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Philani Brian Mpofu

STATISTICAL METHODS FOR DEALING WITH OUTCOME

MISCLASSIFICATION IN STUDIES WITH COMPETING RISKS SURVIVAL

OUTCOMES

In studies with competing risks outcomes, misidentifying the event-type responsible

for the observed failure is, by definition, an act of misclassification. Several authors have

established that such misclassification can bias competing risks statistical analyses, and have

proposed statistical remedies to aid correct modeling. Generally, these rely on adjusting

the estimation process using information about outcome misclassification, but invariably

assume that outcome misclassification is non-differential among study subjects regardless

of their individual characteristics. In addition, current methods tend to adjust for the

misclassification within a semi-parametric framework of modeling competing risks data.

Building on the existing literature, in this dissertation, we explore the parametric modeling

of competing risks data in the presence of outcome misclassification, be it differential or

non-differential. Specifically, we develop parametric pseudo-likelihood-based approaches

for modeling cause-specific hazards while adjusting for misclassification information that is

obtained either through data internal or external to the current study (respectively, internal

or external-validation sampling). Data from either type of validation sampling are used

to model predictive values or misclassification probabilities, which, in turn, are used to

adjust the cause-specific hazard models. We show that the resulting pseudo-likelihood

estimates are consistent and asymptotically normal, and verify these theoretical properties

using simulation studies. Lastly, we illustrate the proposed methods using data from a

study involving people living with HIV/AIDS (PLWH)in the East-African consortium of the

vii



International Epidemiologic Databases for the Evaluation of HIV/AIDS (IeDEA EA). In

this example, death is frequently misclassified as disengagement from care as many deaths

go unreported to health facilities caring for these patients. In this application, we model

the cause-specific hazards of death and disengagement from care among PLWH after they

initiate anti-retroviral treatment, while adjusting for death misclassification.

Constantin Yiannoutsos, Ph.D., Co-Chair

Giorgos Bakoyannis, Ph.D., Co-Chair
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CHAPTER 1

Translating the Research Aim to a Statistical Aim

The East-African International Epidemiologic Databases to Evaluate HIV/AIDS (IeDEA

EA) is data consortium is funded by the US National Institutes of Health for the purpose

of “collecting, merging, harmonizing, sharing and analyzing” data from people living with

HIV/AIDS (PLWH) in East Africa (Web Page 2019). The countries that are part of this

data consortium include Kenya, Uganda and Tanzania.

One goal for treatment programs that contribute to IeDEA EA is to retain PLWH in

HIV care so as to reduce HIV-related mortality. Part of this mission entails understanding

the risk factors of death and disengagement from care among patients who receive HIV care.

Clarity on the risk factors can help modify the treatment programs in ways that reduce

attrition from care and death among HIV patients (Schafer and Graham 2002; Bakoyannis

and Yiannoutsos 2015).

The study of the risks factors of death and disengagement from care requires statistical

methods within competing-risks survival analysis. Namely, the modeling of cause-specific

hazards. To see why this is case, I will provide the reader with a gentle and general

introduction to competing risks survival analysis. The narrative will also describe some of

the contextual challenges for HIV treatment programs that render standard competing risks

methodology insufficient for addressing the modeling problems at hand.

1



1.1 An Introduction to Competing-risks Survival Analysis

Competing risks survival analysis is a branch of time-to-event analysis wherein an individual

(study unit) can fail from any one event that is within a set of mutually-exclusive competing

events (Kalbfleisch and Prentice 2011). Of interest is the time to the first occurring event-

type. For example, in a mortality study where interest lies in the time to death due either

cancer or heart disease, the causes of death are considered to be competing risks. Observing

death due to cancer precludes us from observing death due to heart disease, and vice versa.

In the language of stochastic processes, a competing-risks system can be viewed as

the simplest form of a multi-state process wherein the initial state of the process is the only

transient state, and all the other states, corresponding to competing events, are absorbing

states(Aalen, Borgan, and Gjessing 2008). Such a process can be visualized as shown in

Figure 1.1.

0Initial state

1 Event of Interest

2 Competing Event

λ1(t)

λ2(t)

Figure 1.1: Multi-state process process representing competing risks

It is also worth noting that non-mutually exclusive events can also be considered

competing risks if the time to event is computed based whichever event comes first (Austin,

Lee, and Fine 2016). Death and disengagement from care in our motivating study, for

example, are not mutually exclusive: Death can still be observed after a patient disengages

from care (the opposite is, however, not true).

