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Abstract

Correlated survival data naturally arise from many clinical and epidemiological studies. For the 

analysis of such data, the Gamma-frailty proportional hazards (PH) model is a popular choice 

because the regression parameters have marginal interpretations and the statistical association 

between the failure times can be explicitly quantified via Kendall’s tau. Despite their popularity, 

Gamma-frailty PH models for correlated interval-censored data have not received as much 

attention as analogous models for right-censored data. In this work, a Gamma-frailty PH model for 

bivariate interval-censored data is presented and an easy to implement expectation-maximization 

(EM) algorithm for model fitting is developed. The proposed model adopts a monotone spline 

representation for the purposes of approximating the unknown conditional cumulative baseline 

hazard functions, significantly reducing the number of unknown parameters while retaining 

modeling flexibility. The EM algorithm was derived from a data augmentation procedure 

involving latent Poisson random variables. Extensive numerical studies illustrate that the proposed 

method can provide reliable estimation and valid inference, and is moreover robust to the 

misspecification of the frailty distribution. To further illustrate its use, the proposed method is used 

to analyze data from an epidemiological study of sexually transmitted infections.
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1. Introduction

Interval-censored data frequently arise from clinical and epidemiological studies, where 

outcome events are periodically assessed. In studies of sexually transmitted infections 

(STIs), for example, participants are often followed prospectively with predetermined testing 

schedules. As a result, the precise timing of infection acquisition is generally unavailable, 

except for the rare situations where tests are prompted by emergence of symptoms. Interval-

censored data are particularly common in investigation of STIs with no or mild symptoms. 

For example, the motivating example considered herein involves a cohort study of young 

women aimed at assessing the association between certain risk factors and the contraction of 

STIs. In particular, this study considers Chlamydia trachomatis and Trichomonas vaginalis, 

two organisms that cause clinical diseases of chlamydia and trichomoniasis, respectively. 

Moreover, individuals infected with C. trachomatis and T. vaginalis can often be 

asymptomatic, thus preventing knowledge of the exact acquisition time. Herein, a joint 

modeling approach to accommodate the known synergy between these two pathogens 

(Workowski and Bolan, 2015) is developed. The primary objectives of this analysis are to 

estimate the organism-specific survival functions, and quantify the associations between 

participant characteristics and risks of STI acquisition.

For correlated survival times, there are two basic modeling approaches; i.e., marginal or 

frailty modeling. The marginal approach specifies a marginal model for each failure time, 

adopts a working independence assumption in the likelihood construction, obtains point 

estimates of the regression parameters under this assumption, and then uses the so-called 

sandwich estimator to obtain standard error estimates (Wei et al., 1989). Various marginal 

models have been proposed along the lines of this general approach for multivariate interval-

censored data; e.g., the proportional hazards (PH) model (Goggins and Finkelstein, 2000; 

Kim and Xue, 2002), the proportional odds (PO) model (Chen et al., 2007), the additive 

hazards model (Tong et al., 2008), the linear transformation model (Chen et al., 2013), and 

the additive transformation model (Shen, 2015). Moreover, a goodness-of-fit test for 

assessing the appropriateness of the marginal Cox model for multivariate interval-censored 

data was proposed by Wang et al. (2006). Even though the marginal approach provides 

robust inference, it does not adequately account for the correlation that naturally exists 

between the multiple failure times.

In contrast, frailty models directly acknowledge the correlation structure and introduce 

frailty terms in order to model the dependence between multiple responses. For this reason 

frailty modeling has become quite popular in survival analysis (Hougaard, 2000; Ibrahim et 

al., 2008; Wienke, 2012). For analyzing multivariate case 1 interval-censored data (i.e., 

current status data), several frailty models have been previously proposed; e.g., a probit 

model with normal frailty (Dunson and Dinse, 2002), a PH model with a normal frailty 

(Chen et al., 2009), and a PO model with a gamma-frailty (Lin and Wang, 2011). Extending 

to multivariate general interval-censored data, Komarek and Lessaffre (2007) proposed a 

frailty accelerated failure time model and Zuma (2007) explored the Gamma-frailty Weibull 

model.
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For the analysis of correlated survival data, the Gamma-frailty proportional hazards (PH) 

model has proven to be a popular choice among practitioners. One advantage of this model 

is that the statistical association between the failure times can be explicitly (in closed-form) 

quantified via Kendall’s τ. Research based on the Gamma-frailty PH model for multivariate 

right-censored data include Klein (1992), Andersen et al. (1997), Rondeau et al. (2003), Cui 

and Sun (2004), and Yin and Ibrahim (2005) among many others. Related work on 

multivariate or clustered current status data include Chang et al. (2007), Hens et al. (2009), 

Wen and Chen (2011), and Wang et al. (2015). In contrast, very few works have considered 

extending the Gamma-frailty PH model to allow for the analysis of multivariate interval-

censored data, within the context studied here. For analyzing clustered interval-censored 

data, Lam et al. (2010) proposes a multiple imputation approach under the Gamma-frailty 

PH model. Similarly, Henschel et al. (2009) and Yavuz and Lambert (2016) propose frailty 

models for clustered interval-censored data within a Bayesian framework. To our 

knowledge, the work most closely related to that presented here is of Wen and Chen (2013). 

These authors developed an algorithm which could be used to maximize the full likelihood 

based on the Gamma-frailty PH model and established the asymptotic properties of their 

proposed estimator. However, the proposed algorithm is rather arduous to implement, even 

for experts in the area, and software is not readily available. In particular, the algorithm 

involves iteratively updating the regression parameters and the frailty variance parameter 

through a Newton-Raphson algorithm and solving self-consistency equations for the 

conditional cumulative baseline hazard functions.

Seeking to generalize Wang et al. (2015), this paper focuses on developing methods for 

analyzing correlated bivariate interval-censored data under the Gamma-frailty PH model. In 

the proposed model formulation, a monotone spline representation (Ramsay, 1988) is use to 

approximate the unknown conditional cumulative baseline hazard functions, thus greatly 

reducing the number of unknown parameters while retaining a great deal of modeling 

flexibility. To complete model fitting, an expectation-maximization (EM) algorithm is 

developed through a carefully structured data augmentation scheme involving latent Poisson 

random variables. This scheme leads to both straightforward parameter updates in the M-

step as well as closed-form expectations in the E-step. These features make the algorithm 

easy to implement and computationally effcient. Moreover, through an extensive Monte 

Carlo simulation study, the proposed approach is shown to provide reliable estimates of all 

model parameters as well as valid inference, and further, is robust to the misspecification of 

the frailty distribution. As a companion to this work, a set of functions (coded in R) which 

implement all aspects of the proposed methodology have been developed and are being 

added to the next release of the ICsurv package, which is freely available from the CRAN 

(i.e., http://cran.us.r-project.org/).

