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Abstract

Background: Various statistical models have been developed to model the single cell RNA-seq expression profiles,
capture its multimodality, and conduct differential gene expression test. However, for expression data generated by
different experimental design and platforms, there is currently lack of capability to determine the most proper
statistical model.

Results: We developed an R package, namely Multi-Modal Model Selection (M3S), for gene-wise selection of the
most proper multi-modality statistical model and downstream analysis, useful in a single-cell or large scale bulk
tissue transcriptomic data. M3S is featured with (1) gene-wise selection of the most parsimonious model among 11
most commonly utilized ones, that can best fit the expression distribution of the gene, (2) parameter estimation of
a selected model, and (3) differential gene expression test based on the selected model.

Conclusion: A comprehensive evaluation suggested that M3S can accurately capture the multimodality on
simulated and real single cell data. An open source package and is available through GitHub at https://github.com/
zy26/M3S.
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Background
A large number of single-cell RNA sequencing (scRNA-
seq) data sets have been recently generated to characterize
the heterogeneous cell types or cell states in a complex tis-
sue or biological process [1–5]. Gene expression in a sin-
gle cell is purely determined by the transcriptional
regulatory signal in the current cell, which may vary dras-
tically throughout different cells. Hence, a gene’s expres-
sion could display multiple regulatory states across

multiple cells, that naturally form a multi-modal distribu-
tion, where each modality corresponds to a potential regu-
latory state [6]. Many statistical models have been
developed to model gene expressions for cells collected
under different conditions or data generated by different
experimental platforms, including Poisson (P), Negative
Binomial (NB), Gausian (G), Zero Inflated Poisson (ZIP),
Zero Inflated Negative Binomial (ZINB), Zero Inflated
Gaussian (ZIG), Mixture Gaussian (MG), Beta Poisson
(BP), Zero Inflated Mixture Gaussian (ZIMG), Left Trun-
cated Gaussian (LTG) and Left Truncated Mixture Gauss-
ian (LTMG) distributions, among which some are
designed to capture expression multi-modalities. In
addition to the multi-modality assumptions, these models
also differ by their assumptions used to model “drop-out”
events, and error distributions [6–11]. We have recently
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developed a systems biological model to interpret the bio-
logical underpinnings of multi-modality, drop-outs and
other errors in a scRNA-seq data. Our analysis and other
recent works clearly suggested that experimental condi-
tion and platform bias should be considered while we se-
lect the best model to fit scRNA-Seq data, as they largely
contribute to the variabilities of interest [12]. However,
there is lack of a computational tool in the public domain
for a proper model selection in a scRNA-seq data set and
downstream differential gene expression analysis based on
multi-modality model assumption.
Motivated by this, we developed a user-friendly R

package, M3S, to (1) select the most proper statistical
models and differential gene expression test method, (2)
characterize varied transcriptional regulatory state, and
(3) detect differentially expressed genes among given
conditions, for scRNA-seq data. The tool can be general-
ized to bulk tissue transcriptomics or other omics data if
considering multi-modality is necessary. The M3S pack-
age is available at: https://github.com/zy26/M3S.

Implementations
M3S package imports two additional packages, “mclust”
and “pscl”, for fitting of a MG model and estimating pa-
rameters of a ZINB model, respectively [13, 14]. For in-
formation on the latest versions of imported packages
and functions, see the package’s DESCRIPTION and
NAMESPACE files (https://github.com/zy26/M3S). An
S4 class is used to store numerical properties of the in-
put gene expression data. M3S is the main function,
which implements model selection for each gene, and
outputs a list contains the estimated parameters, model
fitness, and p values of the goodness of fitting, given
each candidate model. We have adopted a dynamic
function call model approach so that future extensions
will be convenient.
The core function M3S can be directly exported from

the M3S package. The input of this function is a gene
expression data matrix, where rows indicate genes/tran-
scripts and columns indicate samples. The output is or-
ganized into a list, each element of which includes an
indication of the most proper model relating to each
gene/transcript feature in the expression matrix, as well
as the complete fitting statistics of all examined models.
Specifically, the M3S function first assesses several data
characteristics by checking if the data is (1) nonnegative
(2) with significant proportion of zero observations, (3)
discretized, and (4) with negative infinite observations.
Then based on the data characteristics, M3S provides
data specific normalizations among (1) log, (2) log(X +
1), (3) CPM, (4) log (CPM), and (5) log (CPM + 1) trans-
formations. After normalization, M3S fits each row with
the selected models that can fit the data type, and selects
the best one. M3S defines the best model as the most

