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Chemotherapy is frequently accompanied by several side effects, including nausea,

diarrhea, anorexia and fatigue. Evidence from ours and other groups suggests that

chemotherapy can also play a major role in causing not only cachexia, but also bone

loss. This complicates prognosis and survival among cancer patients, affects quality

of life, and can increase morbidity and mortality rates. Recent findings suggest that

soluble factors released from resorbing bone directly contribute to loss of muscle

mass and function secondary to metastatic cancer. However, it remains unknown

whether similar mechanisms also take place following treatments with anticancer

drugs. In this study, we found that young male CD2F1 mice (8-week old) treated

with the chemotherapeutic agent cisplatin (2.5 mg/kg) presented marked loss of

muscle and bone mass. Myotubes exposed to bone conditioned medium from

cisplatin-treated mice showed severe atrophy (−33%) suggesting a bone to muscle

crosstalk. To test this hypothesis, mice were administered cisplatin in combination

with an antiresorptive drug to determine if preservation of bone mass has an effect

on muscle mass and strength following chemotherapy treatment. Mice received

cisplatin alone or combined with zoledronic acid (ZA; 5 µg/kg), a bisphosphonate

routinely used for the treatment of osteoporosis. We found that cisplatin resulted

in progressive loss of body weight (−25%), in line with reduced fat (−58%) and

lean (−17%) mass. As expected, microCT bone histomorphometry analysis revealed

significant reduction in bone mass following administration of chemotherapy, in line

with reduced trabecular bone volume (BV/TV) and number (Tb.N), as well as increased

trabecular separation (Tb.Sp) in the distal femur. Conversely, trabecular bone was

protected when cisplatin was administered in combination with ZA. Interestingly, while

the animals exposed to chemotherapy presented significant muscle wasting (∼-20%

vs. vehicle-treated mice), the administration of ZA in combination with cisplatin resulted
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in preservation of muscle mass (+12%) and strength (+42%). Altogether, these

observations support our hypothesis of bone factors targeting muscle and suggest

that pharmacological preservation of bone mass can benefit muscle mass and function

following chemotherapy.

Keywords: muscle, bone, cachexia, chemotherapy, bisphosphonates

INTRODUCTION

Cachexia is experienced by anywhere from 20 to 80% of cancer
patients, and is ultimately responsible for poorer outcomes,
increased morbidity rates and reduced chance of survival (1–3).
Cachexia is frequently accompanied by several complications,
such as muscle weakness, fatigue, anorexia, as well as metabolic
and energy imbalances (4, 5). All these complications often lead
to impaired quality of life in patients affected with cachexia, not
to mention the increased economic burden (6). While the loss
of lean body mass that follows the development of a tumor is
frequently related with reduced responsiveness to and augmented
toxicities of anticancer therapies (7, 8), we and others have
shown that anticancer therapies alone are able to promote the
development of cachexia (9–13).

The multisystemic and multiorgan effects of cancer and its
treatments have been well described, although the mechanisms
associated with these remain elusive (14). To this end, recent
interest has grown in the area of the so-called “muscle-bone
crosstalk,” primarily based on the idea that bone- and muscle-
derived factors are able to reciprocally influence the two tissues
beyond their mechanical relationship. In particular, there is
mounting interest in exploring the communication between
muscle and bone by means of biochemical, circulating factors
(15, 16). Bone secretes soluble factors that can signal directly to
skeletal muscle (17, 18). For example, Waning et al. elegantly
showed that release of TGFβ from the bone matrix in a setting
of bone metastases contributes to muscle weakness by decreasing
Ca2+-induced muscle force production, thus indicating that
bone-derived factors may directly affect muscle function (19).

Pathologic bone loss has been historically well documented
in metastatic breast cancers and multiple myeloma and, patients
undergoing treatment of a variety of tumors have been reported
to be at higher risk of bone loss (20).We and others have provided
evidence of a direct link between chemotherapy administration
and the appearance of muscle and bone alterations consistent
with a cachectic phenotype in experimental animals (13, 21).
However, whether anticancer therapies promote disruption of the
normal muscle-bone communication and whether preservation
of bonemass can have beneficial implications on the preservation
of muscle mass and strength is currently unknown.

Several bone-targeted agents, primarily bisphosphonates,
were developed to stop osteoclasts from resorbing bone in
order to treat pathologic conditions, such as osteoporosis and
metastatic bone disruption (22). Bisphosphonates are potent
antiresorptive drugs endowed with high selectivity for bone,
due to their capacity to directly bind to hydroxyapatite (23).
Specifically, zoledronic acid, has been tested as a bone-preserving

agent in multiple diseases, including cancer (24–26). In
breast cancer, zoledronic acid has been investigated for its
anti-bone metastasis effects and for the potential ability to
counteract tumor growth within bone (27–29). Additionally,
bisphosphonate administration was used to treat skeletal events
and hypercalcinemia in prostate cancer, although the potential
beneficial effects of such treatment remains to be clarified (30–
33). Whether bisphosphonates can also directly target muscle
mass and affect muscle function remain unclear.

Interestingly, Yoon et al. showed that administration of
the antiresorptive agent pamidronate to dystrophic mdx mice
revealed positive effects on bone and muscle mass (34),
although they did not provide evidence of a direct effect of
bisphosphonates on muscle homeostasis. Along the same line,
a clinical study showed that pediatric burn patients treated with
bisphosphonates to the extent of counteracting bone resorption
also present with substantial preservation of muscle mass (35).
In line with previous findings (19), we recently showed that
one of the mechanisms through which bisphosphonates act is
likely by limiting the release of TGFβ from the bone matrix
(36). The release of TGFβ prevents the activation of SMAD2/3-
dependent pro-atrophy signaling in skeletal muscle, thereby
suggesting that bisphosphonate administration may potentially
serve as a tool for the maintenance of skeletal muscle mass
in various disease states (36). These findings in conjunction
with existing clinical applications suggest a potential role for
zoledronic acid administration in treatment of cancer-related
comorbidities, such as cachexia.