The remainder of this article is organized as follows. In Section 2, the details of the proposed 

model and approach are presented, including but not limited to the use of monotone splines, 

the data augmentation steps, and the derivation of the EM algorithm. In Section 3, the results 

of an extensive simulation study designed to evaluate the finite sample performance of the 

proposed approach are provided. Section 4 provides the results of the analysis of the 

motivating data application; i.e., the STI data collected as a part of the Young Women’s 

Project. Section 5 concludes with a summary discussion.
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2. Model and Methodology

Let T1 and T2 denote the two unobserved failure/event times of interest; e.g., the time at 

which a patient becomes infected with C. trachomatis or T. vaginalis, respectively. To jointly 

model these two failure times, a Gammafrailty proportional hazards model is considered; 

i.e., as in Wang et al. (2015) it is assumed that the conditional cumulative hazard function 

for Tj, given the frailty η, is given by

Λ j t x, η = Λ0 j (t)exp x′β j η, for j = 1, 2, (1)

where x is a (p × 1)-dimensional vector of covariates, β j is the corresponding vector of 

regression coeffcients, Λ0 j ( ⋅ ) is the conditional cumulative baseline hazard function. Owing 

to the models name, the frailty (i.e., random effect) is assumed to follow a gamma 

distribution, whose shape and rate parameters are both ν. As is common in the literature, it 

is also assumed that the two failure times are conditionally independent given the frailty. It is 

worthwhile to point out that in order for the model to be proper Λ0 j ( ⋅ ) should be an 

unbounded non decreasing function with Λ0 j 0 = 0

By integrating over the frailty, one may ascertain that T j marginally follows a generalized 

odds-rate hazards (GORH) model; i.e., the marginal survival functions for T j is given by

S j(t x) = P(T j > t x) = 1 + v−1 Λ0 j (t)exp x′β j
−v, for j = 1, 2 . (2)

The GORH class of survival regression models is a broad family, which holds the PH and 

PO models as special cases. In particular, allowing ν → ∞ in (2) results in obtaining the 

usual PH model, while setting ν = 1 provides the PO model. Noting this relationship leads to 

three interesting aspects of the proposed model. First, through the estimation of ν, the 

proposed approach is essentially identifying the best model among the GORH class for the 

observed data, and thus the regression coeffcients (i.e., the βj) can be interpreted under that 

model as the marginal covariate effects. Secondly, a measure of association between the 

failure times in the form of Kendall’s τ is available in closed-form and is given by τ = 

(1+2ν)−1; for further details and discussion see Wang et al. (2015). Lastly, this realization 

allows for the direct assessment of the efficiency gains which can be obtained by jointly 

modeling the failure times in contrast to modeling them marginally through the use of 

comparable methods; e.g., see the approach of Zhou et al. (2017).

2.1. Monotone Splines for modeling Λ0 j ( ⋅ )

The unknown parameters in the Gamma-frailty PH model involve the regression parameters 

βj, the frailty variance parameter ν, and the cumulative baseline hazard function Λ0 j ( ⋅ ), for 

j = 1, 2. One could specify a functional form for Λ0 j ( ⋅ ), but proceeding in this fashion often 
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leads to model misspecification. Thus, in this work Λ0 j ( ⋅ ) is regarded as an unknown 

function and therefore represents an infinite dimensional parameter. Following the works of 

Wang et al. (2015), Lin and Wang (2010), Wang and Dunson (2011), Cai et al. (2011), 

McMahan et al. (2013), and Wang et al. (2016), the proposed approach approximates Λ0 j ( ⋅ )

through the use of the monotone regression splines of Ramsay (1988); i.e.,

Λ0 j t = ∑
l = 1

k j
γ jlI jl t , (3)

where I jl( ⋅ ) is a monotonically increasing spline basis function, γ jl is an unknown spline 

coefficient. To insure that Λ0 j ( ⋅ ) is a nondecreasing function, γ jl is constrained to be 

nonnegative; i.e., γ jl ≥ 0, for l = 1, …, k j and j = 1, 2. For ease of exposition, define 

γ j = γ j1, …, γ jk j
′.

The kj spline basis functions considered in (3) are piecewise polynomial functions, which 

are fully determined by selecting a knot set, consisting of mj points placed throughout the 

time domain of interest, and the degree of the polynomials (say degreej), where kj = mj

+degreej − 2; for further discussion see Ramsay (1988). The shape of the basis splines are 

predominantly determined by the placement of the knots while the degree controls the 

smoothness (Ramsay, 1988). For example, specifying the degree to be one, two or three 

corresponds to using linear, quadratic or cubic polynomials, respectively. In general, it has 

been suggested that specifying the degree of the polynomial basis functions to be either two 

or three results in adequate smoothness; e.g., see the discussion provided in McMahan et al. 

(2013) and Wang et al. (2016). In contrast, for modeling purposes, the selection of the 

number and placement of the knots plays a more important role when compared to choosing 

the degree, thus it is suggested that the strategies discussed in McMahan et al. (2013) and 

Wang et al. (2016) be adhered to when addressing this topic. In particular, these authors 

suggest that several knot sequences be used to complete model fitting, with model selection 

criterion (e.g., Akaike’s information criterion or the Bayesian information criterion) being 

employed to determine the “best” model.

2.2. Observed data likelihood

The remainder of this work is directed towards developing and evaluating an approach to fit 

the model depicted in (1) to bivariate interval-censored data. Interval-censored data 

commonly arise in studies in which the failure/event time of interest is not directly observed 

but is rather known to have occurred during a time interval formed based on observation/

screening times. To further elucidate, let Lj and Rj, with Lj < Rj, denote the two observation 

times which form the interval that contains Tj. Thus, if Lj = 0 the failure time is left-

censored, if Rj = ∞ the failure time is right-censored, and the failure time is interval-

censored otherwise. For notational convenience, let δj1, δj2, and δj3 be censoring indicators 
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denoting left-, interval-, and right-censoring, respectively, for event j; i.e., δj1 = I(Lj = 0), δj3 

= I(Rj = ∞), and δj2 = 1 − δj1 − δj3.

Now consider a study in which bivariate interval-censored data are collected on n 
independent individuals; i.e., the observed data, which is given by  = {(Lij, Rij, xi, δij1, δij2, 

δij3); j = 1, 2; i = 1, 2, … , n}, represents n independent realization of {(Lj, Rj, x, δj1, δj2, 

δj3); j = 1, 2}. In this case, the observed data likelihood can be expressed as

L θ = ∏
i = 1

n ∫ g ηi ν

∏
j = 1

2
F j Ri j xi, ηi

δi j1 F j Ri j xi, ηi − F j Li j xi, ηi

δi j2 1 − F j Li j xi, ηi

δi j3 dηi,

(4)

where θ = (β1′ , β2′ , γ1′ , γ2′ , ν)′ is the vector of unknown parameters, g( ⋅ ν) denotes the 

probability density func-tion for the gamma distribution whose shape and rate parameters 

are both ν, and Fj(t|x, η) is the conditional cumulative distribution function of the jth failure 

time, given covariates x and frailty η, which is given by

F j t x, η = 1 − exp − Λ0 j t exp x′β j η , for j = 1, 2.

Note, in order to derive (4), it is assumed that the covariates are time independent and that 

the failure and censoring times are conditionally independent, given the covariate 

information. These assumptions are common among the survival literature; e.g., see Liu and 

Shen (2009) and Zhang and Sun (2010) and the references therein. Moreover, note that if the 

observed data consisted of only left- and right-censored observations (i.e., current status 

data) then (4) reduces to equation (3) in Wang et al. (2015).

