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Statistica Sinica 18(2008), 905-923 

NONPARAMETRIC ESTIMATOR OF FALSE DISCOVERY 

RATE BASED ON BERNˇ IN POLYNOMIALS STE˘ 

Zhong Guan, Baolin Wu and Hongyu Zhao 

Indiana University South Bend, University of Minnesota 

and Yale University School of Medicine 

Abstract: Under a local dependence assumption about the p-values, an estimator 

of the proportion ˇ0 of true null hypotheses, having a closed-form expression, is 

derived based on Bernštĕın polynomial density estimation. A nonparametric esti-

mator of false discovery rate (FDR) is then obtained. These estimators are proved 

to be consistent, asymptotically unbiased, and normal. Confdence intervals for ˇ0 

and the FDR are also given. The usefulness of the proposed method is demonstrated 

through simulations and its application to a microarray dataset. 

Key words and phrases: Bernštĕın polynomials, bioinformatics, density estimation, 

false discovery rate, local dependence, microarray, mixture model, multiple com-

parison. 

1. Introduction 

Statistical signifcance in multiple comparison problems has attracted the 

attention of many authors. The false discovery rate (FDR), frst introduced by 

Benjamini and Hochberg (1995), is one measure of this statistical signifcance. 

Storey (2002a) and Storey and Tibshirani (2003) introduced the positive false 

discovery rate (pFDR) and proposed procedures for estimating FDR and pFDR, 

with applications to DNA microarrays, under the assumptions that the test statis-

tics of the hypotheses are independent and dependent, respectively. 

Let T be the test statistic for hypothesis H. Denote the null and alternative 

hypotheses by H = 0 and H = 1, respectively. So ˇ0 ≡ Pr(H = 0) is the 

proportion of true null hypotheses, and Fj(t) ≡ Pr(T ≤ t |H = j), j = 0, 1, 

are the null and alternative distribution of T , respectively. Consider testing n 

hypotheses, H1, . . . ,Hn, with test statistics T1, . . ., Tn. For each i, denote the 

null and alternative hypotheses by Hi = 0 and Hi = 1, respectively. Assume 

Pr(Hi = 0) = ˇ0 and Pr(Ti ≤ t |Hi = j) = Fj(t), j = 0, 1, for all i. The set of 

observed values, t1, . . . , tn, of the test statistics T1, . . . , Tn is treated as a sample 

from the mixture distribution of T : 

F (t) = ˇ0F0(t) + (1 − ˇ0)F1(t). (1.1) 
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Let � be the common rejection region for all the tests. The notion of false 
non-discovery rate (FNR) was introduced by (Genovese and Wasserman (2002)). 

The following Bayesian interpretation of the pFDR and the positive false non-
discovery rate (pFNR) can be found in (Storey (2002a, 2003)): 

ˇ0PrF0
(T ∈ �) 

pFDR = Pr(H = 0 |T ∈ �) = ,
PrF (T ∈ �) 

ˇ0PrF0
(T ∈/ �) 

pFNR = Pr(H = 1 |T ∈/ �) = 1 − . 
PrF (T ∈/ �) 

The terms PrF (T ∈ �) and PrF (T ∈/ �) above can be estimated from the data. 
The probabilities PrF0

(T ∈ �) and PrF0
(T ∈/ �) can be obtained from the null 

distribution which usually is known or can be estimated in some way, such as 
by using resampling methods. If ˇ0 can be estimated based on t1, . . . , tn, then 

pFDR and pFNR are estimable. Allison et al. (2002) also used these quanti-
ties, and modeled the distribution of the p-values from microarray data analy-

sis by a fnite Beta mixture distribution. Note that the Type I error rate for 
each single test is Pr(T ∈ �|H = 0) and the family-wise-error-rate (FWER) 

Snis Pr{ (Ti ∈ �,Hi = 0)} (see, for example, Westfall and Young (1993) and i=1 

Ge, Dudoit and Speed (2003)). 

The simplest situation occurs when we know the parametric forms of both 
the null and alternative distributions, F0 and F1. In this case, we can ft a para-

metric mixture model to the observed test statistics (Guan, Wu and Zhao (2004)). 
Simulation studies have shown that the model-based approach can signifcantly 

improve pFDR and FDR estimation if the parametric model is correct. 
In most applications, two other scenarios are more likely to occur. The 

frst has the null distribution, or at least its large sample approximation, of 
the test statistics as known, while the alternative distribution is unknown. The 

other is the more diÿcult situation in which neither the null nor the alternative 
distributions are known. In this case, methods such as permutation procedures 

can be used to estimate the null distribution of the test statistics. 
This paper assumes that both F0 and F1 are continuous, and that F0 is 

known or can be estimated in some way. We use p-values as the test statistics 
and, in this case, F0(t) = t, 0 ≤ t ≤ 1. In the rest of the paper, F1 is assumed to 

be continuous on [0, 1] and we let t1, . . ., tn represent the p-values of the n tests. 
In terms of densities, the mixture model (1.1) with F0(t) = t can be written as 

f(t) = ˇ0 + (1 − ˇ0)f1(t). (1.2) 

In this case, if the common rejection region is {p ≤ p0}, then 

p0ˇ0 (1 − p0)ˇ0
pFDR = and pFNR = 1 − . 

