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Abstract

The purpose of review: Mobilized peripheral blood is the predominant source of stem and 

progenitor cells for hematologic transplantation. Successful transplant requires sufficient stem 

cells of high enough quality to recapitulate lifelong hematopoiesis, but in some patients and 

normal donors, reaching critical threshold stem cell numbers are difficult to achieve. Novel 

strategies, particularly those offering rapid mobilization and reduced costs, remains an area of 

interest.

This review summarizes critical scientific underpinnings in understanding the process of stem cell 

mobilization, with a focus on new or improved strategies for their efficient collection and 

engraftment.

Recent findings: Studies are described that provide new insights into the complexity of stem 

cell mobilization. Agents that target new pathways such HSC egress, identify strategies to collect 

more potent competing HSC and new methods to optimize stem cell collection and engraftment 

are being evaluated.

Summary: Agents and more effective strategies that directly address the current shortcomings of 

hematopoietic stem cell mobilization and transplantation and offer the potential to facilitate 

collection and expand use of mobilized stem cells have been identified.
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Introduction

Hematopoietic cell transplantation (HCT) has been used for over 50 years to successfully 

treat hematologic disease. The use of autologous and allogeneic hematopoietic stem cells 

(HSC) for HCT has expanded beyond hematological malignancies and bone marrow failure 

syndromes to non-malignant hematologic disorders and immunological diseases. With the 

reemergence of HSC based gene therapy strategies and the use of less myelotoxic 
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preparative regimens HCT is positioned to expand even further. Successful transplantation 

requires HSC in sufficient quantity and quality to recapitulate lifelong hematopoiesis. There 

are three potential sources of HSC for clinical utility; bone marrow, mobilized peripheral 

blood and umbilical cord blood [see [1] for a historical perspective]. Each source varies in 

cellular characteristics with potential advantages and disadvantages for clinical use.

Currently, the predominant source of HSC for transplant is peripheral blood collected by 

apheresis after a multi-day regimen of granulocyte colony-stimulating factor (G-CSF), a 

process termed peripheral blood stem cell mobilization (PBSCM), [2;3].While highly 

successful, G-CSF regimens can be associated with lifestyle disruptive and stressful 

morbidities [4;5] and in some cases more serious life-threatening toxicities [6]. In high risk 

individuals myocardial infarction and cerebral ischemia can result from the thrombophilic 

effects of G-CSF.

The dose of CD34+ cells infused in a mobilized peripheral blood stem cell transplant 

(PBSCT) is an important predictor of neutrophil and platelet recovery, and serves as a 

biomarker of potential stem cell engraftment. An optimal autologous mobilized PBSC graft 

requires a minimum of 2 ×106 CD34+ cells per kg patient body weight to provide for rapid 

and sustained multilineage engraftment, with 5 ×106 being optimal. For allogeneic 

transplant, a CD34+ cell dose of ~4.5 × 106 per kg is associated with improved survival 

without increased incidence of acute or chronic graft versus host disease. Despite its success 

for most patients, poor mobilization rates as high as 40% are observed [7] and often require 

multiple apheresis, resulting in increased patient stress, added clinical resources, and higher 

costs [8;9].

Recently, the small molecule AMD3100 (plerixafor), a CXCR4 antagonist, shown to 

mobilize alone and with G-CSF [10–12]was clinically validated [13;14] and approved by the 

FDA specifically for use in combination with G-CSF for patients who fail to mobilize a 

minimum CD34+ cell graft using G-CSF alone. However, addition of plerixafor to the 

multiday G-CSF regimen adds significant cost and has restricted its universal use. Based on 

the potential benefit of a single day mobilization and apheresis procedure, administration of 

plerixafor as a standalone agent has been explored clinically, however the level of 

mobilization was not clinically effective, being significantly lower than G-CSF [15–17]. 

Moreover, a significant number of donors fail to mobilize sufficient cells even after multiple 

apheresis sessions or dose escalation and infusion [17]. Thus, the development of novel 

alternative strategies, particularly those that offer rapid mobilization and reduced costs 

remains an area of interest. Better understanding of mechanisms of mobilization may lead to 

more effective strategies and is an area of significant investigation.

Paradigmatic mobilization mechanisms?