In the present study, we characterized an in vivo model of
chemotherapy-induced cachexia in young, normal mice (37).
Herein, we report the effects associated with bisphosphonate
administration on the preservation of bone volume, as well
as skeletal muscle mass and strength. These results provide
further evidence for muscle-bone crosstalk in the pathogenesis
of cachexia induced by anticancer drugs and the therapeutic
potential of harnessing this cross-tissue interaction to benefit
muscle mass and function following anticancer treatments by
bisphosphonate administration.

METHODS

Animals
All animal experiments were conducted with the approval of the
Institutional Animal Care and Use Committee at the Indiana
University School of Medicine and were in compliance with the
National Institutes of Health Guidelines for Use and Care of
Laboratory Animals and with the ethical standards laid down
in the 1964 Declaration of Helsinki and its later amendments.
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FIGURE 1 | Schematic representation of the in vivo model. 8-week old male CD2F1 mice were exposed to i.p. cisplatin injections (C; 2.5 mg/kg), alone or in

combination with zoledronic acid (ZA; 5 µg/kg), administered s.c. The control mice received equal volumes of sterile saline (V). The red arrows indicate the day of

cisplatin treatment, whereas the purple arrows the day of ZA administration.

All animals were maintained on a regular dark-light cycle (light
from 8 a.m. to 8 p.m.), with free access to food and water during
the whole experimental period. Briefly, 8-week old CD2F1 male
mice (Envigo, Indianapolis, IN) were used (n = 5–8/group).
In a first set of experiments, mice were treated with vehicle
(sterile saline; V) or cisplatin (2.5 mg/kg, i.p.; C) for up to
2 weeks, similar to what reported in Chen et al. (37). In
another set of experiments, mice were randomized into four
groups: control mice receiving vehicle alone (V), mice receiving
cisplatin (C), mice treated with zoledronate (ZA), and animals
receiving the combination cisplatin+ZA (C+ZA). The animals
received cisplatin (2.5 mg/kg, i.p.) or ZA (5 µg/kg, s.c.), as
shown in Figure 1 and in line with previously tested dosing
schedules (19, 37). The mice were monitored for the entire
duration of the experiments. At the time of sacrifice, no animals
were excluded from the study. Several tissues were collected,
weighed, snap frozen in liquid nitrogen and stored at −80◦C
for further analyses. The tibialis anterior muscle was frozen in
liquid nitrogen-cooled isopentane, mounted in OCT and stored
for morphological analyses.

Body Composition Assessment
The quantification of lean (muscle) and fat (adipose)
mass was assessed at baseline and the day before
sacrifice in physically restrained mice, by means of an
EchoMRI-100 (EchoMRI, Houston, USA), as previously
shown (38). Data are expressed as variations over the
baseline values.

Grip Strength
The evaluation of the whole body strength in mice was
assessed as previously described (39). The absolute grip strength
(peak force, expressed in grams) was recorded by means of a
grip strength meter (Columbus Instruments, Columbus, OH,
USA). Five measurements were completed, and the top three
measurements were included in the analysis. In order to avoid
habituation, the animals were tested for grip strength no more
than once weekly.

Micro Computed Tomography (CT)
Analysis of Femurs Bone Morphometry
MicroCT scanning was performed to measure morphological
indices of metaphyseal regions of femurs. After euthanasia, the
left femurs were wrapped in saline-soaked gauze and frozen
at −20◦C until imaging. Bone samples were rotated around
their long axes and images were acquired using a Bruker
Skyscan 1176 (Bruker, Kontich, Belgium) with the following
parameters: pixel size = 9 µm3; peak tube potential = 50 kV;
X-ray intensity = 500 µA; 0.3◦ rotation step. Calibration of the
grayscale levels was performed using a hydroxyapatite phantom.
Based on this calibration and the corresponding standard curve
generated, the equivalent minimum calcium hydroxyapatite
level was 0.42 g/cm3. Raw images were reconstructed using
the SkyScan reconstruction software (NRecon; Bruker, Kontich,
Belgium) to 3-dimensional cross-sectional image data sets
using a 3-dimensional cone beam algorithm. Structural indices
were calculated on reconstructed images using the Skyscan
CT Analyzer software (CTAn; Bruker, Kontich, Belgium).
Cortical bone was analyzed by threshold of 160–255 in the
femoral mid-shaft. Cortical bone parameters included periosteal
perimeter (Ps.Pm), bone area/tissue area (BA/TA), cortical
thickness (Ct.Th) and cortical porosity (Ct.Po). Trabecular
bone was analyzed between 1.0 and 2.0mm under the femoral
distal growth plate using a threshold of 80–255. Trabecular
parameters included bone volume fraction (BV/TV), number
(Tb.N), thickness (Tb.Th), separation (Tb.Sp), and pattern
factor (Tb.Pf).

Assessment of Muscle Cross Sectional
Area (CSA)
Ten µm-thick cryosections of tibialis anterior muscles taken
at the mid-belly were processed for immunostaining, as
shown in Bonetto et al. (39). Samples were marked with a
histology marking pen, blocked in phosphate buffered saline
(PBS) containing 8% bovine serum albumin for 1 h at room
temperature, and incubated at 4◦C overnight with dystrophin
primary antibody [Developmental Studies Hybridoma Bank,
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FIGURE 2 | Cisplatin causes body weight loss and muscle depletion. Body weight curves (A), body weight change (i.e., body weight at time of sacrifice vs. initial body

weight) (B), whole body grip strength (reported as peak force measured at day 7 and day 13) (C) and skeletal muscle weights (D) in mice exposed to cisplatin (n = 8).