F (p0) 1 − F (p0) 
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Therefore, the key to the estimation of these quantities is the estimation of 

ˇ0. Write b = mint∈[0,1] f1(t). Clearly, 0 ≤ b < 1. In order that (1.2), as a 

nonparametric model, is identifable, one has to assume that b = 0; otherwise, 

for any a ∈ [0, b], ˇ∗ = ˇ0 + a(1 − ˇ0) and f1 
∗(t) = {f1(t) − a}/(1 − a) satisfy the 0 

model f(t) = ˇ0 
∗ + (1 − ˇ0 

∗)f1 
∗(t). Furthermore, the density f1 is assumed to be 

continuous on [0, 1] with b = f1(1) = 0, so that f(1) = ˇ0 Wu, Guan and Zhao 

(2006). Therefore, if f̂  is a density estimate, f̂(1) is an estimate of ˇ0. 

The most commonly used kernel density estimate is subject to boundary 

e �ects at 0 and 1. In order to minimize the boundary e �ect of kernel density 

estimation for distribution with bounded support, one has to make a bound-

ary correction (Jones (1993)). A Bernštĕın polynomial density estimate seems 
ˆconvenient for estimating f(1), and has a closed-form expression. Let F de-

note the empirical distribution of t1, . . . , tn. Storey and Tibshirani (2003) pro-

posed using ˇ̂0 = ĝ(1) to estimate ˇ0, with ĝ  being the ftted spline to the data 

{ˇ̂0(�) : � = 0.01, 0.02, . . . , 0.95} where ˇ̂0(�) = [1 − F̂ (�)]/(1 − �). Based on 

nonparametric maximum likelihood estimation of the density of p-values, with 

restriction to convex decreasing densities, Langaas, Lindqvist and Ferkingstad 

(2005) proposed another smoothing method and showed that their method out-

performs some existing estimators with respect to root-mean-squared error. 

There are several approaches to FDR estimation. Among many others, 

Efron et al. (2001), Efron and Tibshirani (2002), and Efron (2003) proposed the 

empirical Bayes method, which also uses the model (1.2), Guan et al. (2004) pro-

posed a method that assumed parametric forms of f0 and f1 in (1.2). Readers 

are referred to Wu et al. (2006) for an extensive comparison among these meth-

ods. Although not explored directly in Allison et al. (2002), FDR could also be 

estimated by their method based on a mixture model of Beta distributions. 

Since any continuous function on [0, 1] can be uniformly approximated with 

Bernštĕın polynomials (Bernštĕın (1912)), Vitale (1975) proposed using them to 

estimate an unknown density function. Tenbusch (1994) extended this method to 

multidimensional situation. The rates of convergence of the posterior distribution 

for a Bernštĕın polynomial prior were obtained by Ghosal (2001). The Bernštĕın 

polynomial and the k-th order Bernštĕın expansion of a function g(t) are defned 

as 
� � k 

� � 

Xk j
Bj, k(t) = tj(1 − t)k−j, Bkg(t) = g Bj, k(t). 

j k 
j=0 

One can estimate F and f by 

k k−1 
� � � � 

X Xj jˆ ˆ ˆFk(t) = BkF (t) = F Bj, k(t), f̂  k(t) = Bk−1f̂(t) = f̂  Bj, k−1(t),
k k−1 

j=0 j=0 
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respectively, where 

ˆ ˙ 

� � � � � �j j + 1 j
f̂ = k F̂  − F̂  , for j = 0, . . . , k − 1. (1.3) 

k − 1 k k 

2/5If k is chosen proportional to n , then, for each fxed t ∈ (0, 1), the mean square 

error of f̂  k(t) is proportional to n
−4/5 (Vitale (1975)). 

We propose a nonparametric method based on Bernštĕın polynomial density 

estimation. Simulation study and an application to a microarray dataset are 

carried out in Section 4. The proofs of the main results are given in the Appendix. 

2. Estimators of ˇ0 and FDR and Asymptotic Results 

Albeit Bayesian interpretations of pFDR and pFNR have been used, it is 

convenient to work directly with the test statistics of the hypotheses. With a 

properly chosen 1 ≤ r < k, one can estimate ˇ0 by 

r 
� � 

X 

ˇ̃0 =
1 

f̂  k 1 −
l

. (2.1) 
r k 

l=1 

� � 

If r = 1 then ˇ̃0 = f̂  k 1 − 1/k ≈ f(1) = ˇ0 for large k. On average, this 

estimator has smaller variance for larger r > 1, but for larger r, bias increases. 

Of course, the magnitude of the bias depends on k and f as well. Later in this 

paper, we develop a method to choose r and k to balance bias-variance trade-o 

by minimizing a partial mean square error of ˇ̃0. 