Mechanisms underlying the process of HSPC mobilization have been studied for several 

decades but still remain unclear. What is clear is that G-CSF does not mobilize 

hematopoietic stem and progenitor cells (HSPC) by directly acting on them. This is 

supported by pharmacokinetic studies that indicate a two compartment model. Since HSPC 

are held within supportive and regulatory marrow niches through interactions with stromal 
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cells, mechanism studies logically focused on the hematopoietic niche. Early studies 

demonstrated a need for neutrophils for mobilization with G-CSF or the combination of G-

CSF plus the chemokine GROβ [18;19] and a dramatic reduction in concentration of the 

chemotactic chemokine stromal cell derived factor-1 (SDF-1/CXCL12) in bone marrow 

associated with increased marrow proteases [20–22]. This led to the hypothesis of protease 

mediated changes in retention mechanisms and alteration of SDF-1 gradient in favor of 

migration of untethered cells to the periphery as the primary mechanism of G-CSF-induced 

PBSC mobilization Several proteases including neutrophil elastase, cathepsin G, matrix 

metalloproteases and plasmin are increased and the endogenous protease inhibitors serpin 

A1 and A3 are reduced in marrow after mobilization by G-CSF. Later, proteases were shown 

to cleave other HSPC retention factors including integrins and c-kit. Despite the clear 

evidence in favor of proteases and proteolysis of retention mechanisms as a potentially 

important and perhaps common mechanism in HSPC mobilization, at least by G-CSF, the 

identity of the specific proteases involved and their targets remain poorly defined. 

Conflicting data on the role of individual proteases has come primarily from studies using 

knockout mice and selective enzyme inhibitors, but these may result from inherent 

redundancy in the models used [23–25]. Overall, findings support that G-CSF administration 

results in a highly proteolytic marrow environment and a role for proteases that interfere 

with the SDF1/CXCR4 and other retention axes. Exactly which protease(s) is involved, 

whether disruption of these pathways is necessary in all settings and how this facilitates 

transit of HSPC out of marrow is not clear.

The SDF-1/CXCR4 axis has been the most widely studied and best characterized retention 

pathway implicated in HSPC mobilization and plays a central common role in a number of 

mobilization strategies, e.g., G-CSF, Flt-3 ligand, SCF. This led to the development of 

plerixafor, a CXCR4 antagonist, for clinical use in patients who mobilize poorly to G-CSF. 

Following on from plerixafor, additional CXCR4 antagonists, including POL636 [26–28], 

BKT140 [29;30], LY2510924 [31–33], TG-0054 [34], and ALT-1188 [35] are in preclinical 

and/or clinical development, although what their benefit above plerixafor might be is yet to 

be determined. NOX-A12 an anti-SDF-1 Spiegelmer, a first in class mirror-image 

oligonucleotide inhibitor of SDF-1 mobilizes HSPC [36]. In addition, anti CXCR4 

nanobodies have also been shown to mobilize HSPC [37]. These agents have the potential to 

replace G-CSF or improve current G-CSF based mobilization strategies. Their potential for 

routine clinical use remains to be determined.

The bioactive phospholipid sphingosine-1-phospahate (S1P) [38] and the complement 

cascade [39] have been implicated in HSPC mobilization. Proteins involved in niche 

interactions can be cleaved by C5-mediated proteolysis in bone marrow and membrane 

attack complex (MAC)-mediated increase in S1P levels favoring migration to the periphery. 

Mobilization studies in mice deficient in sphingosine kinase 2 support a role for plasma S1P 

in HSPC egress [40]. Moreover, administration of a S1P agonist prior to AMD3100 

enhanced mobilization was further increased by G-CSF, Interestingly S1P agonism was 

unable to increase mobilization alone or with G-CSF, pointing to a critical role of CXCR4 

antagonism for mobilization in this setting [41]. This enforces a central role for the SDF-1/

CXCR4 axis in the process of mobilization.
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Integrins are transmembrane glycoproteins that mediate cell-cell/matrix interactions. The 

α4β1 integrin VLA4 and counter ligand VCAM-1 pair serve as a HSPC retention 

mechanism. Interruption of this axis by antibodies or genetic manipulation leads to HSPC 

mobilization (see [42]). A selective VLA4 inhibitor BIO5192 has been developed and shown 

to mobilize HSPC and in combination with G-CSF and plerixafor [43]. However, it is 

unclear whether this mobilization strategy is being developed and or if combinations of these 

agents for mobilization is economically efficient and viable.