2



1.1.1 Definitions of Important quantities

The presence of competing risks requires the definition of quantities/measures beyond those

encountered in standard survival analysis. I will introduce the reader to some of these

quantities with strong emphasis placed on those commonly used in biomedical studies. In

this introduction and subsquent chapters of this dissertation, I shall use the terms event-type,

cause, and cause of failure interchangeably.

Assuming we have a m-cause competing-risks system wherein a subject can fail from

any one of m causes, let the true cause of failure be represented by C ∈ {1, 2, ...,m}. Let U

be the failure time; V be the censoring time, and T be the right-censored failure time, where

T = min(U, V ). Assume that U and V are independent, and that censoring distribution is

independent of the cause of failure. Lastly, let Z be the subject characteristics. For each of

the n subjects, i = 1, 2..., n, we observe independent 3-tuples of the form (Ti, Ci,Zi).

In standard survival analysis, the distribution of failure times is usually specified

using either the hazard function λ(t;Z), the survival function S(t|Z), or the probability

density function f(t|Z) (Kalbfleisch and Prentice 2011). These functions are still relevant in

competing risks survival analysis, provided the competing events are treated as a composite

outcome, with time to event defined as the time to any of the competing events. For such

a composite outcome of competing events, the technical definitions of the aforementioned

(survival analysis) functions stay the same, for example, the hazard function is defined as

shown by Equation 1.1:
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λ(t;Z) = lim
h→0

P [t ≤ T < t+ h|T ≥ t, Z]
h

(1.1)

and the survival function is defined as shown in Equation 1.2:

S(t|Z) = P [T > t|Z] = exp
(
−
∫ t

0
λ(u|Z)du

)
(1.2)

The study the time to event for each of the mutually-exclusive events that comprise

a competing-risks process requires functions including: the cause-specific hazard function,

the (sub) density function, and the cumulative incidence function.

The cause-specific hazard of cause-j at time t is given by Equation 4.2.

λj(t;Z) = lim
h→0

P [t ≤ T ≤ t+ h, J = j|T ≥ t, Z]
h

(1.3)

for j = 1, 2...,m.

Colloquially, λj(t;Z) is defined as the instantaneous rate for failure due to cause j at

time t given the covariate pattern Z, in the presence of other causes of failure (Kalbfleisch

and Prentice 2011). Notice that this definition recognizes that study units live in a world

where they can fail from other causes besides cause j.

If only one cause of failure can occur, the overall hazard as defined by Equation 1.1 is

equal to the sum of the cause-specific hazards associated with the mutually-exclusive events
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that comprise the competing-risks system. That is,

λ(t;Z) =
m∑
j=1

λj(t;Z)

Proof :

λ(t;Z) = lim
h→0

P [t ≤ T < t+ h|T ≥ t, Z]
h

= lim
h→0

P [∪mj=1(t ≤ T < t+ h, J = j)|T ≥ t, Z]
h

, since only one cause of failure can occur

= lim
h→0

∑m
j=1 P [t ≤ T < t+ h, J = j|T ≥ t, Z]

h

=
m∑
j=1

lim
h→0

P [t ≤ T < t+ h, J = j|T ≥ t, Z]
h

=
m∑
j=1

λj(t;Z)

Recalling that, S(t|Z) = exp(−
∫ t
0 λ(u|Z)du), it would follow that under competing

risks, the survival function can also be defined as follows:

S(t|Z) = P [T > t|Z] = exp

− ∫ t

0

m∑
j=1

λj(u|Z)du


According to Kalbfleisch and Prentice, the sub-density function for the time to

event-type j, given Z, is defined as shown by Equation 1.4 (Kalbfleisch and Prentice 2011).

fj(t;Z) = lim
h→0

P [t ≤ T ≤ t+ h, J = j|Z]
h

= λj(t;Z)S(t;Z)