The following assumptions are needed for the asymptotic results about ˇ̃0: 

Assumption 1. The test statistics T1, . . . , Tn satisfy the local dependence (LD1) 

of Chen and Shao (2005): for each Ti, except for ni statistics Ti1 , . . . , Tini 
all 

other Tj ’s are independent of Ti. There exists an m independent of n so that 
−1 

Pn n̄ ≡ n This is a generalization of m-dependence. i=1 ni ≤ m. 

Assumption 2. The partial derivative fuv(s, t) = @2Fuv(s, t)/(@s @t) of the 

joint distribution function Fuv(s, t) of each pair (Tu, Tv) is uniformly bounded by 

a constant, independent of (u, v). 

Assumption 1 is usually satisfed for gene expression data since in the whole 

genome, each gene is likely to have interactions only with a limited number of 

other genes. A Glivenko-Cantelli lemma of Yu (1993) for dependent sequences 

ensures that Assumption 1 satisfes the weak dependence assumption made by 

Storey et al. (2004). More discussion on the dependence issue in the estimation 

of FDR can also be found in Langaas et al. (2005). Efron (2006) discusses the 

e �ect of correlation on the null distribution and FDR. 
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Theorem 1. Suppose f(t) is continuously di erentiable on (0, 1] with a bounded 

derivative, and that f(1) = ˇ0. Then for each fxed r, ˇ̃0 is an asymptotically 

unbiased estimator of ˇ0. Moreover, as k, n → ∞, 

|E (˜̌0) − ˇ0| = O(k−1). (2.2) 

If Assumptions 1 and 2 hold, then for each fxed r, 

nVar (˜̌0)
lim = ˇ0 (2.3) 

k,n→∞ khk(r) 

where, for each r ≥ 1, 

k−1 ˆ r ˙2
� � 

X X1 i 
hk(r) ≡ Bj, k−1 1 − , (2.4) 

r k 
j=0 i=1 

∞ � r �21 ljX X

3

2 
−l −h(r) ≡ lim hk(r) = 

k→∞ r 
j=0 l=1 

1/3Furthermore, if k is of order n , then 

j! 
= O(r ). (2.5) e 

2

3 
−E (˜̌0 − ˇ0)

2 = O(n ). (2.6) 

Remark 2.1. It should be noted that if the assumption f1(1) = 0 is violated 

then ˇ̃0 is approximately conservative, i.e., E(˜̌0) > ˇ0 for large k and n. The 

Storey and Tibshirani (2003) estimate ˇ̂0(�) has the same property. 

Remark 2.2. It is easy to see that 

r 
X X

p1 2−2l −i−jh(r) = 
2 

I0(2l)e + 
2 

I0(2 ij)e , (2.7) 
r r 

l=1 1≤i<j≤r 

where I0(x) is the modifed frst kind Bessel function I�(x) with � = 0: 

� �2jx ∞
X 

2I0(x) = . 
j=0 

(j!)2 

Clearly, h(r) ≤ h(1) = 0.3085083. 

Remark 2.3. The assumption that f ′(1) is bounded can be violated in some 

cases. For example, let the test statistic T be N(0, 1) under H0 and N(µ, 1) 

under HA, with µ > 0. The distribution function of the p-value of the one-sided 

test is F (t) = ˇ0t + (1 − ˇ0){1 −�[�−1(1 − t) − µ]}, where � is the distribution 
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function of N(0, 1). Write '(t) = � ′(t). The density function and its derivative 
are, respectively, 

√
µ�−1(1−t)f(t) = F ′(t) = ˇ0 + 2ˇ(1 − ˇ0)'(µ)e , 

�−1(1−t)[µ+�−1(1−t)] f ′(t) = −2ˇµ(1 − ˇ0)'(µ)e . 

′Thus limt→1− f(t) = ˇ0 and limt→0+ f 
′(t) = limt→1− f ′(t) = −∞, so f is not 

bounded. 

In the proof of Theorem 2.1, it is shown that ˇ̃0 is a sum of locally dependent 

random variables, the following asymptotic normality of ˇ̃0 is a consequence of 

the recent result of Chen and Shao (2005). 

Theorem 2.2. Suppose that Assumptions 1 and 2 hold. If f(t) is continuously 

di erentiable on (0, 1] with bounded derivative and f(1) = ˇ0, then for fxed r, 

as k, n → ∞ and k/n → 0, 

√
n{ˇ̃0 − E (˜̌0)} d 
p −→ N(0, ˇ0). (2.8) 

khk(r) 

Given a cuto p0 for the p-values, FDR can be estimated by 

p0ˇ̃0\pFDR(p0) = . (2.9) 
F̂ (p0) 

From the Glivenko-Cantelli lemma of Yu (1993), Theorems 2.1 and 2.2, it follows 

that \pFDR(p0) is also consistent and asymptotically normal. One can construct 

a confdence interval for ˇ0 as follows. For a given confdence level 1− , let z /2 
be the upper /2 quantile of the standard normal distribution, so 

ˆ√ ˙ 

n|ˇ̃0 − ˇ0|
Pr p < z /2 ≈ 1 − . 

kˇ̃0hk(r) 

Therefore Pr{ˇ̃0L 
( ) < ˇ0 < ˇ̃0U 

( )} ≈ 1 − , where 

r r 

k k 
ˇ̃0L 

( ) = ˇ̃0 − z /2 hk(r)˜̌0 and ˇ̃0U 
( ) = ˇ̃0 + z /2 hk(r)˜̌0 . (2.10) 

n n 

Based on the confdence interval for ˇ0 one can obtain the confdence interval 
\( \ pFDRU ) for pFDR with pFDRL, 

p0ˇ̃0L 
( ) p0ˇ̃0U 

( )
\ \pFDRL = , pFDRU = . 

