) > 0, it follows from Korn’s inequality that the
space V is a real Hilbert space equipped with the inner product

〈u,v〉V ∗×V = 〈ε(u), ε(v)〉H for all u,v ∈ V

and the associated norm ‖ · ‖V . However, by the Sobolev trace theorem, we have

‖v‖L2(ΓC ;Rd) ≤ C0‖v‖V for all v ∈ V (5.11)

for some C0 > 0, which only depends on the domain Ω, ΓD and ΓC .
To deliver the variational formulation of Problem 5.1, we now assume that there are the displacement

field u and the stress field σ sufficiently smooth which satisfy (5.1)–(5.6). Denote w = u′ the velocity
field. Also, we introduce the operator S : L2(0, T ;V ) → L2(0, T ;V ) defined by

(Sw)(t) := u0 +

t∫

0

w(s) ds for all t ∈ [0, T ] and all w ∈ L2(0, T ;V ). (5.12)

Employing the Green’s formula (see for example, [21, Theorem 2.25]), it is not difficult to obtain the
following variational formulation of Problem 5.1 in terms of velocity.

Problem 5.2. Find a velocity field w : [0, T ] → V such that for a.e. t ∈ [0, T ] and all v ∈ V ,
〈
w′(t),v − w(t)

〉

V ∗×V
+

〈A(
t, ε((Sw)(t)), ε(w(t))

)
, ε(v) − ε(w(t))

〉

H +
∫

Ω

ϕ(v) dx

−
∫

Ω

ϕ(w(t)) dx +
∫

ΓC

j0
ν

(
t, (Sw)ν(t), wν(t); vν − wν(t)

)
d Γ

+
∫

ΓC

j0
τ

(
t,

t∫

0

‖(Sw)τ (s)‖Rd ds,wτ (t);vτ − wτ (t)
)
d Γ ≥ 〈f(t),v − w(t)〉V ∗×V (5.13)

with w(0) = w0, where f : [0, T ] → V ∗ is such that

〈f(t),v〉V ∗×V = 〈f0(t),v〉H + 〈fN (t),v〉L2(ΓN ;Rd) for all v ∈ V. (5.14)

Remark 5.3. It should be underlined that if w is a solution to Problem 5.2, then by using the equality
u = Sw and taking a suitable function η : Q → S

d with η(t) ∈ ∂cϕ(ε(u′(t))) for a.e. (x, t) ∈ Q, such that
σ(t) = A(

t, ε(u(t)), ε(u′(t))
)
+η(t) for a.e. (x, t) ∈ Q (see the viscoelastic constitutive law (5.1)), we can

see that the couple of functions (u,σ) also solves problem (5.1)–(5.6), which is called a weak solution to
problem (5.1)–(5.6). In the meantime, it is easy to see that

u ∈ V, u′ ∈ W, u′′ ∈ V∗, σ ∈ L2(0, T ;H) and Div σ ∈ V∗.

The existence and uniqueness theorem to Problem 5.2 is given as follows.
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Theorem 5.4. Let ϕ : Sd → R ∪ {+∞} be a proper, convex and lower semicontinuous function. Assume
that H(A), H(jν), H(jτ ), (5.7), (5.8), (5.9) hold. If, in addition, the inequality holds

αA > max
{
(βjν

+ βjτ
)max{C0, C

2
0}, 2C0meas(ΓC)(1 + C0)(c1ν + c1τ )

}
, (5.15)

then Problem 5.2 has a unique solution w ∈ W.

We define the operators S1 : V → V, S2,S3 : V → L2
(
0, T ;L2(ΓC)

)
and A : [0, T ] × V × V → V ∗ by

(S1w)(t) = (Sw)(t), (S2w)(t) = (Sw)ν(t), (S3w)(t) =

t∫

0

‖(Sw)τ (s)‖Rd ds, (5.16)

〈
A(t,u,w),v

〉

V ∗×V
=

〈A(t, ε(u), ε(w)), ε(v)
〉

H (5.17)

for all u,v,w ∈ V and a.e. t ∈ [0, T ]. Also, consider the function φ : [0, T ] × L2(ΓC) × L2(ΓC) × V → R

as follows

φ(t, z, q,w) =
∫

ΓC

(
jν

(
t, z(t), wν(t)