(1.4)
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Proof:

fj(t;Z) = lim
h→0

P [t ≤ T < t+ h, J = j|Z]
h

= lim
h→0

[
P [(t ≤ T < t+ h, J = j) ∩ (T ≥ t)|Z]

h

]
+ lim
h→0

[
P [(t ≤ T < t+ h, J = j) ∩ (T < t)|Z]

h

]
= lim

h→0

P [(t ≤ T < t+ h, J = j) ∩ (T ≥ t)|Z]
h

= lim
h→0

P [t ≤ T < t+ h, J = j|T ≥ t,Z]P [T ≥ t|Z]
h

= lim
h→0

P [t ≤ T < t+ h, J = j|T ≥ t,Z]S(t;Z)
h

= S(t;Z) lim
h→0

P [t ≤ T < t+ h, J = j|T ≥ t,Z]
h

= λj(t;Z)S(t;Z)

Of note is that the sum of the sub-density functions is equal to the overall density for

the time to any event (a composite of the competing events). That is, f(t|Z) =
∑m
j=1 fj(t|Z).

The proof of this relationship is provided below:
m∑
j=1

fj(t|Z) =
m∑
j=1

λj(t|Z)S(t|Z)

= S(t|Z)
m∑
j=1

λj(t|Z)

= S(t|Z)λ(t|Z)

= f(t|Z)

Lastly, the cumulative incidence function for cause-j time t is defined as follows:
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Fj(t;Z) = P [T ≤ t, J = j;Z]

=
∫ t

0
fj(u;Z)du

=
∫ t

0
λj(u;Z)S(u;Z)du

=
∫ t

0
λj(u;Z) exp

− ∫ t

0

m∑
j=1

λj(u;Z)du

 du
(1.5)

For all j ∈ {1, 2, ...,m}, an important constraint is that
∑m
j=1 Fj(t;Z) ≤ 1.

Competing risks functions as presented by Equations 1.3, 1.4 and 1.5 have interpreta-

tions that preserve the fact the event of interest, j, exists in a world where other event-types

are competing with event-type j. Moreover, when defining the competing risks functions, one

need not make assumptions about the inter-relationships among event-types that comprise

the competing risks process.

1.1.2 Competing Risks in Biomedical Studies

In biomedical studies, interest usually lies in modeling cause-specific hazards and cumulative

incidence functions. These quantities nicely align with questions that are encountered in

biomedical studies involving competing events. The cumulative incidence function, for

example, provides an absolute measure of the accumulated risk of failure due a particular

cause, which in turn can be used for making clinical predictions and decisions (Hinchliffe,

Abrams, and Lambert 2013). Cause-specific hazards, on the other hand, are used to identify

the factors that influence the rate of occurrence of a particular event, in the presence of other

competing events (Hinchliffe, Abrams, and Lambert 2013; Austin, Lee, and Fine 2016).
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As already noted, in the motivating study involving PLWH in East Africa, one

research aim is to identify the factors that are associated with the incidence of death and

disengagement from care among patients who initiate anti-retroviral therapy (ART). From

a public health standpoint, it is in the best interests of treatment programs to ensure low

mortality and low attrition among patients who initiate care. In other words, treatment

programs would like for patients to go for as long as possible without disengaging from

care or dying: Death and disengagement from care are undesirable outcomes. In order to

study the time to observing an undesirable outcome, death and disengagement from care are

treated as competing for the status of first undesirable event. From this vantage point, the

research aim can be addressed by modeling the cause-specific hazards of the respective causes

of failure. Under an assumed statistical model, usually this would entail using maximum

likelihood estimation to estimate parameters associated with the cause-specific hazards.

1.1.3 Likelihood

For each of the n subjects, i = 1, 2..., n, we observe (Ti, Ci,Zi), where the observations

are assumed to be independent and identically distributed. The observed cause-of-failure,

Ci, can also be expressed as vector of dummy (binary) random variables by defining the

following:

1. δij = I[Ci = j] to be the indicator that subject i to fail due to cause j

2. δi =
∑m
j=1 δij to be the any-cause failure indicator for subject i,

so that for each subject i we observe, (Ti, δi,Zi).