ˆ ˆF (p0) F (p0) 

One can also replace F̂ (p0) by F̂k(p0). 
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3. Choosing Optimal r and k 

When the sample size n is large, as in microarray data analysis, Assumptions 

1 and 2 assure that the contribution made by covariances to the variance of the 

estimator ˇ̃0 is bounded above by a quantity independent of (r, k) (see (A.17)). 

In the proof of Theorem 2.1, (A.8) gives an estimate of the bias of ˇ̃0: 

3 
X 

B(r, k) = |E(˜̌0) − ˇ0| ≤ R1i(k, r). (3.1) 
i=0 

Then one can choose r and k by minimizing the partial mean square error 

ˆ 3 ˙2 
X 

pMSE(r, k) = R1i(k, r) + D(r, k), (3.2) 
i=0 

where D(r, k) = (kˇ0/n)hk(r). One can estimate pMSE(r, k) by 

ˆ 3 ˙2 
X 

\ ˆpMSE(r, k) = R1i(k, r) + D̂(r, k), (3.3) 
i=0 

where D̂(r, k) = (kˇ̃0/n)hk(r), 

� 

k−1 
� � � �iX1�1−i j j¯ ′kR̂1i(k, r) ≈ b(j, k, r) f̂  , i = 0, 1, (3.4) k2 k − 1 k − 1 

j=0 

k−1 
� � 

X j 1 j
R̂12(k, r) ≈ b̄(j, k, r) f̂ ′ 1 − − , (3.5) k k − 1 k k − 1 

j=0 

� � 

′R̂13(k, r) ≈
1 
f̂ 1 − 1 

, (3.6) kk k 
k−2 

� � 

X j′ ′f̂  k(t) = Bk−2f̂(t) = f̂  Bj,k−2(t), (3.7) 
k − 2 

j=0 
ˆ ˙ 

� � � � � �j j + 1 j′f̂  = (k − 1) f̂  k − f̂  k , (3.8) 
k − 2 k − 1 k − 1 

for j = 0, . . . , k − 2, 

and b̄(j, k, r) is defned by (A.2). The optimal r̂  and k̂  satisfy 

\ r, ˆ pMSE(s, t), 1 ≤ s < t < n}.pMSE(ˆ k) = min{\

Intuitively, the larger the number k of bins, the larger the variance of ˇ̃0. On the 

other hand, increasing the number r in (2.1) can reduce the variance of ˇ̃0. Based 
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on (2.4) and (2.5), (kˇ0/n)hk(r) is an applicable measure of the dependence of 
variance of ˇ̃0 upon r and k. The upper bound estimate (3.1) is obtained by 
applying the triangle inequality. Thus (3.2) is suitable for fnding optimal r and 
k. The R package, nFDR, which implements the method of this paper is available 
on CRAN (the Comprehensive R Archive Network). 

4. Simulation Studies and Application to Microarray Data 

Comparison Study: In this simulation, we took n =1,000, ˇ0 = 0.25, 0.50, 0.75, 
and 0.95, and B = 500 sets of p-values p1, . . . , pn were simulated with pi uniform(0, 
1) or Beta(1, 6). The proportion ˇ0 of true null hypotheses is estimated in 
four di �erent ways: (1) ˇ̃∗ is based on (r ∗, k∗), where (r ∗, k∗) is the mini-0 

ˆ ˇcmizer of pMSE(r, k); (2) ˇ̃0 is based on (r̂, k); (3) ˆ0 is estimated by function 
convest() of R package limma, which implements the convex decreasing den-

ˇqsity method of Langaas et al. (2005); and (4) ˆ0 is estimated by the R package 
qvalue using a default setting that implements the smooth method described in 
Storey and Tibshirani (2003) (see also Storey (2003), Storey, Taylor and Sieg-

ˆmund (2004)). Simulation shows that the ˇ̃0’s based on (r̂, k) have a variation 
close to, but with a slightly smaller bias than the ones based on (r ∗, k∗). Thus the 
selected r̂  and k̂  performed well. The smooth method of Storey and Tibshirani 
(2003) has a larger variation, and a larger bias, than the proposed method. Ex-
cept for di �erences in the biases, the proposed method has variation similar to 
the convex decreasing density method. 