By integrating over the gamma-frailty parameters (i.e., the ηi) one can obtain a closed-form 

expression for the observed data likelihood. Using this expression, it is natural to attempt to 

estimate the unknown parameters of the model via maximum likelihood estimation; i.e., the 

maximum likelihood estimator (MLE) can be obtained as θ = argmaxxθL(θ) . To this end, 

numerical optimization techniques could be employed, but proceeding in this fashion often 

leads to several problems for the considered model; e.g., these techniques often converge to 

local extrema or experience numerical instabilities and terminate due to numerical error. In 

order to obviate these potential pitfalls and computational complexities, in Section 2.3 an 

EM algorithm is developed for the purposes of obtaining the MLE of θ.

2.3. EM algorithm

In order to facilitate the development of the proposed EM algorithm, a series of three data 

augmentation steps are considered. As in Wang et al. (2015), the first step of the data 

augmentation procedure involves introducing the individual frailties as latent random 

variables. Proceeding in this fashion leads to the following augmented data likelihood

Gamage et al. Page 6

Comput Stat Data Anal. Author manuscript; available in PMC 2019 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



L1 θ = ∏
i = 1

n
g ηi ν

∏
j = 1

2
F j Ri j xi, ηi

δi j1 F j Ri j xi, ηi − F j Li j xi, ηi

δi j2 1 − F j Li j xi, ηi

δi j3 .

(5)

Notice, by integrating (5) over the frailty terms one will obtain the observed data likelihood 

depicted in (4). In contrast to the data augmentation procedure of Wang et al. (2015), the 

second step relates the censoring indicators to latent Poisson random variables by 

introducing Zij and Wij such that δi j1 = I Zi j > 0 , δi j2 = I Zi j = 0, W i j > 0 , and 

δi j3 = I Zi j = 0, W i j = 0 , where Zi j ηi ∼ Poisson Λ0 j (ti j1)exp(xi′β j)ηi  and 

W i j ηi ∼ Poisson[ Λ0 j (ti j2) − Λ0 j (ti j1) exp(xi′β j)ηi], with ti j1 = Ri jI δi j1 = 1 + Li jI δi j1 = 0

and ti j2 = Ri jI δi j2 = 1 + Li jI δi j3 = 1  Note, Wij is introduced only if the failure time (i.e., 

Tij) is interval- or right-censored, while Zij is introduced regardless of the censoring status. 

This additional data augmentation layer leads to the following augmented data likelihood

L2 θ = ∏
i = 1

n
g ηi ν ∏

j = 1

2
Pzi j Zi j PWi j

W i j

δi j2 + δi j3Ci j, (6)

where Ci j = δi j1I(Zi j > 0) + δi j2I(Zi j = 0, W i j > 0) + δi j3I(Zi j = 0, W i j = 0) and PZ( ⋅ ) is the 

probability mass function of the random variable Z. Again notice that, by integrating (6) 

over the latent Poisson random variables one will obtain (5). The final step exploits the 

monotone spline representation of Λ0j(·), and decomposes Zij and W i j as Zi j = ∑l = 1
k j Zi jl

and W i j = ∑l = 1
k j W i jl, respectively, where Zi jl ηi

ind .∼ Poisson γ jlI jl ti j1 exp x′iβ j ηi  and 

W i jl ηi
ind .∼ Poisson γ jl I jl ti j2 − I jl ti j1 exp x′iβ j ηi  This last data augmentation step result in 

the following augmented data likelihood

LC θ = ∏
i = 1

n
g ηi ν ∏

j = 1

2
∏
l = 1

k j
PZi jl

Zi jl I Zi jl = Zi j ⋅ PWi jl
W i jl I W i j = W i j ⋅

δi j2 + δi j3

Ci j,

(7)

where Zi j ⋅ = ∑l = 1
k j Zi jl and W i j ⋅ = ∑l = 1

k j W i jl ⋅ Again ,by integrating (7) over the latent 

Poisson random variables introduced in this step (i.e., the Zij and Wij) one obtains (6). For 

the purposes of deriving the EM algorithm (7) will be viewed as the complete data 
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likelihood, with the aforementioned latent variables being treated as missing data. It is 

worthwhile to point out that the final data augmentation step is introduced so that closed-

form updates of the spline coefficients can be obtained in the M-step of the algorithm.

In general, the EM algorithm consists of two steps: the expectation step (E-step) and the 

maximization step (M-step). In the E-step, one takes the expectation of the logarithm of (7) 

with respect to all of the latent variables introduced through the aforementioned data 

augmentation steps, conditional on the current parameter value 

θ d = β1
d ′, β2

d ′, γ1
d ′, γ2

d ′, ν d ′ and the observed data . This process results in obtaining 

what is referred to as the Q(θ, θ(d)) function; i.e., Q(θ, θ(d)) = E[log{Lc(θ)}| , θ(d)]. The M-

step then finds θ(d+1) = argmaxθQ(θ, θ(d)). These two steps are then iterated in turn until 

convergence. The details involved in completing these two steps are now provided. First 

note, as in Wang et al. (2015), the E-step yields

Q θ, θ d = H1 θ, θ d + H2 θ, θ d + H3 θ d ,

Where

H1 θ, θ d = nνlog ν − nlog Γ ν + ν ∑
i = 1

n
E log ηi + E ηi , (8)

H2 θ, θ d = ∑
i = 1

n
∑
j = 1

2
∑
l = 1

k j
E Zi jl + δi j2E W i jl log γ jl + xi′β j

−γ jl δi j1 + δi j2 I jl Ri j + δi j3I jl Li j exp xi′β j E ηi ,

(9)

and H3(θ(d)) is a function of θ(d) but is free of θ. Note, a simplifying step has been taken to 

reach (9) which involves dropping δij3E(Wijl) since it is always equal to zero; i.e., E(Wijl) = 

0 when δij3 = 1 and the product is obviously equal to zero when δij3 = 0. At this point 

several comments are warranted. First and foremost, the dependencies in the conditional 

expectations depicted in (8) and (9) are suppressed for ease of exposition; i.e., E(·) ≡ E(·| , 

θ(d)) from henceforth. Moreover, these expectations exist in closed-form and are provided in 

Web Appendix A of the Supplementary Material. Second, structurally the expressions 

provided in (8) and (9) are very similar to their counterparts in Wang et al. (2015), with 

subtle yet very stark differences. These differences primarily arise in the form of the 

expectations and the structure of (9) and allow the proposed approach to accommodate 

interval-censored observations, unlike this existing technique.