)
+ jτ

(
t, q(t),wτ (t)

))
d Γ (5.18)

for all z, q ∈ L2(ΓC), all w ∈ V and a.e. t ∈ [0, T ]. Next, we shall prove that the problem: find w ∈ W
such that

〈
w′(t) + A

(
t, (Sw)(t),w(t)

)
,v − w(t)

〉

V ∗×V
+ ψ(v) − ψ(w(t))

+φ0(t, (S2w)(t), (S3w)(t),w(t);v − w(t)) ≥ 〈f(t),v − w(t)〉V ∗×V (5.19)

for all v ∈ V and a.e. t ∈ [0, T ] with w(0) = w0, has a unique solution. The proof of the assertion is
mainly based on the theoretical result, Theorem 4.2. Hence, the current goal is to illustrate that all of
conditions presented in Theorem 5.4 are valid.

Let Y1 = V , Y2 = Y3 = L2(ΓC). From the formulations of Si, i = 1, 2, 3, we have the lemma.

Lemma 5.5. The operators Si(i = 1, 2, 3) defined in (5.16) are history-dependent, i.e., condition (4.2) is
satisfied with

LS1 = 1, LS2 = C0, and LS3 = C0T.

The following lemma indicates that A defined in (5.17) reads conditions H(A).

Lemma 5.6. If the hypotheses H(A) hold, then the operator A defined in (5.17) satisfies the conditions
(4.3) with α = αA.

Proof. It follows from hypotheses H(A)(a), (b), (d), Hölder’s inequality, Fubini’s theorem and Pettis
measurability theorem that condition (4.3)(a) is fulfilled (for more details, one may also refer to the proof
of [21, Theorem 8.3]).

By virtue of hypotheses H(A)(b), (d), and Hölder inequality, we obtain
∣
∣〈A(t,y,w),v〉V ∗×V

∣
∣ ≤

∫

Ω

‖A(t, ε(y), ε(w))‖‖ε(v)‖ d x

≤ LA
( ∫

Ω

(‖ε(y)‖ + ‖ε(w)‖)2
d x

)1/2

‖v‖V

≤
√

2LA(‖y‖V + ‖w‖V )‖v‖V

for all y,w,v ∈ V and a.e. t ∈ [0, T ], namely

‖A(t,y,w)‖V ∗ ≤
√

2LA(‖y‖V + ‖w‖V ) for all y,w ∈ V and a.e. t ∈ [0, T ].
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This means that the condition (4.3)(d) holds with a1 = 0 and a2 =
√

2LA.
To verify the conditions (4.3)(b) and (4.3)(c), let sequences {yn} and {wn} be such that yn → y and

wn → w in V , as n → ∞. Then, it may say

ε(yn) → ε(y), ε(wn) → ε(w) in L2(Ω;Sd), as n → ∞.

By converse-Lebesgue-dominated convergence theorem, we are able to find two subsequences {ynk
},

{wnk
} of {yn}, {wn} satisfying

ε(ynk
)(x) → ε(y)(x), ε(wnk

)(x) → ε(w)(x) in S
d as nk → ∞

for a.e. x ∈ Ω. The latter combined with the continuity of A, see H(A)(b), implies

‖A(t,x, ε(ynk
)(x), ε(wnk

)(x)) − A(t,x, ε(y)(x), ε(w)(x))‖Sd → 0

as nk → ∞ for a.e. (x, t) ∈ Q. However, from assumptions H(A) (b), (d), and Lebesgue-dominated
convergence theorem, it yields

‖A(t, ε(ynk
), ε(wnk

)) − A(t, ε(y), ε(w))‖H → 0

as nk → ∞, for a.e. t ∈ [0, T ].
Notice that

∣
∣
〈
A(t,ynk

,wnk
) − A(t,y,w),v

〉

V ∗×V

∣
∣

=
∣
∣
〈A(t, ε(ynk

), ε(wnk
)) − A(t, ε(y), ε(w)), ε(v)

〉

H
∣
∣

≤ ‖A(t, ε(ynk
), ε(wnk

)) − A(t, ε(y), ε(w))‖H‖ε(v)‖H
= ‖A(t, ε(ynk

), ε(wnk
)) − A(t, ε(y), ε(w))‖H‖v‖V for all v ∈ V,

it deduces A(t,ynk
,wnk

) → A(t,y,w) in V ∗ for a.e. t ∈ [0, T ]. In accordance with [21, Proposition 1.14],
we directly obtain A(t,yn,wn) → A(t,y,w) in V ∗ for a.e. t ∈ [0, T ], which implies (4.3)(b) and (c).