Impact of Dependence: In this simulation, n =3,000, m = 10 and B = 500. 
First, two-sample gene expression data {xij , yij : i = 1, 2, . . . , n; j = 1, 2, . . . , N}, 
N = 10, were generated in three di �erent ways. For each gene i, the null hypoth-
esis was Hi : µx = µy. Then B sets of p-values pi of two-sample t-test with the 
same variances were calculated based on xi1, . . . , xiN and yi1, . . . , yiN . 

′ ′(1) Independence: xij = µij , yij = µij + 3I{i ≤ (1 − ˇ0)n}, with µij ’s and µij ’s 
i.i.d. N(0, 1); 

′(2) Dependence Case 1: xij = (−1)iµvj + " ij , yij = (−1)iµvj + " ′ij + 2I{i ≤
(1 −ˇ0)n}, j = 1, . . . , N , i = (v −1)m +1, . . . , (v −1)m + m, v = 1, . . . , n/m, 

′where " ij’s and " 
′
ij ’s are i.i.d. N(0, 0.042) and, for each v, µvj ’s and µvj ’s were 

i.i.d. N(0, 1). In this case, the correlation between p-values for each pairs of 
genes in a group of m was about ±0.9983 by simulation. This dependence 
is similar to but has larger correlation than the dependence simulation of 
Storey et al. (2004). 

′(3) Dependence Case 2: xij = µij + " j , yij = µij + " j 
′ + 2I{i ≤ (1 − ˇ0)n}, 

j = 1, . . . , N , i = 1, . . . , n, where " j’s and j ’s were i.i.d. N(0, 0.252). In " ′

this case, the correlation between p-values for each pairs of genes was about 
0.0581 by simulation. This is the so-called “general dependence” of Storey 
(2002b). 



913 NONPARAMETRIC ESTIMATOR OF FDR 

ˇ0 =0.25 ˇ0 =0.5

˜̌˜̌ ˆ̌ ˆ̌ 
0
.3

5
0
.5

5
0
.6

5

˜̌
 

˜̌˜̌ ˆ̌ ˆ̌ 

˜
˜

0
.6

0
0
.7

0
0
.8

0
0
.9

0
0
.1

0
0
.2

0
0
.3

0
0
.4

0

ˇ
 

ˇ
 

0
.7

5
0
.2

50 0

0
.9

5
0
.5

˜ 0
.8

5
0
.9

5
0
.4

5

ˇ
 0

c q c q� �
0 00 00 00 0

= =ˇ0 0.75 ˇ0 0.95

˜̌˜̌ ˆ̌ ˆ̌ 

0
.6

5
0
.7

5

˜̌˜̌ ˆ̌ ˆ̌ 

0

c q c q� �
0 00 00 00 0

Figure 1. Simulation results for Beta distributed p-values. The true values 

of ˇ0 are 0.25, 0.50, 0.75, and 0.95. 

The simulated ˇ̃0’s are summarized in Figure 2. The biases and standard 

deviations of the simulated ˇ̃0’s and the estimated coverage probabilities of the 

95% confdence intervals for ˇ0 are given in Table 1 (The results for ˇ0 = 0.05 are 

not shown in Figure 2). The above simulation studies show that the performance 

of the method is satisfactory for most cases. When dependence is present and ˇ0 
is close to 1, the variance of ˇ̃0 may be underestimated so that the coverage is 

less than the nominal one. In applications to microarray data analysis, this can 

be overcome by eliminating many obvious non-signifcant and irrelevant genes 

using data preprocessing and fltering. 

Leukemia Data: In large-scale microarray data analysis, there are usually thou-

sands or tens of thousands of genes involved. It is practical to assume that genes 

in the same pathway have similar expression profles and a �ect the system func-

tion in a synergistic way. The number of genes in a pathway is usually relatively 

small compared to the total number of genes in the data. The researchers are 

usually interested in identifying di �erentially expressed genes using certain types 

of tests. For each gene, a value of a test statistic is calculated based on sample 
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Figure 2. Simulation results for independent and dependent p-values. The 
true values of ˇ0 are 0.25, 0.50, 0.75 and 0.95. 

Table 1. Biases and standard deviations of the simulated ˇ̃0’s presented in 
Figure 2, and simulated coverage probabilities of 95% CI’s. 

Bias E (˜̌0) − ˇ0 

ˇ0 0.05 0.25 0.50 0.75 0.95 

Independence 

Dependence 1 

Dependence 2 

0.00084 

-0.00057 

-0.00075 

0.00095 0.00096 

0.00045 -0.00044 

-0.00115 -0.00114 

-0.00077 

-0.00079 

-0.00068 

-0.00230 

-0.00123 

-0.00109 

Standard Deviation 

ˇ0 0.05 0.25 0.50 0.75 0.95 

Independence 

Dependence 1 

Dependence 2 

0.0083 

0.0075 

0.0071 

0.0194 0.0252 

0.0164 0.0230 

0.0150 0.0182 

0.0297 

0.0299 

0.0219 

0.0303 

0.0347 

0.0237 

Coverage Probability 

Independence 

Dependence 1 

Dependence 2 

0.980 

0.968 

0.958 

0.998 0.996 

0.976 0.960 

0.954 0.952 

0.988 

0.930 

0.944 

0.984 

0.916 

0.952 
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observations of the expression levels. Test statistics, such as p-values generated 

in microarray data analysis, seem to satisfy the assumptions of this paper. 