To complete the M-step of the algorithm, one must obtain θ(d+1). First, note that maximizing 

Q(θ, θ(d)) with respect to ν is tantamount to maximizing (8) with respect to the same. Thus, 

consider the partial derivative of (8) with respect to ν, which is given by
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∂H1 θ, θ d

∂ν = nlog ν + n − nψ ν + ∑
i = 1

n
E log ηi − E ηi ,

where ψ(ν) is the digamma function. Thus, solving ∂H1(θ, θ(d))/∂ν = 0 for ν, one obtains 

the value of ν(d+1), and this step can easily be completed using standard root finding 

algorithms; e.g., uniroot in R. Similarly, to find β j
d + 1  and γ jl

d + 1 , one needs only to 

maximize H2(θ, θ(d)) with respect to βj and γj. To this end, consider the partial derivatives 

of H2(θ, θ(d)) with respect to γjl which is given by

∂H2 θ, θ d

∂γ jl
= ∑

i = 1

n

γ jl
−1 E Zi jl + δi j2E Wi jl − δi jl + δi j2 I jl Ri j + δi j3I jl Li j exp xi′β j E ηi ,

for l=1,…,kj and j=1, 2. Setting this expression equal to zero and solving result in obtatining

γ jl β j =
∑i = 1

n E Zi jl + δi j2E Wi jl

∑i = 1
n δi j1 + δi j2 I jl Ri j + δi j3I jl Li j exp xi′β j E ηi

,

as the solution for l = 1,…,kj and j = 1, 2. It is worthwhile to note that γ jl β j  depends on the 

value of βj and further that γ jl β j   ≥  0 since all quantities in the ratio are greater than or 

equal to zero. That is, this quantity naturally adheres to the constraint necessary to ensure the 

monotonicity of Λ0j(·), for all values of the regression coefficient. Now consider the system 

of equations that arise from taking the partial derivatives of H2(θ, θ(d)) with respect to βj and 

setting it equal to zero; i.e.,

∑
i = 1

n
E Zi j + δi j2W W i j − δi j1 − δi j2 Λ0 j Ri j + δi j3 Λ0 j Li j exp xi′β j E ηi xi′ = 0 .

(10)

Replacing, γjl by γ jl β j  in (10) and solving for βj results in obtaining β j
d + 1 , and thus 

γ jl
d + 1 = γ jl β j

d + 1 . Following the work of Wang et al. (2016), it is relatively easy to 

establish that the updated regression and spline coefficients are the unique maximizers of 

H2(θ, θ(d)). Thus, after setting d = 0 and initializing θ(d), the proposed EM algorithm repeats 

the following steps until a convergence criterion has been met.

1. Obtain ν d + 1  as the solution to ∑i = 1
n E log ηi − E ηi = nψ ν − nlog ν − n .
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2. Obtain β j
d + 1 , for j = 1, 2, as the solution to the following system of p equations 

∑
i = 1

n
E Zi j + δi j2E W i j xi′ = ∑

i = 1

n
∑

l = 1

k j
γ jl β j δi j1 + δi j2 I jl Ri j + δi j3I jl Li j exp

xi′β j E ηi xi′ .

3. Calculate γ jl
d + 1 = γ jl β j

d + 1 , for l=1,…,kj and j = 1, 2.

4. Set d = d + 1, and return to 1.

At the point of convergence of the EM algorithm, the MLE of θ is obtained as 

θ = β1′ , β2′ , γ1′ , γ2′ , ν = θ d .

2.4. Variance estimation

In order to conduct large sample inference, it is suggested that the asymptotic covariance 

matrix be estimated via the outer product of gradients estimator, which is given by

V θ = 1
n ∑

i = 1

n
ii θ i′i θ

−1
,

Where ii θ = ∂li θ / ∂θ
θ = θ

 and li θ  is the log-likelihood contribution of the ith individual, 

which can be expressed in terms of the marginal and joint survival functions; for further 

details see Web Appendix B of the Supplementary Material. Other more traditional 

estimators were considered; e.g., Louis’s method (Louis, 1982) and the usual observed 

Fisher information. The details required to implement the former were found to be rather 

complex, while the latter provided standard error estimates that were at times less than 

satisfactory.

3. Simulation Study

In order to investigate the finite sample performance of the proposed methodology, the 

following simulation study was conducted. The true distribution of the failure time Tj, for j = 

1, 2, was specified to be

F j t x,η = 1 − exp − Λ0 j t exp x1β j1 + x2β j2 η

where Λ0 j t = log t2 + 1 , x= x1, x2 ′, x1 ∼ Bernoulli(0.5), x2 ∼ N(0, 0.52), η ∼ Gamma(ν, 

ν), where ν ∈ {0.25, 1, 4}. These values of ν emit a small (ν = 4), moderate (ν = 1), and 

large (ν = 0.25) association between the two failure times. The regression coefficients (i.e., 

βj1 and βj2) were specified such that, β11 = β21 and β12 = β22, with each taking values −0.5, 

0, and 0.5. These specifications result in nine different configurations of the regression 

parameters.
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In order to simulate the observed data, the failure time Tj was first determined by solving 

Fj(t|x, η) = u, where u ∼ Uniform(0, 1). Observation times were generated through an 

independent observational process having support on the interval (0,10). The number of 

observation times were determined as one plus a Poisson random variable having mean 

parameter three. This assures that each individual has at least one observation time, but 

allows the number of observation times to vary across individuals. The waiting times 

between adjacent observations were generated according to an exponential distribution with 

mean one. Thus, Lj and Rj were determined by examining which of the two observation 

times bounded the failure time, with the convention that if Tj was smaller (greater) than the 

smallest (largest) observation time then Lj = 0 (Rj = ∞).

The aforementioned process was used to randomly generate 500 datasets, each consisting of 

n = 500 observations, for all of the considered parameter configurations. The proposed EM 

algorithm was then used to analyze each of the resulting data sets. To implement the 

algorithm, a separate monotone spline representation was used for each of the failure times, 

with these specifications being based on the set of available observation times. To provide 

several configurations, the degree for both spline functions were set to be equal and took 

values of two and three. A knot set consisting of m1 = m2 = m ∈ {3, 4, 5} knots were 

considered. These specifications lead to a total of six different spline representations which 

were used to analyze each data set. In each case, the boundary knots were placed at the 

minimum and maximum of the observed finite time points and the interior knots were placed 

at evenly space quantiles of the finite nonzero time points; e.g., when m = 5 the three interior 

knots were placed at the first, second, and the third quartiles. The starting value was 

specified to be θ 0 = β1
0 ′, β2

0 ′, γ1
0 ′, γ2

0 ′, ν 0 = 0′2, 0′2, 1′k1
, 1′k2

, 1 , where 0q(1q) is a (q × 

1)-dimensional vector of zeros (ones). Convergence was declared when the maximum 

absolute difference between consecutive parameter updates was less than the specified 

tolerance of 0.001.

In order to provide a comparison between the proposed method and existing techniques, two 

competing approaches were considered. The first technique, which from henceforth will be 

referred to as the univariate approach, considered modeling each of the failure times 

separately using the GORH model. To accomplish this, the ICGOR package in R was used 

to fit the marginal GORH model depicted in (2); for further details see Zhou et al. (2017). 

This package implements an EM algorithm for the purposes of estimating both the 

regression and spline coefficients for a fixed value of ν, with ν being estimated through the 

implementation of a grid search across a sequence of feasible values. The method 

implemented by the ICGOR package also makes use of the monotone spline representation 

depicted in (3) to approximate the unknown cumulative baseline hazard function. Thus, to 

provide a fair comparison, the degree and number of interior knots were specified to be the 

same as the proposed approach. The ICGOR package also provides standard error estimates 

by an appeal to Louis’s method (Louis, 1982). It is important to note that this approach does 

not acknowledge the fact/potential that the failure times are related. To acknowledge 

dependence, a common approach involves fitting both of the marginal models and then 

correcting the standard errors via a joint sandwich estimator of the asymptotic covariance 

matrix, for further details see Freedman (2006). This approach was also implemented and is 
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referred to as the marginal approach. Note, a feature of the univariate and marginal methods 

is that they render the exact same regression and spline coefficient estimates, but they 

provide for different standard error estimates, with the former ignoring the dependence 

between the failure times and the latter accounting for it.