parsimonious one that significantly fits the observed ex-
pression distribution by using a Kolmogorov Simonov
Statistics (see details in Additional file 1: Figure S1. Sup-
plementary Note). We consider the models complexity
is ordered as P < NB, G < ZIP < ZINB, ZIG, LTG < BP <
MG < ZIMG, LTMG (Fig. 1a). Due to the unfixed num-
ber of model parameters, the complexity between, MG,
ZIMG and LTMG will be selected if the number of peak
of one of the distribution is significantly smaller than the
number of peaks fitted by the others, by using a Mann
Whitney test.
In addition, the M3S package offers the fitting parame-

ters of the best fitted model and gives the most proper
data normalization and differential gene expression test
method for the input data set. The M3S.fit function en-
ables parameter estimations for a given model. The
M3S.test function identifies differentially expressed genes
by hypergeometric test, and in detail, by testing whether
samples falling under one peak of the multi-modal dis-
tribution significantly enriches pre-specified sample col-
lections (See more details in the Additional file 1: Figure
S1. Supplementary Note).

Results
Validation of M3S on simulation data
We benchmarked the M3S package on simulated data sets
and four real scRNA-seq data sets. We first simulated data
sets composed by features of the 11 selected distributions.
For the simulation dataset, 100 features (random variable)
were simulated on 500 samples from one of the 11 distri-
butions. The simplest model that is with FDR of the Kol-
mogorov Simonov statistics larger than 0.1 is selected as
the best model. We tested if M3S can accurately identify
the corrected model distribution for each feature, and
found out, M3S achieves a 96.35% accuracy (Fig. 1b). The
only distribution that M3S achive less than an 85% accur-
acy is BP, majorly due to a bias lead by the Gauss-Jacobi
quadrature approximation of the CDF of the BP model.
We further added a few “noise” features, each of which
has a distribution other than the true distributions speci-
fied. It turns out that M3S has high specificity and can ef-
fectively identify the outlier features with an over 98.5%
accuracy on average (Fig. 1c).

Application of M3S in detecting the multi-modality of
expressions on real data sets
We further tested M3S on four real single cell data sets
and one bulk tissue data, including (1) a T cell scRNA-
seq dataset generated by SMART-seq2 platform, consist-
ing of 11,138 cells (GSE108989) [15], (2) a scRNA-seq
data set of 4645 stromal, immune and cells in melanoma
micro-environment generated by C1/SMART-seq plat-
form (GSE72056) [5], (3) a data set of PBSC generated
by 10x genomics consisting of 4590 peripheral blood
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cells [4], and (4) a single cell FISH data set of 347 cells
and 20 genes [16], and (5) TCGA breast cancer (BRCA)
RNA-seqV2 data containing 1091 breast cancer tissue
samples [17]. These datasets cover three platforms for

single cell expression and one for bulk tissue expression
profiling that are most popular. Our analysis suggested
that in general, LTMG is the best model for log trans-
formed CPM data generated by C1/SMART-seq and

Fig. 1 a Details of considered distributions; b Rate of the simulated features that can be corrected predicted by M3S; c Rate of the simulated
outliers that can be corrected identified by M3S. The x-axis represents the distribution of the outlier in the simulated data of a specific
distribution. d-h Boxplots of FDRs of the fitting by selected distributions on 100 selected features of the GSE108989 (d), GSE72056 (e), 10x (f),
scFISH (g), and TCGA BRCA (h) data. The selected best model is highlighted. i Gene expression profile of ESR1 and PGR in TCGA BRCA samples. j
Gene expression profile of selected gene show a differential gene expression in high expression peak between CD8 + T cell and other T cells in
the GSE108989 data set
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SMART-seq2 platforms; ZIMG is the best model for the
log transformed CPM data the generated by 10x genom-
ics, and the MG is best for modeling log normalized data
generated by single cell FISH and the TCGA-BRCA data
(Fig. 1d-h). These could be explained by the distinctions
of different technologies used to profile and collect the
data: (1) reads data generated under the C1/SMART-seq
and SMART-seq2 platforms are often saturated, meaning
there exists a minimal expression level representing a
common experimental resolution for all samples, hence
truncating the gene expression below the experimental
resolution as in LTMG is rational; (2) reads data generated
by 10x genomics are, however, always unsaturated, and
the experimental resolutions are highly varied through
cells, thus handing the varied experimental resolutions
with Gaussian errors as in ZIMG performs better in fitting
the data comparing to LTMG; (3) scFISH data are with
multi-modality but a small amount of zero observations.
It is noteworthy that 55 and 37% of the genes in the