Control animals (V; n = 5) were administered equal volumes of sterile saline. Muscle weights were normalized to the Initial Body Weight (IBW) and expressed as

weight/100mg IBW. Data (means ± SEM) are expressed in grams. Significance of the differences: **p < 0.01, ***p < 0.001 vs. V.

Iowa City, IA; #MANDRA1(7A10)] diluted in PBS. After the
overnight incubation, samples were incubated with a secondary
antibody (ThermoFisher Scientific; AlexaFluor 594 # A-11032)
for 1 h. Samples were then washed with PBS and mounted with
ProLong Antifade mounting medium (ThermoFisher Scientific).
For determination of the CSA, the entire muscle section was
imaged and quantified by using the Lionheart XL microscope
system and the Gen5 software (BioTek, Winooski, VT).

Cell Lines
Murine C2C12 skeletal myoblasts (ATCC, Manassas, VA) were
grown in high glucose DMEM supplemented with 10% FBS, 100
U/ml penicillin, 100 mg/ml streptomycin, 100 mg/ml sodium
pyruvate, 2mM L-glutamine, and maintained at 37◦C in 5%
CO2, as shown in Pin et al. (40). Myotubes were generated by
exposing the myoblasts to DMEM containing 2% horse serum
(i.e., differentiation medium, DM), and replacing the medium
every other day for 5 days. In order to determine the effects on
myotube size dependent on bone-derived factors, myotubes were
exposed to 20% bone conditioned medium (CM) for up to 48 h.

Generation of Bone-Derived Conditioned
Medium (CM)
Bone-derived CM was generated as shown in Davis et al.
(41). Right femur and tibia from vehicle (V)- and cisplatin
(C)-treated mice were carefully cleaned of muscle and fibrous
tissues, epiphyses cut, and then marrow-flushed multiple times
with αMEM. These long bones cortical preparations were then

cultured ex vivo in 10% FBS and 1% penicillin/streptomycin
(P/S)-αMEM for 48 h. CM was collected and stored at−20◦C.

Assessment of Myotube Size
C2C12 cell layers were fixed in ice-cold acetone-methanol and
incubated with an anti-Myosin Heavy Chain antibody (MF-20,
1:200; Developmental Studies Hybridoma Bank, Iowa City, IA)
and an AlexaFluor 488-labeled secondary antibody (Invitrogen,
Grand Island, NY), as reported in Pin et al. (40). Analysis
of myotube size was performed by measuring the minimum
diameter of long, multi-nucleate fibers avoiding regions of
clustered nuclei on a calibrated image using the Image J 1.43
software (42). Three biological replicates (n = 3) were generated
for each experimental condition, and about 250–350 myotubes
per replicate were measured. The results of each replicate were
then averaged to obtain the final myotube size.

Real-Time Quantitative PCR
Total mRNA from quadriceps muscle was isolated using the
miRNeasy Mini Kit (Qiagen, Germantown, MD, USA) and
following the protocol provided by the manufacturer. RNA
was quantified using a Synergy H1 Spectrophotometer (BioTek
Instruments, Winooski, VT, USA). RNA integrity was checked
by electrophoresis on a 1.2% agarose gel containing 0.02M
morpholinopropanesulfonic acid and 18% formaldehyde. Total
RNA was reverse transcribed to cDNA using the Verso
cDNA Kit (Thermo Fisher Scientific). Transcript levels were
measured by real-time PCR (Light Cycler 96; Roche), taking
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FIGURE 3 | Cisplatin causes severe loss of bone mass. 3D rendering of microCT-based analysis of trabecular bone in femurs from mice receiving V (n = 4) or C (n =

7) (A). Assessment of trabecular bone volume (BV/TV; expressed as %), trabecular number (Tb.N; expressed as 1/µm), trabecular thickness (Tb.Th; expressed as

µm) and trabecular separation (Tb.Sp; expressed as µm) in femoral bones (B). Data are reported as means ± SEM. Significance of the differences: ***p < 0.001 vs. V.

advantage of the TaqMan Gene Expression Assay System
(Thermo Fisher Scientific). Expression levels for atrogin-
1 (Mm00499523_m1) and MuRF-1 (Mm01185221_m1) were
quantitated. Gene expression was normalized to TATA-binding
protein (TBP; Mm01277042_m1) levels using the standard
2−1Ct methods.

Statistical Analysis
Results were presented as means ± SEM. Significance of the
differences was determined by unpaired t-test when two groups
were investigated. When more than two treatments were tested,
two-way analysis of variance (ANOVA) followed by Tukey’s
multiple comparisons test were performed. The interaction
p-value was reported exclusively when significant. Differences
were considered significant when p < 0.05.

RESULTS

Cisplatin Treatment Leads to Progressive
Body Weight Loss and Muscle Depletion
Eight-week old CD2F1 male mice (n = 5) were exposed to daily
cisplatin administration (C; 2.5 mg/kg, i.p.) for up to 2 weeks,
while control mice (V) received equal volumes of vehicle (i.e.,
sterile saline). In line with previous findings (37), the animals
treated with chemotherapy showed progressive body weight
loss (Figure 2A), resulting in marked net loss of body weight
(−6.6 g vs. initial body weight; p < 0.01 vs. V) (Figure 2B).
In agreement with our published observations (9), the mice
receiving cisplatin also showed progressive loss of skeletal muscle
strength (−23% vs. V, p < 0.01 at day 13) (Figure 2C). These
effects were consistent with marked depletion of muscle mass, as

suggested by the weights of the tibialis anterior, gastrocnemius
and quadriceps (Figure 2D).