Table 1 summarizes the estimates of the regression coefficients obtained by the proposed 

approach across all of the considered regression parameter configurations, when ν = 1, m = 

5, and degree is three. Web Tables 1–17 provide the analogous summary for the other 

considered values of ν, m, and degree. This summary includes the empirical bias, the sample 

standard deviation of the 500 point estimates, the average of the standard error estimates, 

and the empirical coverage probabilities associated with 95% confidence intervals for the 

regression coefficients, for each of the failure times. From these results, one will first note 

that the proposed approach results in estimates that exhibit little if any evidence of bias. 

Additionally, the sample standard deviation of the 500 point estimates obtained from the 

proposed approach is in agreement with the average of the standard error estimates, 

indicating that the outer product of gradients estimator suggested in Section 2.4 is 

appropriate for conducting finite sample inference. This is supported by the fact that the 

empirical coverage probabilities for the regression parameters are all at their nominal level. 

Further, from the additional results presented in Web Tables 1–17 it appears that the 

proposed approach is relatively robust to the specification of the spline functions. That is, no 

appreciable differences are apparent in these additional results.

Table 1 also summarizes the parameter estimates arising from the two competing techniques; 

i.e., the univariate and marginal methods. From these results one will note that the two 

competing techniques perform well, but differences are apparent when comparisons are 

made with the proposed approach. In particular, the parameter estimates obtained from the 

two competing techniques are in general less efficient (i.e., possess more variability) than 

those obtained from the proposed approach. Further, the estimates from the competing 

techniques also exhibit a significantly larger bias when compared to the estimates resulting 

from the proposed approach; e.g., the empirical bias for the univariate and marginal methods 

were between 2 and 13 times larger than those resulting from the proposed approach. These 

losses in both estimation efficiency and precision are likely attributable to two features; first, 

the fact that both the univariate and marginal approach ignore, during estimation, the 

dependence which exists between the failure times, and second, that fitting the marginal 

GORH model is a relatively difficult process due to the estimation of a frailty parameter; for 

further discussion see Zhou et al. (2017). Moreover, the empirical coverage probabilities for 

both of the competing techniques were rarely at their nominal level, with the univariate and 

marginal methods tending to under and over cover, respectively. Additionally, the sandwich 

estimator employed by the marginal approach appears to egregiously over estimate the 

standard errors for the regression coefficients in some instances, this can be seen when one 

compares the average standard error estimates to the medians, see Table 1. Similarly, the 

univariate method occasionally provided negative standard error estimates for the regression 

parameters, in these cases the estimates were omitted when calculating the average standard 

errors and empirical coverage probabilities. It is important to note, the proposed approach 

did not encounter these issues when used to estimate standard errors.
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Table 2 summarizes the estimates of ν obtained by the proposed approach across all 

considered simulation configurations, when m = 5 and degree is three. Web Tables 18–22 

provide the analogous summary for the other considered values m and degree. This 

summary includes the empirical bias, the sample standard deviation of the 500 point 

estimates, the average of the standard error estimates, and the empirical coverage 

probabilities associated with 95% confidence intervals for ν. For a moderate to a large 

association (i.e., when ν = 0.25 and 1) these estimates exhibit very little evidence of bias, 

and the sample standard deviation and the averaged standard errors of the 500 point 

estimates are generally in agreement. Further, the empirical coverage probabilities are also 

generally at their nominal level. It is worthwhile to point out that when there is a small 

association between the failure times (i.e., ν = 4) the estimation and inference associated 

with ν becomes a bit strained; i.e., the bias has the propensity to be markedly larger, there 

tend to be disagreement between the sample standard deviation and the averaged standard 

errors, and the 95% confidence intervals tend to over cover. Although, even in this case the 

estimation and inference associated with the regression coefficients is not negatively 

impacted. In some sense, this finding is not so surprising; i.e., ν essentially controls the 

amount of dependence between the failure times, if the dependence is weak then there is a 

lack of information available to estimate it.

Figure 1 summarizes the estimates of the baseline survival functions (i.e., S0j(t) = Sj(t|x = 

0p)) for failure time 1, across all considered regression parameter configurations when ν = 1, 

m = 5, and degree is three. The analogous figures for the other considered simulation 

configurations are provided in Web Figures 1–35. This figure presents plots of the average 

estimate along with curves representing the pointwise 2.5th and 97.5th percentiles of the 

estimates. Also provided are curves representing the true baseline survival functions. These 

figures illustrate that the proposed approach can accurately estimate the baseline survival 

functions of the two failure times, which is tantamount to well estimating the conditional 

cumulative baseline hazard function.

In synopsis, this simulation study has served to illustrate that the proposed methodology is 

capable of accurately estimating the unknown model parameters and renders reliable 

inference. Moreover, this study has illustrated that the proposed method is superior when 

compared to the univariate and marginal methods. Thus, these findings tend to suggest that 

the proposed approach would be preferable for the purposes of analyzing dependent 

bivariate interval-censored data when compared to the two considered existing techniques.

3.1. Simulation Study II

An additional robustness study was conducted in order to ascertain the impact of 

misspecifying the frailty distribution. This study considers the exact same data generating 

process described above with the exception that the frailty distribution was misspecified. In 

particular, three such frailty distributions were considered:

f 1 η = 0.25LN −1.20, 1.85 + 0.50LN −0.90, 0.56 + 0.25LN 0.60, 0.23 ,
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f 2 η = 0.20LN −1.20, 1.85 + 0.20LN −0.90, 0.56 + 0.60LN 0.60, 0.23 , and

f 3 η = 0.30WN 3.00, 0.60 + 0.40WN 2.50, 1.80 + 0.40WN 4.50, 1.00 ,

where LN(µ, σ2) denotes the lognormal distribution with location parameter µ and scale 

parameter σ and WL(κ, λ) denotes the Weibull distribution with shape parameter κ and 

scale parameter λ. Under each of these frailty models, 500 data sets, each consisting of n = 

500 observations, were randomly generated, and the proposed method was used to analyze 

each in the exact same fashion as was described above, with the degree of both spline 

functions being set to three and m1 = m2 = 5. Table 3 summarizes the parameter estimates 

for this study. These results again illustrate that the proposed method performs well; i.e., 

bias is small, averaged standard errors and sample standard deviations are in agreement, and 

the empirical coverage probabilities for the regression coefficients are at their nominal. This 

robustness study shows that the proposed approach is not unduly impacted by the 

misspecification of the frailty distribution.

4. Data Application

To illustrate the use of the proposed model, data from a longitudinal study of STIs was 

analyzed. The study design and follow-up protocol were previously described (Tu et al., 

2009; Ghosh and Tu, 2009; Tu et al., 2011; Yu et al., 2012). Briefly, young women between 

14 and 17 years of age were recruited for participation in this prospective cohort study. Upon 

enrollment, participants completed face-to-face interviews and detailed questionnaire about 

their sexual behaviors, and they were tested for infections with C. trachomatis and T. 
vaginalis. Infected individuals were treated promptly. During the course of follow-up, 

participants were scheduled to be tested every three months, although the actual test dates 

could deviate from the testing schedule.