A number of natural and synthetic polysaccharides are able to mobilize HSPC, including 

sulfated polysaccharides and modified glycosaminoglycans (reviewed in [44]). Of particular 

note, the synthetic octasaccharide EP80031 mobilizes HSPC alone and in combination with 

G-CSF and/or AMD3100 [45] and uridine diphosphate glucose (UDP-Glc) mobilizes high 

engrafting HSC when used in combination with G-CSF [46]. Advances in oligosaccharide 

synthesis and development of more potent compounds may lead to therapeutic utility of this 

class of compounds.

Proteasome inhibitors have been shown to be particularly effective in the treatment of 

patients with Multiple Myeloma (MM). In preclinical studies, combining the proteasome 

inhibitor bortezomib with G-CSF or AMD3100 was more effective in mobilizing HSPC than 

either agent alone. In a recent phase II trial, combination of bortezomib with 

clyclophosphamide and G-CSF resulted in enhanced CD34+ cell yield allowing 85% of MM 

patients to mobilize a sufficient PBSC graft in one apheresis [47].

Prostaglandin E2 (PGE2) signaling through its EP4 receptor has been shown to enforce 

retention of HSPC in bone marrow, and inhibition of PGE2 synthesis has been linked to 

HSPC mobilization alone and in combination with G-CSF. In particular, the non-steroidal 

anti-inflammatory drug (NSAID) meloxicam has been shown to mobilize HSPC in mice, 

monkeys and man [48]. Moreover, the meloxicam mobilized graft led to faster neutrophil 

and platelet recovery compared to a graft mobilized without NSAID. Since NSAID 

enhanced G-CSF mobilization occurred in CXCR4 knockout mice, it appears to be 

independent of the changes in the SDF-1/CXCR4 axis induced by G-CSF [48]. In a single 

center clinical study, addition of meloxicam to chemotherapy/G-CSF mobilization in poorly 

mobilizing patients with MM, increased peripheral hematopoietic CD34+ cell levels and 

reduced the need for plerixafor rescue, and significantly lowering the overall mobilization 

costs [49].

It has been known for some time that stresses such as exercise and ACTH can mobilize HPC 

[50]. Recently, a link was made between neurotransmitters and osteoblasts, cells known to 

support HSPC retention and to be reduced in activity following administration of G-CSF, 

and egress of HSPC [51]. Osteoblasts do not express G-CSF receptors, rather these receptors 

are expressed on sympathetic neurons that innervate bone marrow. While G-CSF 

administration does not increase norepinephrine, it does prevent its reuptake leading to 

higher tissue level [52]. Mobilization in mice occurs following norepinephrine 

administration where it binds to stromal cells resulting in reduction in niche retention 

mechanisms, including SDF-1, SCF and VCAM [51;53;54]. The potential role of adrenergic 

receptor agonists as clinical mobilizers remains to be tested.
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New experimental pathways

The pathways described above serve to place the state of the field in perspective. It is not our 

intent to exhaustively review the field of peripheral blood stem cell mobilization or to 

exhaustively present the numerous pathways, mechanisms and agents that have shown 

activity to mobilize hematopoietic stem and/or progenitor cells; these have been recently 

extensively reviewed in several excellent publications [55–59]. Rather, we will discuss 

several new perhaps non paradigmatic experimental pathways that may lead to new or 

improved strategies for HSPC mobilization.

Neuropeptide Y

One protease of interest not discussed above is dipeptidylypeptidase 4 (DPP4/CD26), a 

serine exopeptidase that cleaves N-terminal dipeptides with alanine or proline in the 

penultimate position. DPP4 exist both as a membrane bound protease as well as in soluble 

form. Reduced mobilization response to G-CSF is observed in CD26 knockout mice or mice 

treated with a selective pharmacologic DPP4 inhibitor [60;61]. Since DPP4 is expressed on 

HSPC and can cleave and inactivate SDF-1, and as described, reduced marrow SDF-1 is a 

hallmark observed after administration of G-CSF, it was hypothesized that cleavage of 

SDF-1 by CD26 on HSPC plays an essential role in HPC trafficking, likely through cleavage 

of SDF-1 thereby reducing bone marrow retention [62]. However, evidence showing a direct 

association between CD26 and disruption of SDF-1 signaling in vivo during G-CSF 

administration was lacking, as was definitive studies on repopulating HSC.