Cisplatin Treatment Leads to Severe Bone
Loss
MicroCT assessment of the microarchitecture of femurs excised
from mice treated with cisplatin displayed severe loss of
cancellous bone (Figures 3A,B), as demonstrated by decreased
trabecular bone volume ratio (BV/TV; −41%, p < 0.001 vs. V)
and trabecular number (Tb.N;−36%, p < 0.001 vs. V), as well as
by the increased trabecular separation (Tb.Sp;+34%, p< 0.05 vs.
V). The data are consistent with previous evidence supporting the
idea that chemotherapy administration associates with impaired
bone homeostasis (13, 21).

Myotubes Exposed to Bone Conditioned
Medium (CM) From Cisplatin-Treated Mice
Display Severe Atrophy
In order to clarify whether cisplatin-induced muscle wasting
was triggered by bone-derived soluble factors released upon
bone destruction, we exposed fully differentiated C2C12 murine
myotubes to 20% bone CM generated by incubating femora
and tibiae excised from vehicle (V)- and cisplatin (C)-treated
mice in αMEM-containing medium for up to 48 h. The
myotubes exposed to 20% C CM displayed severe atrophy
compared to V CM, as well as with respect to the myotubes
cultured in normal horse serum-containing medium (DM)
or unconditioned αMEM-containing (UCM) (Figure 4). These
observations suggest that mediators released by bone following
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FIGURE 4 | Myotubes exposed to bone conditioned medium from cisplatin-treated mice display severe atrophy. Fully differentiated (5 days) C2C12 myotubes

exposed to 20% bone conditioned medium (CM) from animals treated with V or C for up to 48 h. CM was generated by incubating the bones in medium for 48 h.

Controls were exposed to either normal horse serum-containing differentiation medium (DM) or 20% αMEM-containing unconditioned medium (UCM). Myotubes were

stained for Myosin Heavy Chain (MyHC, green) and myotube size was measured by using the ImageJ software. 250–300 myotubes were measured, n = 3. Scale bar:

100µm. Images were recorded using a 10X magnification (insert: 20X). Data are expressed as means ± SEM. Significance of the differences: ***p < 0.001 vs. DM;
$$p < 0.01 vs. UCM; &&p < 0.01 vs. V CM.

FIGURE 5 | ZA fails to preserve body weight in cisplatin-treated mice. Body weight curves (A), final body weight (B) and body weight change (i.e., body weight at time

of sacrifice vs. initial body weight) (C) in mice exposed to C, alone or in combination with ZA (n = 4–5). Control animals (V) were administered equal volumes of sterile

saline. Data (means ± SEM) are expressed in grams. Significance of the differences: ***p < 0.001 vs. V; $$$p < 0.001 vs. C; &&p < 0.01, &&&p < 0.001 vs. ZA.

chemotherapy treatment may play a direct role in causing muscle
fiber shrinkage.

ZA Administration Is Unable to Counteract
Cisplatin Effects on Body Weight
We then investigated whether bone preservation by
bisphosphonate treatment also protects skeletal muscle mass
in combination with routinely-used chemotherapy regimens.
We exposed 8-week old CD2F1 male mice (n = 5) to cisplatin
(C; 2.5 mg/Kg) (37), alone or in combination with zoledronic
acid (ZA; 5 µg/Kg) (19), for up to 2 weeks (Figure 1). In line
with the observations reported in Figure 2, the animals exposed
to cisplatin displayed marked and progressive loss of body mass
(Figure 5A), resulting in significantly reduced body weight
(−25%, p < 0.01 vs. V) (Figures 5B,C). On the other hand, ZA
administration was well tolerated and did not show evidence
of toxicity, as also suggested by the absence of body weight
changes compared to the V group (Figure 5). Despite this, ZA
administration did not show protective effects on body mass

when combined with cisplatin, reporting a body weight change
of −4.96 g vs. day 1 in the animals receiving the combined
treatment (p < 0.01 vs. V). Consistently, body composition
assessment by Echo MRI revealed progressive loss of fat content
(−58%, p < 0.001 vs. V; Figure 6A) and lean mass (−16%, p <

0.001 vs. V; Figure 6B) compared to day 1, whereas ZA did not
show any preservation of fat and lean tissue when administered
in combination with cisplatin (Figure 6). These observations
were further corroborated by the observation that the gonadal
adipose tissue mass was not preserved in the mice receiving
cisplatin and ZA (Figure S1).

Trabecular Bone Is Preserved in the Mice
Receiving the Combination C+ZA
microCT analysis of femoral bone from animals exposed to
cisplatin revealedmarked loss of cancellous bone (Figures 7A,B).
We observed reduced BV/TV (−35%, p < 0.05 vs. V) and Tb.N
(−28%, p < 0.05 vs. V), as well as increased Tb.Sp (+24%,
p < 0.05 vs. V). ZA treatment alone had a beneficial effect
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FIGURE 6 | Fat and lean content in chemotherapy-treated mice is not protected by ZA administration. Fat (A) and lean (B) mass on day 1 and day 14 were assessed

in mice exposed to C and/or ZA (n = 4–5) by using EchoMRI. Data (means ± SEM) are expressed as percentage of body mass. Significance of the differences: ***p <

0.001 vs. V; $$$p < 0.001 vs. C; &&&p < 0.001 vs. ZA (at the respective time point).