Given the observed data, under right-censoring, the likelihood is defined as follows:
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L ∝
n∏
i=1

f(ti;Zi)δi [S(ti;Zi)]1−δi

=
n∏
i=1

 m∑
j=1

f(ti, ci = j;Zi)

δi [S(ti;Zi)]1−δi

=
n∏
i=1

 m∏
j=1

fj(ti;Zi)δij
δi [S(ti;Zi)]1−δi

=
n∏
i=1

 m∏
j=1

[λj(ti;Zi)S(ti;Zi)]δij
δi [S(ti;Zi)]1−δi

=
n∏
i=1

 m∏
j=1

λj(ti;Zi)δij
δi S(ti;Zi)

=
n∏
i=1

 m∏
j=1

λj(ti;Zi)δij
 exp

− m∑
j=1

∫ ti

0
λj(u;Zi)du


=

n∏
i=1

 m∏
j=1

λj(ti;Zi)δij exp
[
−
∫ ti

0
λj(u;Zi)du

]
=

m∏
j=1

(
n∏
i=1

λj(ti;Zi)δij exp
[
−
∫ ti

0
λj(u;Zi)du

])

=
m∏
j=1

Lj

(1.6)

From likelihood 1.6, it can be deduced that:

1. The likelihood is a function of the cause-specific hazards, λj .

2. The likelihood factors into separate components for each failure type.

3. Lj is likelihood component corresponding to λj , assuming all events besides cause-j

are treated as censored events.

4. If there are no common parameters among the different causes of failure, then maximum

likelihood estimation can be applied to each of the components of the likelihood

separately.
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For more on the derivation of likelihood 1.6, and the deductions (1-4) above, reader

can refer to (Kalbfleisch and Prentice 2011).

1.1.4 Model Specification

The cause-specific hazards that define likelihood 1.6 can be specified parametrically, semi-

parametrically or non-parametrically. That said, semi-parametric modeling usually prevails

due to the popularity of the Cox proportional hazards model. The Cox model has wide

appeal because it relies on fewer assumptions than parametric models (Nardi and Schemper

2003).

Under the proportional hazards assumption, the cause-specific hazard function for

cause-j is defined as follows:

λj(t;θj ,Z) = λ0j(t) exp
(
ZTθj

)
for j = 1, 2, ...,m, where:

a. λ0j(t) is an arbitrary function that defines the baseline cause-specific hazard for cause-j

at time t.

b. Z is a matrix of covariates that are assumed to explain the cause-specific hazard for

cause-j.

c. θj is a vector of coefficients reflecting the changes in the log hazards for marginal

changes in the covariates.
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1.2 Death Under-reporting in HIV/AIDS Treatment Programs

Thus far, I have noted that IeDEA East Africa is interested in identifying the risk factors

of death and disengagement from care. I also noted these risk factors may be identified by

modeling cause-specific hazards, assuming death and disengagement from care are competing

risks. After this, I introduced the reader to the basics of modeling cause-specific hazards. I

will now present why ordinary statistical methods for modeling cause-specific hazards may

not suffice in IeDEA East Africa.

Treatment programs that contribute data to IeDEA East Africa often face a challenge

of death under-reporting or under-ascertainment (Elvin H Geng et al. 2011; Yiannoutsos

et al. 2008). This death under-reporting is actually a form of outcome misclassification as

some patients who end up being classified as disengaged from care may actually be dead

(Bakoyannis and Yiannoutsos 2015). Such outcome misclassification is problematic as it

may lead to estimation bias and loss of power when performing competing analyses (Van

Rompaye, Jaffar, and Goetghebeur 2012; Hinchliffe, Abrams, and Lambert 2013; Bakoyannis

and Yiannoutsos 2015). We, therefore, need to be wary of death misclassification when

modeling the cause-specific hazards of death and disengagement from care among PLWH

enrolled in IeDEA.

To establish some clarity about the gravity of the problem of outcome misclassification

when modeling cause-specific hazards, let’s take a short detour and explore the problem via

simulations.
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1.2.1 Studying the Effects of Misclassification on Modeling Cause-specific Haz-

ards

Take for example a censoring-free, two-cause competing risks system where subjects are

followed until they fail from either cause-1 or cause-2. The true cause of failure is represented

by C ∈ {1, 2}. Given the possibility of outcome misclassification, we observe C∗ ∈ {1, 2},

where C∗ is not necessarily consistent with the true outcome, C. Outcome misclassification

for this two-cause system is illustrated in Figure 1.2.

0Initial state

C = 1

True event

C = 2

C∗ = 2

Observed event

C∗ = 1

λ1(t)

λ2(t)

Figure 1.2: Illustration of bi-directional outcome misclassification

Assume that the respective cause-specific hazards for cause-1 (C = 1) and cause-2

(C = 2) are defined as follows:

a. λ1(t; θ1, Z) = exp(Zθ1)

b. λ2(t; θ2, Z) = exp(Zθ2)

where Z ∼ N(0, 1), θ1 = 1 and θ2 = −0.5.