The current analysis focuses on the time from sexual debut till the first infection acquisition 

with C. trachomatis and T. vaginalis. For those who were sexually active at enrollment, the 

age of sexual debut was determined from the enrollment interview. For those who became 

sexually active during the study, the time of sexual debut was determined from follow-up 

interviews. The precise dates of infection acquisition were interval-censored by the two 

testing dates flanking the interval at which C. trachomatis and T. vaginalis were first 

detected. Time to infection was right-censored at the end of the study if the participant tested 

negative throughout the follow-up.

This analysis examines associations between STI acquisition and several participant 

characteristics, including the number of lifetime partners reported at the time of enrollment 

(x1), self-reported age at sexual debut (x2), and race (x3 = 1 if African American, and x3 = 0 

otherwise). Twenty-seven participants were excluded from the analysis due to missing data. 

Other data discrepancies warranted exclusion of another nine participants; i.e., if a 

participant had reported an age of sexual debut later than infection detection. After the due 
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diligence steps on data quality, a subset of participants (n = 350) were included in the current 

analysis. Among these individuals, 37.1%, 30%, and 32.9% were left-, interval-, and right-

censored, respectively, for C. trachomatis and 17.4%, 22.3%, and 60.3% were left-, interval-, 

and right-censored, respectively, for T. vaginalis.

This analysis considers relating the three available covariates to the time of STI acquisition 

through the proposed Gamma-frailty PH model, where each covariate is entered as a first 

order term. The proposed EM algorithm was used to fit the Gamma-frailty PH model to the 

STI data. The algorithm was implemented using a separate monotone spline representation 

for each of the event times, with these specifications being based on the set of available 

follow-up times. In particular, the degree of the splines was set to be three and a knot set 

consisting of two boundary and three interior knots was considered. The boundary knots 

were placed at the minimum and maximum of the observed finite follow-up times and the 

three interior knots were placed at the first, second, and the third quartiles of the finite 

nonzero time points. A starting value for the algorithm and convergence was determined in 

the exact same fashion as was described in Section 3. Further, the univariate and marginal 

methods were also implemented. A summary of the regression parameter estimates (and 

their estimated standard errors) obtained from these three techniques are presented in Table 

4.

This analysis indicates that a larger numbers of lifetime partners at baseline, older age of 

sexual debut, and being African American were associated with an increased risk of C. 
trachomatis infection. For T. vaginalis, only being African American was associated with an 

increased risk of early infection acquisition. The univariate approach led to the same general 

conclusions with the exception that it did not identify self-reported age of sexual debut as 

being associated with the acquisition of C. trachomatis. In contrast, the marginal approach 

did not detect any significant associations, with the exception of race being related to T. 
vaginalis infection. The discrepancies observed between the approaches are likely 

attributable to the observations discussed in Section 3; i.e., by modeling the data jointly the 

proposed method provides more efficient and precise estimates, as well as more reliable 

inference. Moreover, the proposed method is able to quantify the association between the 

two event times; i.e., the proposed method estimated ν to be ν = 2.0549, which translates to a 

moderate degree of association τ = 0.1957  between the first detections of C. trachomatis 

and T. vaginalis. To assess model adequacy, Figure 2 provides the average estimated survival 

functions (stratified by race) from the proposed and univariate/marginal methods. This figure 

also provides nonparametric estimates of the survival curves based on the Turnbull estimator 

(Turnbull, 1976), again stratified by race. These results tend to suggest that the proposed 

approach provides a good fit to these data, especially when compared to the fits from the 

univariate/marginal method.

5. Discussion

In this paper, a new EM algorithm was developed which can be used to fit the Gamma-

frailty PH model to bivariate interval-censored data. The proposed formulation of the 

Gamma-frailty PH model makes use of a monotone spline representation to approximate the 

unknown conditional cumulative baseline hazard function. The derivation of the algorithm is 
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based on a three stage data augmentation procedure involving latent Poisson random 

variables and gamma-frailty terms. Based on these steps, all of the expectations necessary to 

implement the EM algorithm are provided in closed-form. Moreover, the regression and 

gamma-frailty variance parameters are obtained by solving a low-dimensional system of 

equations and the spline coefficients are updated in closed-form. The resulting EM algorithm 

is easy to implement, is robust to initialization, and enjoys quick convergence. Through 

Monte Carlo simulation studies, it has been shown that the proposed method performs well 

with respect to estimating the regression parameters, spline coefficients, and gamma-frailty 

variance parameter. The finite sample performance of the proposed approach was further 

illustrated by applying the method to interval-censored STI data collected on young women 

as a part of the Young Women’s Project. In summary, the proposed method provides an 

accurate and reliable approach that can be used to analyze bivariate interval-censored data. 

To further disseminate this work, a set of functions (coded in R), along with supporting 

documentation, have been developed and are being added to the next release of the ICsurv 

package, which is freely available from the CRAN (i.e., http://cran.us.rproject.org/). Further, 

this software is available from the corresponding author upon request.

It is worthwhile to point out that the methodology proposed in this manuscript could be 

extended to account for more than two event/failure times; i.e., J > 2. Although, there would 

be several hurdles. First and foremost, by virtue of how the model comes together, this 

extension would provide for the same dependence structure between the multiple events 

times; which could be unreasonable for some applications. The second hurdle involves a 

combinatorial explosion in the number of terms that would need to be computed to complete 

the Estep; i.e., there are 3J different failure time combinations, each producing a different 

expectation for each of the latent variables, moreover the number of latent variables also 

increases as a power of J. Even in lieu of these hurdles this extension could be an interesting 

topic of future research given the appropriate motivating example.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Simulation results summarizing the estimates of the baseline survival function for failure 

time 1 obtained by the proposed approach, when ν = 1, m = 5, and degree is three. The solid 

line provides the true value, dashed line represents the average estimated value, and the 

dotted lines indicate the 2.5% and 97.5% quantiles, of the point-wise estimates.
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Figure 2: 
Average estimated survival functions for CT and TV (stratified by race) obtained using the 

proposed method (solid smooth curves), the univariate/marginal method (dashed lines), and 

the Turnbull estimator (step functions).
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Table 1:

Simulation results summarizing the estimates of the regression coefficients obtained from the proposed, 

univariate, and marginal methods, when ν = 1, m = 5, and degree is three. This summary include the average 

of the 500 point estimates minus the true value (Bias), the sample standard deviation of the 500 point estimates 

(SD), the average of the estimated standard errors (ESE), the median of the estimated standard errors (mdSE) 

for the marginal approach only, and empirical coverage probabilities associated with 95% confidence intervals 

for the regression coefficients (CP95).