FIGURE 7 | Trabecular bone is preserved in the mice administered the combination C+ZA. 3D reconstruction of microCT-based histomorphometry analysis in femurs

from mice receiving V, C, ZA, and C+ZA (n = 4–5) (A). Assessment of trabecular bone volume (BV/TV; expressed as %), trabecular thickness (Tb.Th; expressed as

µm), trabecular separation (Tb.Sp; expressed as µm), trabecular number (Tb.N; expressed as 1/µm) and trabecular pattern factor (Tb.Pf; expressed as 1/µm) in

femoral bones (B). Data are reported as means ± SEM. Significance of the differences: *p < 0.05, **p < 0.01 vs. V; $$p < 0.01, $$$p < 0.001 vs. C; &p < 0.05,
&&p < 0.01 vs. ZA.

on bone structure, as revealed by significantly elevated BV/TV
(+46%, p < 0.01 vs. V), trabecular thickness (Tb.Th; +12%,
p < 0.05 vs. V) and Tb.N (+32%, p < 0.001 vs. V), as well
as by decreased Tb.Sp (−13%, p < 0.01 vs. V) and trabecular
pattern factor (Tb.Pf; −42%, p < 0.01 vs. V). Interestingly, when
combined with cisplatin, ZA was able to preserve bone structure,
with BV/TV (+62%, p < 0.01 vs. C), Tb.N (+50%, p < 0.01
vs. C), Tb.Sp (−22%, p < 0.01 vs. C) and Tb.Pf (−31%, p <

0.05 vs. C) showing no difference with respect to the V group
(Figure 7). Further, cisplatin-treated animals displayed reduced
cortical thickness (−8%, p < 0.05 vs. V), which was substantially
preserved following ZA treatment, although no other alterations
in cortical bone geometry were detected (Figure 8). The loss of
trabecular bone appeared milder in the animals receiving C+ZA
compared to the animals treated with cisplatin alone (BV/TV:
−35% in C vs. V, −27% in C+ZA vs. ZA; Tb.N: −28% in C
vs. V, −18% in C+ZA vs. ZA; TB.Sp: +23% in C vs. V, +9% in
C+ZA vs. ZA), although no significant interaction was observed
between cisplatin and ZA based on the two-way ANOVA

analysis (Figure 7). Altogether, these observations suggest that
ZA does not completely counteract cisplatin-induced bone loss
and that bone mass is likely maintained as a result of ZA-derived
bone formation.

Bisphosphonates Improve Muscle Size and
Function in Cisplatin-Treated Animals
In order to verify whether preservation of bone structure also
resulted in protection of muscle mass in animals exposed
to chemotherapy, skeletal (tibialis anterior, gastrocnemius and
quadriceps) and cardiac muscles were excised from animals
administered cisplatin, alone or in combination with ZA
(Figure 9). In line with previous findings and our initial results
(Figure 2) (37), cisplatin treatment caused significant loss of
skeletal muscle mass (Figure 9). Notably, also the heart was
significantly smaller in the cisplatin-treated mice (−21%, p <

0.001 vs. V) (Figure 9). On the other hand, while ZA alone did
not show any direct effects on muscle mass, the combination
C+ZA revealed improved muscle size, as suggested by the
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FIGURE 8 | Cortical bone is minimally affected by cisplatin. 2D rendering of microCT-based histomorphometry analysis of cortical bone in femurs from mice receiving

V, C, ZA and C+ZA (n = 4–5) (A). Assessment of periosteal perimeter (Ps.Pm; expressed as mm), bone area/tissue area (BA/TA; expressed as mm2 ), cortical

thickness (Ct.Th; expressed as mm) and cortical porosity (Ct.Po; expressed as mm3 ) in femoral bones (B). Data are reported as means ± SEM. Significance of the

differences: *p < 0.05 vs. V; $$p < 0.01 vs. C.

FIGURE 9 | Skeletal muscle mass is partially preserved in the mice treated with C+ZA. Skeletal muscle and heart weights in mice administered C, alone or combined

with ZA (n = 4–5). Weights were normalized to the Initial Body Weight (IBW) and expressed as weight/100mg IBW. Data are expressed as means ± SEM.

Significance of the differences: *p < 0.05, **p < 0.01, ***p < 0.001 vs. V; $p < 0.05, $$p < 0.01, $$$p < 0.001 vs. C; &p < 0.05 vs. ZA.

protection of the tibialis anterior (+16%, p < 0.01 vs. C;
interaction: p< 0.05) and quadriceps (+12%, p< 0.05 vs. C), and
by the partial preservation of gastrocnemius (+7%, p < 0.05 vs.
C) and heart weights (+9%, p< 0.05 vs. C) (Figure 9). Consistent
with the effects on muscle mass, muscle fiber size was also
partially preserved in the cisplatin-treated animals receiving ZA,
as shown by the quantification of the muscle cross-sectional area
(+17%, p < 0.05 vs. C) (Figures 10A,B). Interestingly, the ZA-
associated protection of muscle mass was also accompanied by
substantially preserved muscle strength in the C+ZA group (p <

0.001 vs. C), which was 42% higher than the C-treated animals on
day 14 (−25%, p< 0.01 vs. V; interaction: p< 0.01) (Figure 10C).
In line with these findings, we investigated the mRNA levels for
Atrogin-1 andMuRF-1, ubiquitin ligases normally overexpressed
in skeletal muscle during cachexia (40, 43). Atrogin-1 was
significantly increased following cisplatin treatment (+54%, p <

0.05 vs. V), whereas its expression was returned to control values
following ZA administration (Figure 11). On the other hand,

MuRF-1 muscle levels were reduced in the mice receiving the
combination C+ZA (−48%, p < 0.05 vs. V), whereas we did not
observe changes in the other experimental groups (Figure 11).