In addition, let’s assume that there is uni-directional misclassification, such that

P [C∗ = 1|C = 2] = τ and P [C∗ = 2|C = 1] = 0. Colloquially, this means that some subjects

are observed as having failed from cause-1 when, in fact, they failed from cause-2.
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I varied τ from 0% to 20% in steps of 2%. At each simulation setting (i.e at each

τ), I generated 1000 datasets of sample size 1000. Using these datasets, I modeled the

cause-specific hazard for cause-1, and noted the average estimate: θ̄1 = 1
1000

∑1000
i=1 θ̂1i;

the bias percent of the average estimate: 100 × θ̄1−1
1 %; the asymptotic standard error of

the average estimate: SE
(
θ̄1
)

= 1
1000

∑1000
i=1 SE

(
θ̂1i
)
; the Monte-Carlo standard deviation:√

1
1000−1

∑1000
i=1

(
θ̂1i − θ̄1

)2
; and the 95% coverage probability. The results of the simulation

study were as presented in Table 1.1.

mis_rate truth estimate bias_perc ase mcsd cp
1 0.000 1.000 1.000 0.040 0.056 0.054 95.300
2 2.000 1.000 0.970 2.970 0.055 0.057 89.900
3 4.000 1.000 0.942 5.850 0.055 0.056 79.400
4 6.000 1.000 0.915 8.480 0.054 0.057 62.500
5 8.000 1.000 0.888 11.180 0.054 0.054 45.400
6 10.000 1.000 0.860 13.990 0.053 0.054 23.900
7 12.000 1.000 0.839 16.080 0.052 0.052 13.900
8 14.000 1.000 0.813 18.700 0.052 0.054 5.600
9 16.000 1.000 0.790 20.980 0.051 0.055 3.100
10 18.000 1.000 0.767 23.330 0.051 0.053 1.400
11 20.000 1.000 0.745 25.520 0.050 0.052 0.200

Table 1.1: Results of simulation study examining the the effect of outcome misclassification
on estimation

The simulation illustrates that as the extent of misclassification, among those who

truly failed from cause-2, increases from 0% to 20%, the bias of the point-estimate increases,

and the coverage probability decreases (thereby indicating an increase in the Type-I error

away from the desired 5% level.). The simulation results were graphed as shown in Figure

1.3.
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Figure 1.3: Plots of the simulation results. Panel (a) depicts how the estimates change
as the extent of misclassification increases. Panel (b) shows the change in the bias per-
cent as misclassification increases. Panel (c) shows the change in coverage probability as
misclassification increases.
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1.3 Cause-specific Hazards in the Presence of Misclassification

Since outcome misclassification may lead to incorrect modeling of cause-specific hazards as

shown in Section 1.2.1, the statistical aim has to be modified to align with the contextual

challenges. Although the research aim remains that of identifying the risk factors of death

and disengagement from care, the statistical aim becomes that of correctly modeling cause-

specific hazards in the presence misclassification among the competing events. This statistical

aim is crux of the dissertation, and entails two sequential aspects: First, the quantification

of outcome misclassification, and second, the adjustment of the estimating procedure for

outcome misclassification.

In the fulfilling of the statistical aim, I shall place emphasis on developing statistically-

principled methods that not only align well with the research aim, but are also easy to

understand, implement, and share with research partners such as the UNAIDS. Research

partners typically use mathematical modeling, therefore, I will only explore parametric

modeling solutions. One such solution has been proposed Gravel et. al (2018) for the

purpose of modeling cause-specific hazards in the presence of misclassification. The solution

by Gravel et al. requires a full-likelihood specification, and depends on the availability of an

internal-validation sample. An internal validation sample serves as source of misclassification

information, and is created by re-ascertaining outcomes on a subset of the main-study sample

using a gold-standard approach (R. J. Carroll et al. 2006). Other authors have proposed

methods in the non-parametric realm. For example, Van Rompaye et al. (2012) proposed

adjusting Cox models of cause-specific hazards using misclassification probabilities. The

approach by Van Rompaye et al. (2012) assumes that misclassification probabilities are

known and non-differential. Bakoyannis et al. (2019) proposed specifying the misclassi-

fication problem as a missing cause of failure problem if an internal validation sample is
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available. Ha and Tsodikov (2012), on the other hand, adopted a fully non-parametric for

modeling cause-specific hazards while adjusting for misclassification (Ha and Tsodikov 2012).