Finally, condition (4.3)(e) is ensured directly by applying hypothesis H(A)(c), which ends the
proof. �

Lemma 5.7. Assume that H(jν) and H(jτ ) hold. Then, the function φ defined in (5.18) satisfies conditions
(4.4) and

φ0(t, z, q,w;v) ≤
∫

ΓC

j0
ν

(
t, z, wν ; vν

)
d Γ +

∫

ΓC

j0
τ

(
t, q,wτ ;vτ

)
d Γ (5.20)

for all z, q ∈ L2(ΓC) all w,v ∈ V and a.e. t ∈ [0, T ].

Proof. From the assumptions, the conditions (4.4)(a)–(c) are the direct consequences of [20, Lemma 5]
(or [21, Corollary 4.18]).

We show the condition (4.4)(d) by using the hypotheses H(jν)(d) and H(jτ )(d). Invoking [20, Lemma
5], it has

∂j(x, t, z, q, ξ) ⊆ ∂jν(x, t, z, ξν)ν + ∂jτ (x, t, q, ξτ ) for all z, q ∈ R, ξ ∈ R
d and a.e. (x, t) ∈ ΣC ,

where j is defined by

j(x, t, z, q, w) = jν(x, t, z, ξν) + jτ (x, t, q, ξτ ) for all z, q ∈ R, ξ ∈ R
d and a.e. (x, t) ∈ ΣC . (5.21)

But, hypotheses H(jν)(d) and H(jτ )(d) ensure

‖∂j(x, t, z, q, ξ)‖Rd ≤ |∂jν(x, t, z, ξν)| + ‖∂jτ (x, t, q, ξτ )‖Rd

≤ c0ν(x, t) + c0τ (x, t) + c1ν(|z| + |ξν |) + c1τ (|q| + ‖ξτ‖Rd)
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for all z, q ∈ R, ξ ∈ R
d and a.e. (x, t) ∈ ΣC . The above inequality together with [21, Theorem 3.47 (v)],

(5.18), and Hölder inequality deduces

‖∂φ(t, z, q,w)‖V ∗ ≤ C0

∫

ΓC

‖∂j(x, t, z, q,w)‖Rdd Γ

≤ C0meas(ΓC)(c0ν(t) + c0τ (t)) + C0c1ν

√
meas(ΓC)‖z‖L2(ΓC)

+ C0c1τ

√
meas(ΓC)‖q‖L2(ΓC) + C2

0 (c1ν + c1τ )
√

meas(ΓC)‖w‖V

for all z, q ∈ L2(ΓC), w ∈ V and a.e. t ∈ [0, T ]. This means that (4.4)(d) is valid with

c1(t) = C0meas(ΓC)(c0ν(t) + c0τ (t)) and c2 = C0meas(ΓC)(1 + C0)(c1ν + c1τ ) (5.22)

for a.e. t ∈ [0, T ].
It remains to verify the validity of (4.4)(e) and (5.20). Employing [20, Proposition 2] and conditions

H(jν)(e) as well as H(jτ )(e), we find

j0(x, t, z, q, ξ;η) ≤ j0
ν(x, t, z, ξν ; ην) + j0

τ (x, t, q, ξτ ;ητ ) (5.23)

for all z, q ∈ R, ξ ∈ R
d and a.e. (x, t) ∈ ΣC , and

j0(x, t, z1, q1, ξ1; ξ2 − ξ1) + j0(x, t, z2, q2, ξ2; ξ1 − ξ2)

≤ j0
ν(x, t, z1, ξ1ν ; ξ2ν − ξ1ν) + j0

ν(x, t, z2, ξ2ν ; ξ1ν − ξ2ν)

+ j0
τ (x, t, q1, ξ1τ ; ξ2ν − ξ1ν) + j0

τ (x, t, q2, ξ2τ ; ξ1ν − ξ2ν)