DISCUSSION

Musculoskeletal derangements are among the most common
and most distressing symptoms associated with cancer and
its treatment (44, 45), affecting 70–100% of patients receiving
chemo-radiation therapies (46–48). Cancer treatments are
frequently responsible for a decline of muscle and bone function
and the development of muscle weakness and bone frailty,
together well-known features of cachexia (49–51). This is a
condition frequently observed in upwards of 80% of advanced
cancer patients and mainly associated with striking loss of body
weight and lean body mass, along with worsening of the quality
of life and increased morbidity and mortality rates (52). More
importantly, the functional deficits due to muscle weakness have
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FIGURE 10 | Cisplatin-induced muscle weakness is counteracted by ZA administration. Representative images of immunofluorescence staining for dystrophin

(A) and quantification of the cross-sectional area (B) in the tibialis anterior muscle of mice treated with cisplatin and/or ZA (n = 4–5). Scale bar: 100µm. Whole body

grip strength (reported as peak force) was measured at day 1 and day 14 by taking advantage of a grip strength meter and expressed as the average of the three top

pulls from each animal (C). Data are shown as means ± SEM. Significance of the differences: *p < 0.05, ***p < 0.001 vs. V; $p < 0.05, $$p < 0.01 vs. C; &&p <

0.01 vs. ZA.

FIGURE 11 | Muscle protein hypercatabolism is counteracted by ZA administration in C-treated mice. mRNA expression for the ubiquitin ligases Atrogin-1 and

MuRF-1 in the quadriceps muscle of mice treated with cisplatin and/or ZA (n = 4–5). Data are shown as means ± SEM. Significance of the differences: *p < 0.05, **p

< 0.01 vs. V; $p < 0.05, $$p < 0.01 vs. C; &&p < 0.01 vs. ZA.

been shown to persist for months to years following remission
(53–56), thereby causing a significant worsening of the quality
of life (57). Unfortunately, cancer-related muscle weakness is
further intensified with the aggressiveness of chemotherapy, and
no treatments have been shown to relieve such conditions thus
far (58, 59).

In line with data from Chen et al. (37), here we showed that
cisplatin, a platinum-based alkylating agent usually prescribed
for the treatment of solid tumors, leads to severe musculoskeletal
deficits in growing mice. Consistent with previous findings
(60), our observations generated in an in vitro model also
suggest that chemotherapy-dependent effects onmuscle fiber size

are triggered by circulating factors, likely released upon bone
destruction. We previously reported that chronic administration
of Folfiri, a chemotherapy regimen often prescribed for the
treatment of solid tumors, participates in the pathogenesis
of cachexia by affecting muscle mass and function and by
causing dramatic loss of trabecular bone (9, 13). In line
with our observations, Hain et al. (21) recently showed that
treatment with another platinum-based agent, carboplatin,
despite being effective in counteracting tumor dissemination in
a model of metastatic breast cancer, contributes to significant
muscle atrophy and weakness, also accompanied by loss of
trabecular bone.
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The correlation between chemotherapy treatment and
decreases in bone mass primarily due to the negative effects
of anticancer drugs on bone remodeling has been investigated
for quite some time (61, 62). For example, imatinib, used for
the treatment of gastrointestinal tumors and leukemias, was
found to directly target platelet-derived growth factor (PDGF)
receptor, among others (63). Similarly, taxanes were shown to
cause myelosuppression and, in turn, bone loss and increased
levels of inflammatory mediators (64). Methotrexate, routinely
prescribed for the treatment of several solid tumors, was reported
to directly target bone tissue and promote bone degeneration
by increasing the expression of IL-6 and IL-11 (65). Further,
corticosteroids, frequently used in combination with anticancer
agents, were shown to directly affect bone mass by reducing
osteoblast differentiation and by increasing osteoclast-dependent
bone resorption (66). At the same time, chemotherapy was
also reported to cause bone damage by impinging on indirect
systemic effects involving gonadal suppression. Indeed, cytotoxic
chemotherapy was recently associated with significant gonadal
damage (67, 68). Similarly, ovarian failure resulting from
chemotherapy treatments in premenopausal women with breast
cancer was shown to promote rapid bone loss (69). Interestingly,
hypogonadism in patients receiving anticancer treatments was
also linked to the occurrence of musculoskeletal abnormalities
(70, 71). Nevertheless, the mechanism(s) responsible for changes
in bone mass and relationship to changes in muscle homeostasis,
especially in a setting of chemotherapy treatment, is not
completely understood.

In the present study, we administered cisplatin in combination
with zoledronic acid, a bone-targeted drug used to preserve
bone mass in osteoporosis, to investigate whether the treatment
with antiresorptive drugs was able to preserve bone mass,
as well as muscle size and strength following chemotherapy
administration. As shown in our experimental results, zoledronic
acid was able to completely preserve cancellous and cortical bone
loss inmice receiving cisplatin, without apparent signs of toxicity.
Notably, zoledronic acid proved effective in partially preserving
muscle mass and strength, thereby supporting the concept that
bone-derived factors play a role in the muscle deficits in cachexia
induced by chemotherapy. We can speculate that the absence of
a complete protective effect of zoledronic acid on muscle mass
may be due to the combined action of other non-bone derived
mediators, and/or direct toxicity of chemotherapy on the muscle
fibers. However, whether zoledronic acid is also able to affect the
levels of bone-derived factors remains unknown.

Of note, the improvement inmusclemass andmuscle strength
was also accompanied by a normalization of the levels of
Atrogin-1, a ubiquitin ligase normally upregulated in conditions
characterized by skeletal muscle atrophy (43), also suggesting
that enhanced muscle hypercatabolism could play a role in
cisplatin-induced muscle wasting. On the other hand, MuRF-
1, previously shown significantly elevated in the skeletal muscle
of cachectic mice (40), was significantly downregulated in the
animals receiving the combination treatment with respect to the
control, consistent with data reporting protection of muscle mass
in MuRF-1 knock-out mice exposed to the pro-catabolic drug
dexamethasone (72). On the other hand, cisplatin alone did not

cause any upregulation, at least at the performed time point. In
this regard, our observation that zoledronic acid was unable to
alter skeletal muscle wet weights in normal conditions, but rather
only in combination with chemotherapy, further supports the
concept that abnormal muscle-bone interactions may play a role
in the pathogenesis of cachexia.