Bivariate EM Univariate method Marginal method

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE mdSE CP95

β11 = −0.5 −0.04 0.18 0.18 0.94 −0.14 0.22 0.21 0.87 −0.14 0.22 0.87 0.23 1.00

β12 = −0.5 −0.05 0.19 0.18 0.93 −0.14 0.23 0.22 0.90 −0.14 0.23 0.39 0.22 1.00

β21 = −0.5 −0.04 0.17 0.18 0.96 −0.13 0.22 0.22 0.91 −0.13 0.22 0.34 0.23 0.99

β22 = −0.5 −0.03 0.18 0.18 0.94 −0.12 0.22 0.22 0.92 −0.12 0.22 0.24 0.23 0.94

β11 = −0.5 −0.04 0.18 0.18 0.95 −0.14 0.22 0.23 0.91 −0.14 0.22 0.46 0.24 1.00

β12 = 0.0 −0.01 0.19 0.18 0.95 −0.01 0.23 0.22 0.94 −0.01 0.23 0.23 0.22 0.96

β21 = −0.5 −0.04 0.17 0.18 0.96 −0.14 0.21 0.22 0.92 −0.14 0.21 0.38 0.24 1.00

β22 = 0.0 0.01 0.17 0.18 0.96 0.01 0.21 0.22 0.96 0.01 0.21 0.23 0.22 0.97

β11 = −0.5 −0.04 0.18 0.18 0.95 −0.13 0.22 0.21 0.90 −0.13 0.22 0.32 0.23 0.99

β12 = 0.5 0.02 0.19 0.18 0.95 0.10 0.23 0.22 0.92 0.10 0.23 0.23 0.22 0.93

β21 = −0.5 −0.03 0.18 0.18 0.96 −0.13 0.22 0.22 0.90 −0.13 0.22 0.31 0.23 0.98

β22 = 0.5 0.04 0.18 0.18 0.97 0.14 0.22 0.22 0.90 0.14 0.22 0.23 0.23 0.91

β11 = 0.0 −0.01 0.18 0.18 0.95 −0.01 0.21 0.22 0.96 −0.01 0.21 0.34 0.23 1.00

β12 = −0.5 −0.04 0.19 0.18 0.94 −0.13 0.22 0.22 0.90 −0.13 0.22 0.23 0.22 0.93

β21 = 0.0 −0.01 0.17 0.18 0.95 −0.01 0.21 0.22 0.95 −0.01 0.21 0.32 0.23 1.00

β22 = −0.5 −0.03 0.18 0.18 0.96 −0.11 0.21 0.22 0.93 −0.11 0.21 0.24 0.22 0.97

β11 = 0.0 −0.01 0.18 0.18 0.95 −0.01 0.21 0.22 0.96 −0.01 0.21 0.34 0.24 1.00

β12 = 0.0 −0.01 0.19 0.18 0.93 −0.01 0.23 0.22 0.93 −0.01 0.23 0.23 0.22 0.93

β21 = 0.0 0.00 0.17 0.18 0.95 −0.01 0.21 0.22 0.95 −0.01 0.21 0.33 0.24 1.00

β22 = 0.0 0.01 0.17 0.18 0.96 0.01 0.21 0.22 0.96 0.01 0.21 0.23 0.22 0.96

β11 = 0.0 −0.01 0.18 0.18 0.96 −0.01 0.21 0.22 0.95 −0.01 0.21 4.76 0.23 1.00

β12 = 0.5 0.02 0.18 0.18 0.95 0.10 0.22 0.22 0.94 0.10 0.22 1.67 0.22 1.00

β21 = 0.0 −0.01 0.17 0.18 0.97 −0.01 0.21 0.22 0.97 −0.01 0.21 0.40 0.23 1.00

β22 = 0.5 0.04 0.17 0.18 0.96 0.12 0.21 0.22 0.91 0.12 0.21 0.23 0.22 0.93

β11 = 0.5 0.02 0.18 0.18 0.96 0.07 0.19 0.22 0.97 0.07 0.19 0.54 0.23 1.00

β12 = −0.5 −0.04 0.19 0.19 0.94 −0.10 0.21 0.21 0.93 −0.10 0.21 0.24 0.22 0.96

β21 = 0.5 0.03 0.18 0.18 0.96 0.08 0.20 0.22 0.96 0.08 0.20 0.30 0.23 1.00

β22 = −0.5 −0.03 0.18 0.19 0.96 −0.08 0.20 0.21 0.96 −0.08 0.20 0.22 0.22 0.96
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Bivariate EM Univariate method Marginal method

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE mdSE CP95

β11 = 0.5 0.02 0.18 0.18 0.97 0.08 0.20 0.22 0.95 0.08 0.20 0.38 0.24 1.00

β12 = 0.0 −0.01 0.18 0.18 0.95 −0.01 0.22 0.21 0.94 −0.01 0.22 0.22 0.21 0.94

β21 = 0.5 0.03 0.18 0.18 0.95 0.09 0.20 0.22 0.96 0.09 0.20 0.38 0.24 1.00

β22 = 0.0 0.01 0.17 0.18 0.97 0.01 0.20 0.21 0.97 0.01 0.20 0.22 0.22 0.98

β11 = 0.5 0.03 0.18 0.18 0.95 0.08 0.20 0.21 0.95 0.08 0.20 0.30 0.23 1.00

β12 = 0.5 0.02 0.18 0.19 0.96 0.07 0.21 0.21 0.94 0.07 0.21 0.23 0.21 0.96

β21 = 0.5 0.02 0.18 0.18 0.95 0.07 0.21 0.22 0.95 0.07 0.21 0.28 0.23 0.99

β22 = 0.5 0.03 0.18 0.19 0.95 0.09 0.21 0.21 0.94 0.09 0.21 0.22 0.22 0.94
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Table 2:

Simulation results summarizing the estimates of ν obtained from the proposed method, across all considered 

values of ν, when m = 5, and degree is three. This summary include the average of the 500 point estimates 

minus the true value (Bias), the sample standard deviation of the 500 point estimates (SD), the average of the 

estimated standard errors (ESE), and empirical coverage probabilities associated with 95% confidence 

intervals (CP95).

ν = 0.25 ν = 1 ν = 4

Configuration Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β11 = β21 = −0.5
−0.02 0.03 0.03 0.91 −0.07 0.15 0.15 0.94 0.22 0.22 2.09 0.96

β12 = β22 = −0.5

β11 = β21 = −0.5
−0.02 0.03 0.03 0.91 −0.07 0.16 0.15 0.94 0.09 1.77 1.71 0.94

β12 = β22 = 0.0

β11 = β21 = −0.5
−0.02 0.03 0.03 0.92 −0.07 0.16 0.15 0.95 0.16 1.93 1.79 0.95

β12 = β22 = 0.5

β11 = β21 = 0.0
−0.02 0.03 0.03 0.92 −0.07 0.15 0.15 0.94 0.30 4.73 3.24 0.98

β12 = β22 = −0.5

β11 = β21 = 0.0
−0.02 0.03 0.03 0.92 −0.07 0.16 0.15 0.93 0.02 1.94 1.69 0.96

β12 = β22 = 0.0

β11 = β21 = 0.0
−0.02 0.03 0.03 0.93 −0.07 0.16 0.15 0.93 0.22 4.90 3.07 0.98

β12 = β22 = 0.5

β11 = β21 = 0.5
−0.02 0.03 0.03 0.94 −0.06 0.15 0.15 0.95 0.33 4.89 3.48 0.98

β12 = β22 = −0.5

β11 = β21 = 0.5
−0.02 0.03 0.03 0.94 −0.06 0.15 0.15 0.95 0.36 5.41 3.67 0.99

β12 = β22 = 0.0

β11 = β21 = 0.5
−0.02 0.03 0.03 0.94 −0.05 0.16 0.15 0.94 0.30 4.90 3.24 0.98

β12 = β22 = 0.5
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Table 3:

Simulation results summarizing the estimates of the regression coefficients obtained from the proposed 

method, under the settings in the robustness study. This summary include the average of the 500 point 

estimates minus the true value (Bias), the sample standard deviation of the 500 point estimates (SD), the 

average of the estimated standard errors (ESE), and empirical coverage probabilities associated with 95% 

confidence intervals for the regression coefficients (CP95).

frailty model 1 frailty model 2 frailty model 3

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β11 = −0.5 −0.02 0.17 0.18 0.96 −0.05 0.17 0.18 0.96 −0.02 0.14 0.14 0.95

β12 = −0.5 −0.01 0.18 0.18 0.95 −0.03 0.18 0.18 0.95 −0.03 0.14 0.14 0.95

β21 = −0.5 −0.02 0.18 0.18 0.96 −0.05 0.18 0.18 0.94 −0.03 0.14 0.14 0.95

β22 = −0.5 0.00 0.18 0.18 0.95 −0.04 0.19 0.18 0.95 −0.02 0.14 0.14 0.95

β11 = −0.5 −0.01 0.17 0.18 0.95 −0.05 0.17 0.18 0.96 −0.02 0.14 0.14 0.96

β12 = 0.0 0.01 0.17 0.18 0.97 0.02 0.18 0.18 0.95 −0.01 0.13 0.14 0.95

β21 = −0.5 −0.02 0.18 0.18 0.94 −0.05 0.19 0.18 0.95 −0.03 0.14 0.14 0.93

β22 = 0.0 0.01 0.17 0.17 0.96 0.01 0.18 0.18 0.97 0.00 0.13 0.14 0.96

β11 = −0.5 −0.01 0.17 0.18 0.96 −0.05 0.18 0.18 0.94 −0.02 0.13 0.14 0.97

β12 = 0.5 0.02 0.18 0.18 0.96 0.07 0.18 0.18 0.94 0.02 0.14 0.14 0.95

β21 = −0.5 −0.02 0.19 0.18 0.94 −0.04 0.18 0.18 0.96 −0.02 0.15 0.14 0.94

β22 = 0.5 0.02 0.17 0.18 0.95 0.05 0.18 0.18 0.94 0.02 0.14 0.14 0.96

β11 = 0.0 −0.01 0.16 0.17 0.96 0.00 0.17 0.18 0.97 0.01 0.13 0.14 0.96

β12 = −0.5 0.00 0.18 0.18 0.95 −0.03 0.18 0.19 0.95 −0.03 0.14 0.14 0.95

β21 = 0.0 −0.01 0.18 0.17 0.94 0.00 0.18 0.18 0.95 0.00 0.14 0.14 0.95

β22 = −0.5 0.00 0.18 0.18 0.94 −0.03 0.19 0.19 0.95 −0.02 0.13 0.14 0.98

β11 = 0.0 0.00 0.17 0.17 0.95 0.00 0.18 0.18 0.96 0.00 0.13 0.14 0.95

β12 = 0.0 0.01 0.17 0.17 0.95 0.01 0.18 0.18 0.96 0.00 0.14 0.14 0.95

β21 = 0.0 −0.01 0.17 0.17 0.95 0.01 0.19 0.18 0.96 0.00 0.14 0.14 0.95

β22 = 0.0 0.01 0.17 0.17 0.95 0.01 0.18 0.18 0.95 0.01 0.14 0.14 0.95

β11 = 0.0 0.00 0.16 0.17 0.95 0.00 0.18 0.18 0.95 0.01 0.13 0.14 0.96

β12 = 0.5 0.02 0.17 0.18 0.96 0.06 0.19 0.19 0.94 0.02 0.14 0.14 0.96

β21 = 0.0 −0.01 0.18 0.17 0.95 0.01 0.19 0.18 0.95 0.00 0.14 0.14 0.94

β22 = 0.5 0.01 0.17 0.18 0.94 0.05 0.19 0.19 0.94 0.03 0.14 0.14 0.94

β11 = 0.5 0.00 0.17 0.17 0.96 0.04 0.18 0.19 0.95 0.03 0.15 0.14 0.94

β12 = −0.5 0.00 0.17 0.18 0.96 −0.02 0.19 0.19 0.95 −0.03 0.14 0.15 0.95

β21 = 0.5 0.00 0.17 0.17 0.95 0.04 0.19 0.19 0.94 0.03 0.15 0.14 0.95

β22 = −0.5 0.00 0.18 0.18 0.95 −0.03 0.19 0.19 0.95 −0.03 0.14 0.15 0.96
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frailty model 1 frailty model 2 frailty model 3

Parameter Bias SD ESE CP95 Bias SD ESE CP95 Bias SD ESE CP95

β11 = 0.5 0.00 0.17 0.17 0.96 0.04 0.18 0.19 0.96 0.03 0.15 0.14 0.94

β12 = 0.0 0.01 0.17 0.17 0.96 0.02 0.18 0.19 0.96 0.00 0.14 0.14 0.96

β21 = 0.5 −0.01 0.17 0.17 0.95 0.04 0.19 0.19 0.94 0.03 0.14 0.14 0.95

β22 = 0.0 0.00 0.17 0.17 0.94 0.01 0.18 0.19 0.97 0.00 0.14 0.14 0.96

β11 = 0.5 0.00 0.17 0.17 0.96 0.05 0.19 0.19 0.94 0.03 0.14 0.14 0.94

β12 = 0.5 0.01 0.17 0.18 0.96 0.06 0.19 0.19 0.94 0.02 0.14 0.15 0.96

β21 = 0.5 −0.01 0.18 0.17 0.95 0.04 0.19 0.19 0.95 0.03 0.15 0.14 0.93

β22 = 0.5 0.02 0.17 0.18 0.95 0.04 0.19 0.19 0.94 0.03 0.14 0.15 0.95
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Table 4:

STI data analysis: Estimated regression coefficients, estimated standard errors (ESE), and p-values obtained by 

the proposed, univariate, and the marginal methods.

Bivariate EM Univariate method Marginal method

Covariate Estimate ESE p-value Estimate ESE p-value Estimate ESE p-value

CT

No.of Partners (x1) 0.1020 0.0322 0.0015 0.0982 0.0317 0.0019 0.0982 0.0532 0.0643

Age at first coitus (x2) 0.1587 0.0686 0.0209 0.1646 0.0991 0.0969 0.1646 0.2319 0.4777

Race (x3) 0.7043 0.2757 0.0108 0.6917 0.2996 0.0209 0.6917 0.4739 0.1443

TV

No.of Partners (x1) 0.0483 0.0259 0.0629 0.0689 0.0508 0.1738 0.0689 0.0499 0.1676

Age at first coitus (x2) −0.0299 0.0703 0.6672 −0.0067 0.0458 0.8808 −0.0067 0.1076 0.9522

Race (x3) 1.4605 0.4879 0.0028 2.7947 0.6705 <0.0001 2.7947 0.9157 0.0023
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