Recently, proof was provided that mobilization of repopulating HSC by G-CSF is in fact 

reduced by inhibition of DPP4/CD26, however, using chimeric mice created by transplanting 

bone marrow from wild-type or CD26 knockout mice into syngeneic wild-type or CD26 

knockout recipient mice, it was found that HSPC-intrinsic CD26 expression was not 

required for HSPC egress in response to G-CSF but rather mobilization was dependent on 

CD26 expression on stromal cells [63]. Moreover, G-CSF associated degradation of SDF-1 

occurred equally in wild-type and CD26 knockout mice or mice treated with a DPP4 

enzyme inhibitor, as determined by MASS Spectrometry. Following G-CSF administration 

CD26 was only increased on a subpopulation of sinusoidal endothelial cells (EC) that form 

the mechanical barrier between the peripheral blood and marrow and regulate hematopoietic 

trafficking [64]. Since HSPC must transmigrate across the EC barrier to enter the peripheral 

circulation whether EC CD26 regulated HSPC egress was evaluated. In monolayer EC 

transmigration models, G-CSF increased EC CD26 expression and activity leading to 

enhanced HSPC transmigration, but blocking DPP4 activity prevented transmigration.

Since optimal mobilization was dependent on CD26 but not mediated through cleavage of 

SDF-1, protein databases were searched for proteins involved in leukocyte trafficking and 

possessing a putative CD26 cleavage site. This search identified the neurotransmitter 

neuropeptide-Y (NPY), a ligand with cognate receptors on marrow stromal cells including 

EC and which has been reported to regulate immune cell and bone homeostasis and be 

produced by both nerve fibers and endothelium[65–68]. Mass spectrometry confirmed that 

CD26 cleaved full length NPY into a NPY3–36 truncated form. NPY interacts with several 

G-protein coupled receptors (NPYR1–5), preferentially binding NPYR1, while NPY3–36 
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preferentially binds NPYR2 and NPYR5. Each of these receptors was found to be expressed 

by sinusoidal EC [63]. In the monolayer EC transmigration model, HSPC transmigration 

that is blocked by inhibiting DPP4 activity was reversed by addition of NPY3–36. 

Administration of NPY3–36 restored normal HSPC mobilization in CD26 knockout mice or 

mice treated with a DPP4 inhibitor, and this restoration of response was blocked by selective 

antagonists of the NPY2 and NPY5 receptors. Mice genetically deficient in NPY also 

showed poor mobilization to G-CSF that could be restored by administration of NPY3–36. 

Since NPY receptors are known to regulate vascular integrity, bone marrow sinusoidal 

permeability was evaluated. Using live animal imaging, G-CSF enhanced sinusoidal 

permeability that could be blocked by a DPP4 inhibitor that was reversed by NPY3–36. 

Truncated NPY augmented endothelial barrier permeability by downregulating adherence 

junction molecules VE-cadherin and CD31 that widened the gap between vascular ECs. This 

resulted in greater HSPC transmigration.

These studies provide new insights into the complexity of stem cell mobilization. Alteration 

of retention axes represent only one part of the mobilization process but activation of 

additional steps are required for optimal activity. These studies now show that ECs act as 

gatekeepers regulating HSPC egress and that enzymatic regulation of NPY by CD26 acts as 

the open/close signal. The ability to target NPY receptors with ligands and antagonists in 

vivo make them an attractive new target for regulating HSPC trafficking. Treatment of mice 

with NPY3–36 but not full length NPY significantly enhanced HSPC mobilization by 

AMD3100 which mobilizes independently of CD26 [63], supporting the concept of 

regulation of vascular permeability as a common feature associated with HSPC marrow 

egress and a potential broadly applicable strategy for HSPC mobilization.

GROβ plus AMD3100

With the goal of developing a safe, rapid single day mobilization regimen, combination 

mobilization with the CXCR4 antagonist AMD3100/plerixafor and the CXCR2 ligand 

GROβ, previously shown to mobilize HSPC in mice and rhesus monkeys [18;69;70] and 

recently also in man [70] was explored. While the CXCR4 signaling axis has been a focus of 

mechanism of HSPC mobilization, particularly associated with the action of G-CSF the 

chemokine ligands of the CXCR2 receptor, notably GROβ and IL8, induce rapid HSPC 

mobilization. The mechanism of action of these chemokines has not been linked to the 

SDF-1/CXCR4 axis, but instead to metalloprotease-9 (MMP-9), which has the potential to 

nonselectively degrade many types of cell-stromal-matrix interactions. Genetic models and 

antibody neutralization studies indicate that rapid mobilization by these ligands is dependent 

on MMP-9 [18;69;71] mediated through the CXCR2 receptor expressed on neutrophils but 

not expressed on HSPC.