(tested) SMART-seq/SMART-seq2 and 10x data have
more than one (non-zero) peaks, suggesting the necessity
of considering multi-modality in the single cell expression
data modeling. In the TCGA BRCA data, our model iden-
tified that around 31.9% genes were best fitted by either
the MG or LTMG model with more than one peaks, such
as the ESR1 and PGR genes that are associated with the
breast cancer subtype (Fig. 1i). We also evaluated the
computational efficiency of M3S, and our analysis suggests
that M3S can select and fit the best model for 100 features
of 1000, 5000, and 10,000 real single cell samples in 618 s,
1022s and 7255 s, by using a PC with an Intel Core i7-
7700K CPU (4.20 GHz) and 16G RAM.

Application of M3S on differential gene expression test
for simulated and real scRNA-seq data sets
We applied the M3S.test function to identify differentially
expressed genes associated with pre-defined sample clas-
ses in the T cell scRNA-seq data set. We compared M3S
with MAST, which is currently one of the most commonly
used differential gene expression analysis method for
scRNA-seq [8]. One of our results clearly suggests that
160 genes are with more than one non-zero peak are sig-
nificantly associated with CD8+ T cells (identified by
using M3S.test, FDR < 0.05), as illustrated in Fig. 1j.

Discussion
M3S is developed for gene-wise model selection, and
particularly, comprehensive inference of the modality of
individual gene’s expression in a scRNA-seq data. On 20
sets of single cell RNA-seq data generated by Smart-
Seq/Smart-Seq2 protocols, we discovered that LTMG
represents the best model for majority of the genes [6].
On the other hand, for the drop-seq based scRNA-seq
data, such as 10x genomics platform, the experiment

resolution are varied throughout different cells as with
the total captured counts. Our analysis suggests that
ZIMG achieved best fitting for 10x genomics data sets.
Considering the error of the lowly (non-zero) expres-
sions are hard to be modeled due to the varied experi-
ment resolutions, ZIMG model utilizes a Gaussian
distribution to cover the variation of the errors of the
lowly expressed genes. For a gene fitted with multiple
peaks in a drop-seq data set, we suggest considering the
zero expressions as well as those expressions falling into
the lowest peak as insignificant expressions, while the
rest of the expressions in larger peaks as different levels
of true expressions.
Noting that the gene expression in a single cell is

purely determined by the sum of current transcriptional
regulatory inputs in the cell, the multi-modality of a sin-
gle gene’s expression may suggest heterogenous tran-
scriptional regulatory states of the gene throughout
different cells. A group of genes consistently falling into
a same peak throughout a certain subset of cells, would
suggest that these genes may possibly be co-regulated by
a transcriptional regulatory signal specifically in these
cells. Hence identification of gene co-regulation modules
can be mathematically formulated as finding subma-
trices, in which the expression of its pertinent genes on
its containing samples are consistently classified to one
certain peak of its multiple peaks. This can be solved by
integrating M3S and M3S.fit functions with a bi-
clustering detection algorithm [18, 19].

Conclusion
Our comprehensive evaluation suggested the M3S pack-
age can accurately capture the multimodality on simu-
lated and real single cell data. An open source package
and is available through GitHub at https://github.com/
zy26/M3S.

Availability and requirements
Project name: M3S.
Project home page: https://github.com/zy26/M3S
Operating system(s): Platform independent.
Programming language: R.
Other requirements: R.3.5 and above.
Any restrictions to use by non-academics: license

needed.

Supplementary information
Supplementary information accompanies this paper at https://doi.org/10.
1186/s12859-019-3243-1.

Additional file 1: Figure S1. Supplementary Note.
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