Recently, major interest has grown toward understanding the
so-called “muscle-bone crosstalk.” According to this concept,
muscle tissue represents a storehouse of “myokines,” known
to affect bone mass by regulating bone destruction and bone
formation (16). Conversely, bone-secreted factors would seem to
influence skeletal muscle beyond the mechanical relationship in
loading and primarily through the release of soluble mediators
(known as “osteokines”) (73, 74). These are now known to
directly influence muscle mass by contributing to regulation of
size and contractility (15–18). Exacerbated loss of bone along
with increased osteolysis are well-documented in breast cancers
and multiple myeloma, along with formation of metastases
to bone (19, 75). In particular, Waning et al. previously
suggested that enhanced bone resorption associated with cancer
dissemination results in release of TGFβ from the bone matrix,
which in turn causes modulation of muscle regulatory pathways
and contributes to muscle weakness (19). Similarly, investigative
efforts from our group have shown that bone loss also occurs in
the absence of bone metastases and frequently associates with
changes of muscle homeostasis and function (38, 76), although
the causative mechanism(s) responsible for such abnormalities
have not been completely elucidated.

In this regard, pro-inflammatory cytokines, such as TGFβ-
family ligands, are known to play a role in the regulation of
skeletal muscle mass (77). These cytokines were shown to be
released from the mineralized matrix in conditions associated
with bone destruction, including cachexia (19, 36, 78, 79).
This is also in line with previous evidence from our group,
showing that administration of an activin receptor type-2B
(ACVR2B) antagonist, previously shown to improvemusclemass
and prolong survival in tumor-bearing mice (80), was able to
completely restore muscle and bone mass in animals chronically
administered Folfiri (13). Therefore, our results suggest that
cessation of basal homeostatic skeletal turnover alone is not
directly involved in the regulation of skeletal muscle mass,
whereas bisphosphonate-induced correction of abnormal bone
resorption in cachexia may be sufficient to ameliorate skeletal
muscle atrophy per se.

Interestingly, Børsheim et al. (35) previously reported
that children affected with unintentional burn-injury not
only show preservation of bone mass upon treatment with
bisphosphonates, but also significant improvements in muscle
mass. In a recent collaborative investigation, we provided
evidence supporting the idea that TGFβ plays a pivotal
role in causing muscle atrophy in burn children, usually
characterized by dramatic loss of bone and muscle mass, whereas
administration of the bone-protecting agent pamidronate
would seem to improve muscle size by counteracting
the TGFβ-dependent signaling and restoring the proper
muscle anabolism (36). However, it remains unclear whether
similar mechanisms also participate in causing bone loss
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and muscle wasting and whether preservation of bone mass
effectively improves muscle size and function following
chemotherapy administration.

The idea that bone and muscle communicate at a biochemical
level by exchanging soluble mediators also provides new avenues
for direct pharmacological interventions aimed at targeting
these factors, as reviewed by Brotto and Bonewald (16). In
particular, bone-targeted agents, primarily bisphosphonates,
are potent antiresorptive drugs, routinely used in the clinic
for the treatment of post-menopausal osteoporosis and bone
frailty associated with chronic conditions or metastatic cancers
(22). These drugs were originally designed to counteract
osteoclast activity and bone resorption, and subsequently
shown to prevent the release of pro-inflammatory cytokines
and other signaling molecules, including TGFβ, BMP2, and
IGF-1, from the bone matrix (78, 79, 81, 82). In adult
individuals, altered bone “coupling,” i.e., the physiologic
coordination of bone resorption with bone formation (83),
often occurs with increases in osteoclast activity with little to
no change in osteoblast-driven bone formation. This results
in an imbalance in bone remodeling and leads to decreased
bone mass, increased risk for fractures and worsened survival
rates (84). We and others have provided evidence of bone
loss in both cancer- and chemotherapy-induced cachexia,
likely suggesting an imbalance in osteoclast vs. osteoblast
activity in association with loss of muscle mass and strength
(13, 21, 36, 38, 76).

Notably, bone is now often referred to as an endocrine
organ, secreting osteogenic factors (i.e., osteokines), which can
be released during resorption (16). Originally, all these factors
were thought to mainly take part to the regulation of bone mass,
although it is becoming clear that these osteokines can also
affect muscle homeostasis (85). For example, while components
of the Wnt/ R©β-catenin pathway are important regulators of
bone mass, it has been shown that Wnts also affect muscle
by supporting myogenesis and muscle function (86). In a
similar manner, receptor activator of nuclear factor kappa-B
ligand (RANKL) and its natural decoy receptor osteoprotegerin
(OPG) are mainly produced by bone cells and are critical
for the activation of osteoclasts and the regulation of bone
resorption (87). Interestingly, the receptor for RANKL, known
as RANK, is also expressed in skeletal muscle, where it
appears to regulate muscle contractility (88), whereas anti-
RANKL antibodies and OPG-Fc have been shown to improve
muscle size and function in dystrophic mdx mice (89). Another
example is provided by osteocalcin, mainly produced by mature
osteoblasts and osteocytes. Osteocalcin not only was shown
to regulate glucose and energy metabolism, as well as fertility
in male mice and ectopic calcification, but also appears to
affect muscle mass, based on the evidence that supplementation
with osteocalcin restores reduced exercise capacity in mice and
improves muscle strength (90). Moreover, elevated levels of
the osteocyte-derived fibroblast growth factor 23 (FGF23) were
also shown to negatively impact cardiac muscle by increasing
the risk of heart disease, left ventricular hypertrophy, vascular
calcification, although no effects were conclusively described
in skeletal muscle (91). The osteocyte factor prostaglandin