Single combined injection of GROβ plus AMD3100 mobilized more HSPC in 15 minutes 

than the number of HSPC mobilized by G-CSF in a 4 day regimen in mice [70]. Extensive 

biochemical, molecular and genetic evidence all confirmed crosstalk between these 

neutrophil receptors. Stimulation of release of MMP-9 from neutrophil granules through 

stimulation of CXCR2 by GROβ was greatly enhanced by antagonizing CXCR4 receptors 

on the same cells. These studies also identified a negative signaling pathway as a result of 
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antagonism of the CXCR4 receptor, at least on the MMP-9 protease. In this regard it is 

possible that the degradation of SDF-1 observed during G-CSF based regimens may release 

this negative signal as well, allowing increased MMP-9 release that contributes to 

mobilization. The rapid and robust kinetics of GROβ plus AMD3100 mobilization was not 

associated with the histological changes commonly observed following G-CSF mobilization, 

e.g., osteolineage cell flattening, reduction of adhesion and chemoattractant molecules, and 

localization of accessory cell populations. When intra vital microscopy was applied, there 

was an increase in vascular permeability with the GROβ plus AMD3100 combination 

mobilization within 5 minutes. Importantly, this increased vascular permeability was 

completely blocked if mice were treated with an anti-MMP-9 antibody. On histological 

examination of marrow sections increased nucleated cells within the sinusoid lumens could 

also be seen as early as 5 minutes. These findings strongly suggest an effect of MMP-9 on 

EC barrier integrity. It remains to be determined how this is accomplished.

Functional comparison of the hematopoietic grafts mobilized by GROβ plus AMD3100 

versus G-CSF in transplant studies were quite revealing. The GROβ plus AMD3100 

combination mobilized a higher engrafting and competitive HSC population than G-CSF. 

While both GROβ [72] and AMD3100 [10] alone have shown enhanced engraftment 

compared to G-CSF, these studies only compared whole peripheral blood mononuclear 

populations and although suggestive are not definitive assessments of HSC function and 

could be due solely to a graft containing greater numbers of HSC. However, in studies 

comparing HSC number in the GROβ plus AMD3100 versus G-CSF mobilized grants, the 

GROβ plus AMD3100 graft actually contained fewer phenotypically define HSC. 

Competitive transplants using highly purified HSC from mice mobilized with GROβ plus 

AMD3100 or G-CSF and transplanted with the exact same number of HSC showed the HSC 

from GROβ plus AMD3100 mobilized mice to be twice as competitive as those from mice 

mobilized with G-CSF, and indicate that GROβ plus AMD3100 mobilizes a distinct highly 

engraftable HSC population (heHSC) with superior competitiveness [70]. RNA sequencing 

of these heHSC indicated that they had a distinct transcriptome compared to HSC mobilized 

by G-CSF. Intriguingly, in gene set enrichment analysis, these cells showed a transcriptome 

that mirrors young fetal liver HSC.

Other chemokines/chemokine pathways have been explored as HSPC mobilizers. A genetic 

variant BB10010 of the chemokine macrophage inflammatory protein-1 (MIP-1) mobilized 

HPC in mice but was without activity in patients [73]. A rationally designed SDF-1 analog 

that downregulates CXCR4 rapidly mobilized neutrophils and HPC when used alone and 

synergized with G-CSF [74;75], but did not mobilize HSC in mice [76]. In addition, an 

alternate ligand of the CXCR2 receptor GROγ had no activity to mobilize HSPC [76]. 

Given that plerixafor (AMD3100) is an approved drug and GROβ has already been 

administered in man it is expected that clinical testing of combination mobilization with 

GROβ plus AMD3100 should be forthcoming. Both compounds have shown the same 

pattern of mobilizing fewer HSPC than G-CSF as standalone mobilizers in both mice and 

man. Since synergistic mobilization of both HPC and repopulating HSC by GROβ plus 