The shortcomings in the existing literature will be extensively presented in Chapter 3 of

this dissertation. For now, I will only present basic structures of how I intend to solve

the problem of modeling cause-specific hazards in the presence of misclassification. The

structures presented rely on validation sampling, internal or external, for information on

misclassification.

1.3.1 Internal-validation Based Solution

The outcome-misclassification problem that has been described for IeDEA, ideally, can be

remedied by re-ascertaining the outcomes for everyone deemed disengaged from care. Such

a remedy would result in error-free data, that can then be used to model the cause-specific

hazards of death and disengagement. Although ideal, such as solution is infeasible as it

is expensive to employ, especially for resource-poor treatment programs that are part of

IeDEA East Africa.

For IeDEA, the next best solution is internal validation or double-sampling (Tenenbein

1970; Greenland 1988 Rosner, Spiegelman, and Willett (1990); Spiegelman 2010). This

involves re-ascertaining, through outreach, the vital-status data on a sub-sample of those

initially deemed to be disengaged from care(E. H. Geng et al. 2008; Yiannoutsos et al. 2008;

An et al. 2009). Patient outreach is considered to be a gold-standard outcome ascertainment

approach as it results in more accurate outcome data than the initial outcome-ascertainment

procedure.

To understand the utility of internal validation, such as the one described for IeDEA
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EA, let’s step back and examine the information that is generated through internal validation

or double-sampling. When double-sampling is performed, the resulting validation sample

contains useful information about the concordance or lack thereof among the true and

observed/misclassified outcomes. True outcomes are those ascertained through a gold-

approach, and observed/misclassified outcomes are those ascertained using an error-prone

approach. Using data from the validated sub-sample of the main study sample, at minimum

one can model:

1. Predictive values: pjk(ηk) = P [C = j|C∗ = k,ηk]

2. Misclassification probabilities: πjk(βk) = P [C∗ = j|C = k,βk]

where j, k ∈ {1, 2}.

Predictive values and misclassification probabilities are measures of concordance or

lack thereof between the true and the observed outcomes. The difference between these

quantities is the conditioning or what is assumed to be known. When modeling predictive

values, in this case, the observed outcomes are assumed to known. And when modeling

misclassification probabilities, the true outcomes are assumed to be known. Predictive

values and misclassification probabilities carry the information required to adjust to the

likelihood in a manner that enables correct estimation. Whether to use predictive values or

misclassification probabilities as an adjustment depends on whether one wants to frame the

problem as either a missing-data problem or a misclassification problem.
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1.3.1.1 Framing Problem as a Missing-data Problem

For a two-cause example where the true outcome C ∈ {1, 2} and the observed outcome

C∗ ∈ {1, 2}, when double-sampling is performed, the resulting data takes on a structure

depicted by Table 1.2.

Outcome

Double-Sampled Observed True

Yes 1
1 2

No Missing

Yes 2
2 1

No Missing

Table 1.2: Data structure after double sampling

Table 1.2 also illustrates that double-sampling results in a dataset where some of the

outcome data are missing-by-design. For example, if the 50% double-sampling is performed,

then 50% of the true outcome data will be missing-by-design.

Let Ri = 1 indicate that the true outcome for subject i was observed(in other words,

the subject’s outcome was successfully validated). And also recall that, when modeling

cause-specific hazards, the goal is to maximize a log-likelihood of the form presented in

Equation 1.7.

l(θ) =
m∑
j=1

n∑
i=1

{
δij log λj(ti;θjZi)−

∫ ti

0
λj(u;θjZi)du

}

(1.7)

In Equation 1.7, δij is observable only when R = 1. As a result, the log-likelihood can be

re-written as shown by Equation 1.8.
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l(θ) =
m∑
j=1

n∑
i=1

{
(Riδij + (1−Ri)× δij) log λj(ti;θjZi)−

∫ ti

0
λj(u;θjZi)du

}

(1.8)

Equation 1.8 illustrates that the events from subjects where Ri = 0 are not considered when

modeling cause-specific hazards. That is, subjects who are missing true outcome values are

excluded. Therefore, there is a missing-data problem.