E2 (PGE2), normally released in response to fluid flow shear
stress, was also shown to affect muscle growth and function
by acting as a potent stimulator of myogenic differentiation
in primary myoblasts/myotubes (92). Interestingly, osteoclasts
were shown to secrete soluble factors endowed with muscle-
protective properties. This is the case of cardiotrophin-1 (CT-
1) and sphingosine-1-phosphate (S1P) (93). Specifically, CT-1,
an IL-6 superfamily member signaling through binding to the
leukemia inhibitory factor (LIF) receptor, was described as an
osteoclast-derived factor critically involved in bone remodeling
(94). However, recent observations suggest that CT-1 may also
directly affect muscle tissue. Indeed, CT-1 was shown to exert
cardioprotective effects and to stimulate myogenic and vascular
remodeling of the heart, as well as to increase extraocular muscle
mass and strength in experimental animal models (95–97).
Similarly, S1P, a bioactive lipid that acts via G protein-coupled
receptors previously implicated in several osteogenesis-related
processes, including differentiation and survival of osteoblasts
and their subsequent coupling with osteoclasts (98), was also
shown to positively impact muscle tissue, through the regulation
of skeletal myoblast proliferation (99), as well as in the control
of normal cardiac development (100) and of smooth muscle cell
proliferation, migration and contraction (101). In our study we
did not assess the levels of these factors, although the evidence
that muscle mass was improved by administration of an anti-
resorptive agent, such as zoledronate, appears to suggest that
some of these osteokines, normally released from the bone
matrix upon activation of bone resorption, may well play a
role in the regulation of muscle mass in cachexia induced
by chemotherapy.

A strength of our approach is that we did circumvent
the lack of muscle targeted therapeutics and, instead, aimed
at repurposing existing, FDA-approved drugs for alternate
uses. While the long-term side effects of bisphosphonate
treatment have been previously characterized (102), whether
bisphosphonates also promote long-term toxicities on skeletal
muscle, especially in subjects treated with chemotherapy, remain
to be clarified, along with the impact that these drugs may
have on efficacy and tolerability of anticancer drugs. Our data
may appear in disagreement with previous studies reporting
no effects or moderate toxicities associated with long-term (>3
years) bisphosphonate administration on skeletal muscle mass
in post-menopausal osteoporotic women, showing bone and
muscle defects at time of first treatment (18, 103). However, our
experimental model, using normal, healthy animals exposed to
chemotherapy and treated with bisphosphonates for the entire
duration of the experiment (i.e., since day 1) is not directly
comparable with such studies. Taking into account also the
results reported by Børsheim et al. (35), showing beneficial
effects on muscle mass in pediatric patients administered
pamidronate shortly after burn injury, our observations support
the idea that bisphosphonates, rather than rescue muscle mass
once musculoskeletal complications are already established, may
instead contribute to preserve skeletal muscle in conditions
normally associated with pro-cachectic stimuli. Moreover, it
is important to point out that our studies were conducted
in young, skeletally immature growing animals, therefore
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characterized by elevated rates of bone formation, as also
supported by the analysis of the bone histomorphometry data.
At this time, we cannot exclude that different outcomes might
occur by using the same therapeutic approach in adult or
aged animals, in accordance with evidence suggesting that
bisphosphonates concomitantly impair bone formation in adult
individuals, thus increasing the likelihood of long-term adverse
events (104).

Nonetheless, the use of bisphosphonates as anticancer
agents has recently been investigated due to their beneficial
properties in counteracting the formation of bone metastases
and preventing adverse skeletal events in cancer (24, 25, 33).
In this study, we did not take into examination animals
bearing cancers plus chemotherapy. Although this choice
may represent a limitation of our study, in this pre-clinical
investigation we decided to focus on establishing mechanisms
responsible for chemotherapy induced muscle wasting. In
this regard, the findings described here corroborate the idea
that chemotherapy-associated toxicities negatively impact bone
and muscle mass, thus leading to phenotypes consistent
with cachexia.

In this study we focused on investigating the musculoskeletal
abnormalities that occur following chemotherapy treatment, with
the ultimate goal of determining whether anti-resorptive drugs
could contribute to preserve both bone and muscle in a setting
of anticancer treatment. In this regard, we have to keep in
mind that the dosing for cisplatin and zoledronate used in our
experimental model, tested in previous studies (37, 60), does not
necessarily compare to the one usually prescribed for humans.
Indeed, by converting the animal dosing to the human equivalent
dose, calculated following the guidelines reported in Nair and
Jacob (105), our animals may appear underdosed, especially
if compared to the clinical setting (106, 107). However, it is
important to note that as patients are normally treated with either
drugs once every 2-to-4 weeks, on the contrary our experimental
animals received multiple treatments over 2 weeks.

In conclusion, in the present study we provide evidence
that bone-protecting agents, such as bisphosphonates, may be
combined with routinely used anticancer drugs to the extent of
reducing their associated toxicities and, ultimately, mitigating
the occurrence of chemotherapy-associated musculoskeletal
abnormalities. Moreover, our experimental data corroborate
the possibility that bisphosphonates are administered in
combination with chemotherapeutics since first treatment in
order to maximize their efficacy in preserving muscle and bone.
Overall, we expect our findings will pave the way to major
investigations on the use of bisphosphonates in oncology care
and encourage future studies aimed at defining zoledronic acid
as a new anti-cachexia treatment in combination with traditional
chemotherapy or cancer.
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