The leukemia gene expression dataset was reported in Golub et al. (1999). 

In this study there were N1 = 47 patients with Acute Lymphoblastic Leukemia 

(ALL), and N2 = 25 patients with Acute Myeloid Leukemia (AML). The mRNA 

levels of 7,129 genes were measured for these N = 72 samples. The same pro-

cedures as in Wu et al. (2006) were used to preprocess genes and calculate two 

sample t-test statistics. Permutations were used to obtain p-values for n =3,571 

remaining genes after data preprocessing and fltering. The histogram of the 

p-values (not shown here) indicates that the mixture model (1.2) is valid, that 

the assumptions of the paper are not violated. Based on the expression data, 

correlation tests for the n(n − 1)/2 pairs of genes, using a Bonferroni adjusted 

FWER of 0.05, give an estimate of n̄ = 6.529. The method of this paper results 
ˆin (r̂, k) = (18, 107) and ˇ̂0 = 0.449, which is low because many obvious non-

signifcant and irrelevant genes have been eliminated by data preprocessing and 

fltering. 

Based on the simulation study and Theorem 2.2, data preprocessing and 

fltering are recommended, if possible, to have a smaller ˇ0 and thus a smaller 

variance of ˇ̃0. The corresponding confdence interval is (0.399, 0.498). Figure 

3 shows the pFDR estimations and the 95% confdence intervals. For example, 

if p0 = 1.808 × 10−3 is a cuto of the p-values, then there are about 600 genes 

which have smaller p-values and are claimed to be di �erentially expressed. The 

corresponding pFDR is 4.944 × 10−3 . 

pFDR and Confidence Band

0
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0
.0

0.0

0
.1

0
.2

0
.3

0
.4

p
F
D

R

˜̌0 = 0.449

pFDR

95%CI

0.2 0.4 0.6 0.8 1.0

p0

Figure 3. pFDR Estimation for the Golub et al. (1999) data. 
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Appendix 

−1 
Pn

Proof of Theorem 2.1. From F̂ (t) = n I(Ti ≤ t), it is easy to see that i=1 

n 
X1 

ˇ̃0 = Yki, (A.1) 
n 

i=1 

k−1 
n o 

r 
� � 

X Xj j + 1 1 l 
Yki = k b̄(j, k, r)I < Ti ≤ , b̄(j, k, r) = Bj,k−1 1 − . 

k k r k 
j=0 l=1 

(A.2) 

In the proof, the following results are useful. If |gj | ≤ M , then for i ≥ 1, 

k−1 
X 

b̄i(j, k, r)gj = O(1), (A.3) 
j=0 

and for v ≥ i ≥ 0 and v ≥ 1, 

v 
X 

Bj,v(t)j
[i] = v[i]ti , (A.4) 

j=0 

where j[i] = j(j − 1) · · · (j − i + 1) if j ≥ i; and is 0 otherwise. Defne j[0] = 1 for 

j > 0. Clearly, for each fxed k, Yk1, . . . , Ykn are identically distributed random 

variables with fnite mean and variance given by, respectively, 

k−1 
X 

¯ µk ≡ E (Yki) = k b(j, k, r)�kj , (A.5) 
j=0 

k−1 
X 

n o2 
¯˙k 

2 ≡ Var (Yki) = k2 b2(j, k, r)�kj − E (Yki) , (A.6) 
j=0 

where �kj = F [(j + 1)/k] − F (j/k). Since f(1) = ˇ0, E (˜̌0) = E (Yk1) and 
¯Pk−1 b(j, k, r) = 1, the absolute bias is j=0 

k−1 
X 

¯B(r, k) ≡ |E (˜̌0) − ˇ0| = |E (Yk1) − f(1)| = b(j, k, r)[k�kj − f(1)] . 
j=0 

Taylor expansions imply that the existence of ˘0j ∈ (j/k, (j + 1)/k), ˘1j ∈
(j/k, j/(k − 1)), ˘2j ∈ (j/(k − 1), 1 − 1/k) and ˘3 ∈ (1 − 1/k, 1) such that 

� � � �j 1 j 1 j
k�kj = f + f ′(˘0j) = f + f ′(˘0j) − f ′(˘1j)

k 2k k − 1 2k k(k − 1) 



�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

�

917 NONPARAMETRIC ESTIMATOR OF FDR 

� �1 j 1 j 1 
= f(1)+ f ′(˘0j)−f ′(˘1j) −f ′(˘2j) 1− − −f ′(˘3) . 