AMD3100 is seen in the mouse model, this suggests a similar effect will be seen in man.
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In terms of quality of mobilized cells, one wonders how the HSC and HPC are organized 

within the marrow with regards to their capacity to be mobilized. It is known that there is a 

large store of HPC within the marrow [77], many more than are likely needed in non-

stressed conditions, and this may also apply to HSC. There is also a large reserve of marrow 

polymorphonuclear neutrophils (PMN), that can be characterized as younger or older PMN 

depending on the timing of their production, such that the older PMN, those which are 

produced earlier are the PMN that are first released into the blood [78]. A question is if this 

concept of first in the marrow (e.g. produced) versus first out to the blood for PMN, also 

may apply to the marrow stores of HSC and/or HPC when these cells are mobilized. If such 

a first-in, first-out scenario applies to HSC/HPC are these kinetics different for the different 

HSPC mobilizing procedures, and is the combination of GRO-β plus AMD3100/Plerixafor 

that appears to mobilize a more potent population of competing HSC reflecting this kinetic 

hierarchy.

Optimal collections of HSC

The optimal collection of mouse BM and human cord blood HSC has been underestimated 

[79;80]. Oxygen is an important factor in the stem cell microenvironment. Upon immediate 

collection of these cells in atmospheric (ambient) air levels of ~21% O2, there is an induced 

differentiation of the HSC to HPC. This is due to the ambient air induced production of 

reactive oxygen species (ROS) that involves a p53-mitochondrial permeability transition 

pore opening-cyclophilin D axis, and also involves hypoxia inducing factor 1-α and the 

hypoxamir miR210. If these cells are instead collected and processed at much lower oxygen 

levels of hypoxia (~3% O2) or at ambient oxygen levels but in the presence of cyclosporine 

A [79], or with combinations of anti-oxidants and/or epigenetic enzyme inhibitors [81], one 

can collect significantly more HSC than if the cells were collected/processed as usually done 

in ambient air. This increase in collected HSC is at the expense of HPC, but these hypoxia 

collected cells are potent engrafting cells. Whether such procedures will enhance the actual 

numbers of HSC collected after peripheral blood mobilization especially for patients that do 

not mobilize well, remains to be determined as does the engrafting capabilities of these 

increased numbers of mobilized HSC. Such studies are underway.

Summary

The need for more effective mobilization strategies in hard to mobilize patients, to reduce 

resources and costs of mobilization regimens, and to reduce patient fear of pain and 

inconvenience of multiday regimens, lie at the heart of current studies in understanding and 

targeting mechanisms of HSPC mobilization. Targeting the gateway to HSPC release with 

agonists of the NPY receptors on EC, rapid mobilization of high engrafting HSC by the 

combination of GROβ and plerixafor and utilization of agents that mitigate oxygen shock 

are new strategies that can be used alone and in combination or in combination with other 

procedures to acquire more HSC or better engrafting HSC for transplant.

The benefit of rapid mobilization with safe and standalone inexpensive agents, and efficacy 

in hard to mobilize populations is well recognized and new compounds and strategies in 

development may ultimately address these issues. Strategies that can enhance HSPC homing 
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and engraftment and mobilize a hematopoietic graft with enhanced engraftment capabilities 

may reduce the need to attain higher numbers of HSPC.

Several approaches have been taken to enhance homing/engraftment of cord blood HSPC 

including short term exposure of the grafts to inhibitors of DPP4 [82;83], pulsing with 

prostaglandin E2 [84;85], glucocorticoids [86], inhibiting HDACs [87] or hyperthermia 

treatment [88] and some have been successful in clinical testing [89] as has been treatment 

of recipients of single cord HCT with the DPP4 inhibitor Januvia® [90;91]. Enhancing 

homing and engraftment of mobilized hematopoietic grafts has not been extensively studied. 

However in a recent study, using mobilized PBSC, pulse exposure to PGE2 enhanced 

homing/engraftment of transduced HSC in patients undergoing gene therapy [92]. Given the 

strategies outlined above it will be interesting to see how effective and how far these 

strategies can push the concept of minimal cells numbers for transplant and expand the use 

of PBSCT particularly in the area of gene therapy where transduction protocols adversely 

affect HSC homing and engraftment.

It should be noted that mobilization procedures may also be useful in additional contexts. 

AMD3100 has been shown to ameliorate cigarette smoke induced emphysema-like 

manifestations in mice [93] and use of G-CSF plus AMD3100 in canines with x-linked 

severe combined immunodeficiency disease (SCID-X1) has enhanced in vivo gene therapy 

approaches to treat SCID-X1 [94]. Thus, more mechanistic insight into mobilization 

processes may be of relevance to more than just that for use of HSPC for HCT.
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