≤ (βjν
+ βjτ

)(|z1 − z2| + |q1 − q2| + ‖ξ1 − ξ2‖Rd)‖ξ1 − ξ2‖Rd

for all z1, z2, q1, q2 ∈ R, ξ1, ξ2 ∈ R
d and a.e. (x, t) ∈ ΣC . So, we conclude the inequality (5.20), see (5.23)

and [21, Theorem 3.47 (iv)]. Nevertheless, from [21, Theorem 3.47 (iv)], we immediately get

φ0(t, z1, q1,w1;w2 − w1) + φ0(t, z2, q2,w2;w1 − w2)

≤ (βjν
+ βjτ

)
∫

ΓC

(|z1 − z2| + |q1 − q2| + ‖w1 − w2‖Rd

)‖w1 − w2‖Rdd Γ

≤ C0(βjν
+ βjτ

)(‖z1 − z2‖L2(ΓC) + ‖q1 − q2‖L2(ΓC))‖w1 − w2‖V

+ C2
0 (βjν

+ βjτ
)‖w1 − w2‖2

V

and all (z1, q1,w1), (z2, q2,w2) ∈ L2(ΓC)×L2(ΓC)×V and a.e. t ∈ [0, T ]. Therefore, the condition (4.4)(e)
holds with

β = (βjν
+ βjτ

)max{C0, C
2
0}. (5.24)

This completes the proof of the lemma. �

Under the above analysis, we are now in a position to apply Theorem 4.2 to prove Theorem 5.4.

Proof of Theorem 5.4. In fact, Lemmas 5.5–5.7 guarantee the validity of the conditions (4.2), (4.3), (4.4).
Besides, from regularity conditions (5.9), it is not difficult to prove that the function ψ defined in (5.10)
reads H(ψ) (see [3, p. 875]). The smallness condition (3.3) and condition (3.2) can be obtained directly
by using (5.15), (5.7), (5.8) and (5.9).

So, Theorem 4.2 is applicable. Employing the theorem, we conclude that Problem 5.19 has a unique
solution w ∈ W. However, inequality (5.20) implies that Problem 5.2 has at least one solution in W.
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Let w1,w2 ∈ W be two solutions to Problem 5.2. A simple computing finds a constant M0 > 0 such
that

1
2
‖w1(t) − w2(t)‖2

H + α‖w1 − w2‖2
L2(0,t;V ) − α‖w1 − w2‖L2(0,t;V )‖(Sw1) − (Sw2)‖L2(0,t;Y )

≤
t∫

0

∫

ΓC

j0
ν

(
t, (Sw1)ν(s), w1,ν(s);w2,ν(s) − w1,ν(s)

)
d Γ dt

+

t∫

0

∫

ΓC

j0
ν

(
t, (Sw2)ν(s), w2,ν(s);w1,ν(s) − w2,ν(s)

)
d Γ dt

+

t∫

0

∫

ΓC

j0
τ

(
s,

s∫

0

‖(Sw1)τ (η)‖Rd dη,w1,τ (s);w2,τ (s) − w1,τ (s)
)
d Γ ds

+

t∫

0

∫

ΓC

j0
τ

(
s,

s∫

0

‖(Sw2)τ (η)‖Rd dη,w2,τ (s);w1,τ (s) − w2,τ (s)
)
d Γ ds

≤ β‖w1 − w2‖2
L2(0,t;V ) + M0‖w1 − w2‖L2(0,t;V )‖(Sw1) − (Sw2)‖L2(0,t;Y )

for all t ∈ [0, T ]. Hence, we have

‖w1 − w2‖L2(0,t;V ) ≤ M0 + α

α − β
‖(Sw1) − (Sw1)‖L2(0,t;Y )

for all t ∈ [0, T ]. However, from the Gronwall’s inequality, we conclude that w1 = w2, so Problem 4.1
has a unique solution w ∈ W. �
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[10] Han, J.F., Migórski, S., Zeng, H.D.: Analysis of a dynamic viscoelastic unilateral contact problem with normal damped
response. Nonlinear Anal. RWA 28, 229–250 (2016)
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[26] Migórski, S., Zeng, S.D.: A class of generalized evolutionary problems driven by variational inequalities and fractional

operators. Set-Valued Var. Anal. 27, 949–970 (2019)
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