2k k(k−1) k k−1 k 

(A.7) 

Therefore 
3 

X 

B(r, k) ≤ R1i(k, r), (A.8) 
i=0 

where the R1i(k, r), i = 0, 1, 2, 3, are defned below. Since tf ′(t) is bounded, 

� �1−i X � 

k−1
1 j �i 

¯kR1i(k, r) ≡ b(j, k, r)|f ′(˘ij)|
2 k − 1 

j=0 

� �1−i X 

� � � �i
k−1

1 j j′≈ b̄(j, k, r) f = O(1), i = 0, 1. (A.9) 
2 k−1 k−1 

j=0 

The Cauchy-Schwarz inequality implies 

ˆ k−1 ˙2 
X 1 j

R2 ¯ 
12(k, r) ≡ b(j, k, r)|f ′(˘2j)| 1 − −

k k − 1 
j=0 

k−1 k−1 
� 

X X 1 j �2 
¯ ¯≤ b(j, k, r){f ′(˘2j)}2 b(j, k, r) 1 − − . (A.10) 

k k − 1 
j=0 j=0 

It follows from (A.4) that 

k−1 r k−1 
X

� �2 X 

� �� 1 j 1 X l 1 j �2 
b̄(j, k, r) 1 − − = Bj,k−1 1 − 1 − −

k k − 1 r k k k − 1 
j=0 l=1 j=0 

� �1 r2 − 1 
= r 2 + 2 − . (A.11) 

3k2 k − 1 

It follows from (A.3), (A.10) and (A.11) that 

R12(k, r) = O(k−1), (A.12) 

k−1 
� � 

X 1 1 1 1¯ ′R13(k, r) ≡ b(j, k, r) |f ′(˘3)| = |f ′(˘3)| ≈ f 1 − . (A.13) 
k k k k 

j=0 

Combining (A.9) through (A.13) proves (2.2). For u 6= v, 

k−1 k−1 
n o 

XX 

(uv)¯Cov (Yku, Ykv) = k2 b(i, k, r)b̄(j, k, r) �kij −�ki�kj , (A.14) 
i=0 j=0 
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where 
� � 

(uv) i i + 1 j j + 1 
� = Pr < Tu ≤ , < Tv ≤kij k k k k 

� � � � � � � �i+1 j+1 i j+1 i+1 j i j 
= Fuv , −Fuv , −Fuv , +Fuv , . (A.15) 

k k k k k k k k 

By the Mean Value Theorem we have that, for some ˝ki ∈ (i/k, (i + 1)/k), 
(uv) (uv)

� ∈ (i/k, (i + 1)/k), and � ∈ (j/k, (j + 1)/k), i j 

� � 

(uv) (uv) (uv)
k�ki = f(˝ki), k2� = fuv �i , �j . (A.16) kij 

Since f and fuv are bounded, it follows from (A.14) and (A.16) that there exists 

a constant C such that for u 6= v 

� k−1 �2
n o 

X

(uv) (uv) ¯|Cov (Yku, Ykv)| ≤ max (� , � ) + f(˝ki)f(˝kj) b(i, k, r) ≤ C, 
i,j 

fuv i j 
i=0 

X1 1 (n̄ − 1)C m − 1 
Var (˜̌0) − ˙2 = 

2 
Cov (Yku, Ykv) ≤ ≤ C. (A.17) k n n n n 

u 6=v 

From (A.3) it follows that 

k−1 
X 

� �ij¯kR2i(k, r) ≡ b2(j, k, r)|f ′(˘ij)| = O(1), i = 0, 1. (A.18) 
k − 1 

j=0 

Another application of the Cauchy-Schwarz inequality gives 

ˆ k−1 ˙2 
X 1 j

R2 ¯ ′(˘2j) −22(k, r) ≡ b2(j, k, r) f 1 −
k k − 1 

j=0 

k−1 k−1 
X X

� �22 1 j¯ ¯≤ b3(j, k, r) f ′(˘2j) b(j, k, r) 1 − −
k k − 1 

j=0 j=0 

k−1 
n

X 

on 2 −1o1 r 
= b̄3(j, k, r)|f ′(˘2j)|2 r 2 +2− =O(r 2k−2), (A.19) 

3k2 k−1 
j=0 

1 
R23(k, r) ≡ |f ′(˘3)|hk(r) = O(k−1). (A.20) 

k 

From these, it follows that 

k−1 
X 

¯k b2(j, k, r)�kj − f(1)hk(r) = O(k−1). (A.21) 
j=0 
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This, (2.5), (A.6), and (A.17) imply 

Var (Yki) µk 
= ˇ0 − + O(k−2) = ˇ0 + O(k−1),

khk(r) khk(r) 

nVar (˜̌0) Var (Yki) 
= + O(k−1). 

khk(r) khk(r) 

Consequently 
nVar (˜̌0) Var (Yki)

lim = lim = ˇ0, (A.22) 
k,n→∞ khk(r) k→∞ khk(r) 

� � 

E (˜̌0 − ˇ0)
2 = O(k−2) + O k

. 
n 

1/3If k is of order n , then (2.6) follows. 

Let X1, . . . ,Xl, Y1, . . . , Yl be iid Poisson r.v.’s with mean 1. Then 
( )∞ l l 

X

� lj �2 X X 

−2l −lI0(2l)e = e = Pr Xi − Yi = 0 . (A.23) 
j! 

j=0 i=1 i=1 

The Local Limit Theorem (see Petrov (1975, pp.187-188)) ensures that 

√
(

X 

)

l 
1 

lim lPr (Xi − Yi) = 0 = √ . 
l→∞ 2 ˇ 

i=1 

From this it follows that there are constants 0 < C1 < C2 such that 

C1 C2−2l ≤√ ≤ I0(2l)e √ , for l ≥ 1, (A.24) 
l l 

( √ √
p p 

√ √ √ −( i− j)2 
−i−j −2 ij −( i− j)2 ≥ C1(ij)

− 1

4 e √ ;
I0(2 ij)e = I0(2 ij)e e √ (A.25) −( i− j)2 ≤ C2(ij)

− 1

4 e . 

Combining (2.7), (A.23)− (A.25), one obtains 

ˆ r ˙√
X X √1 

l−
1 2 −( i− j)2 h(r) ≤ C2 2 + e (ij)−

1

4 

2 2r r 
l=1 1≤i<j≤r 

√
ˆ ˙
Z Z Z1 r v2C2 − 1 4 √ − 3−(u−v)2 ′≤ t 2 dt + √ dv uve du ≤ C 2 .

3 2r rr 2 0 0 0 

′ −3/2Similarly, h(r) ≥ C1r . The proof of Theorem 2.1 is complete. 

Proof of Theorem 2.2. Let 

Yki − E (˜̌0)
˘i = p , i = 1, 2, . . . , n. 

n Var (˜̌0) 
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PnThen ˘i has mean zero and W = i=1 ˘i has variance one. By Assumption 1, 

˘1, . . . , ˘n are also LD1 random variables. For each i, let �i be the sum of all the 

random variables ˘i1, . . . , ˘ini 
that are not independent of ˘i. By Theorem 3.4 of 

Chen and Shao (2005), we have 

1 

sup |Pr(W ≤ x) − �(x)| ≤ 2� 2 , (A.26) 
x 

where 

n n 
X X 

� = 4E {˘i�i − E (˘i�i)} + E (|˘i�i 2|) ≡ �1 + �2, 
i=1 i=1 
n n ni 
X XX 

�1 ≡ 4E {˘i�i − E (˘i�i)} = 4E {˘i˘ij 
− E (˘i˘ij 

)}
i=1 i=1 j=1 

ˆ n ni 
XX4 ≤ E [YkiYkij 

− E(YkiYkij 
)] 

n2Var (˜̌0) i=1 j=1 

n ni n ni 
˙ 

XX XX 

+ E E (Yki)[Ykij 
− E (Ykij 

)] + E E (Ykij 
)[Yki − E (Yki)] 

i=1 j=1 i=1 j=1 

≡ �11 + �12 + �13. 

It is easy to see that there exists C3 such that 
h i 

E |YkiYkj −E(YkiYkj)|
k−1 k−1 

n o 

XX u u+1 v v+1 (ij)≤ k2 b̄(u, k, r)b̄(v, k, r)E I <Ti ≤ ; <Tj ≤ −�kuv k k k k 
u=0 v=0 

k−1 k−1 
XX 

(ij) (ij)
= 2k2 b̄(u, k, r)b̄(v, k, r)� (1 −�kuv) ≤ C3.kuv 

u=0 v=0 

Therefore 

n ni 
ih 

XX4 
�11 ≡ E YkiYkij 

− E(YkiYkij 
) 

n2Var (˜̌0) i=1 j=1 

3 
� � � �4C3m 1 r 2 

≤ = O = O . (A.27) 
nVar (˜̌0) khk(r) k 

Similarly there exists C4 such that, for any j, 

k−1 
n o 

X u u + 1 ¯E [|Ykj − E(Ykj)|] ≤ k b(u, k, r)E I < Tj ≤ −�ku 
k k 

u=0 
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k−1 
X 

¯ = 2k b(u, k, r)�ku(1 −�ku) ≤ C4. 
u=0 

Thus 

n ni 
h i 

XX4 
�12 = E E (Yki) Ykij 

− E (Ykij 
) 

n2Var (˜̌0) i=1 j=1 

r 
3

2 
�� � �4C4mµk 1 ≤ = O = O . (A.28) 

nVar (˜̌0) khk(r) k 

� � � � 

Similarly �13 = O r3/2/k . So �1 = O r3/2/k , 

n n ni 
h i 

X X X1 
E (|˘i�i 2|) ≤ − µk|2�2 ≡ ni E |Yki − µk||Ykij3

2 (˜̌0)3Var ni=1 i=1 j=1 

km2 Var (Yki) 3

4O(
p

≤ k/n).= r 
n2Var 

3

2 (˜̌0) 

Thus, by (A.26), for fxed r as k, n → ∞ and k/n → 0, W 
d−→ N(0, 1). The 

asymptotic normality (2.8) follows from this and (2.3). 
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