The missing-data problem that has been identified can be solved by recognizing

that in log-likelihood 1.8, δij is linear in the log-likelihood. Such linearity ensures that

consistent estimation can also be performed by replacing missing values of δij by their

conditional expectations. In this case, replacement with E[δj |δ∗,Z] = P [C = j|C∗,Z]–the

predictive values that can be modeled using data from internal-validation sampling as noted

in Section 1.3.1. Before making the aforementioned replacement for missing data, one needs

to deliberate about mechanisms of missingness.

1.3.1.2 Missing data mechanisms

Prior to performing estimation in the presence of missing data, one needs ask why the data

are missing, and whether the missing data have implications to estimation and inference (J.

Carpenter and Kenward 2012). After making sense of why data are missing, one needs to

make assumptions about the random process that results in the missing data (Rubin 1976).

These random processes are also known as missingness mechanisms. Rubin proposed that

missingness mechanisms be classified into 3 groups, namely:

1. Missing completely at random (MCAR)

2. Missing at random (MAR)
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3. Missing not at random (MNAR)

To define the missingness mechanisms in the manner set forth by Rubin, let Ycomp =

(Yobs, Ymiss), where Ycomp represents complete outcome data, Yobs represents observed out-

come data, and Ymiss represents missing outcome data. In addition, let M = 1 indicate that

data are missing, and X represent other observed data.

Data are said to be missing completely at random (MCAR) if:

P [M = 1|Yobs, Ymiss, X] = P [M = 1]

That is, missingness is independent of all observed data. In such a situation, one can ignore

missing data, and proceed with estimation (Rubin 1976; Aalen, Borgan, and Gjessing 2008;

R. J. Little and Rubin 2014).

Data are missing at random (MAR) if missingness is dependent on the observed data

and independent of the missing data, that is:

P [M = 1|Yobs, Ymiss, X] = P [M = 1|Yobs, X]

When one has MAR data, one can still use likelihood-based methods for perform parameter

estimation, provided the parameter that defines the missing data is distinct from the

parameter of interest (Rubin 1976; Schafer and Graham 2002; R. J. Little and Rubin 2014).

Lastly, data are said to be missing not at random (MNAR) if missingness is dependent

on the missing data. That is:

P [M = 1|Yobs, Ymiss, X] 6= P [M = 1|Yobs, X]

In the motivating study involving PLWH in East Africa, it is untenable to assume

that data are MCAR because not everybody chosen for internal validation (outreach) is

available to provide a response. As a result, the missingness assumption is relaxed MAR:

That is, we allow missingness to be explained by observed patient characteristics.
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1.3.1.3 Implications MAR in IeDEA context

Recalling that R = 1 indicates that the true outcome has been observed, it follows that

R = 0 indicates that the true outcome is missing. Given this notation, under a two-cause

competing risks process, the MAR assumption is written as follows,

P [R = 0|C∗ 6= 0, C = j,Z] = P [R = 0|C∗ 6= 0,Z]

for j ∈ {1, 2}. According to (Bakoyannis, Siannis, and Touloumi 2010), such a MAR

assumption implies that:

P [C = j|C∗ > 0, R = 0,Z] = P [C = j|C∗ > 0, R = 1,Z] = P [C = j|C∗ > 0,Z] (1.9)

In words, Equation 1.9 means that the predictive value model from those whose outcomes

were validated is the same as the one for those whose outcomes were not validated. Therefore,

under the MAR assumption, the missing outcome data, in log-likelihood 1.8, can be replaced

by predictive values computed using a predictive-value model derived for those whose

outcome data were validated.

1.3.1.4 Framing the Problem as a Misclassification Problem

The problem of modeling cause-specific hazards in the presence of misclassification can

also be solved by adjusting estimation using misclassification probabilities. The utility of

outcome misclassification probabilities becomes clear when we consider the cause-specific

hazards of the observed/misclassified outcome.

By definition, the cause-specific hazard for observed cause-j is,
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λ∗j (t;Z) = lim
h→0

P (t ≤ T < t+ h,C∗ = j|T ≥ t,Z)
h

(1.10)

The cause-specific hazard as shown by Equation 1.10 can be re-written as follows:

λ∗j (t;Z) = lim
h→0

P (t ≤ T < t+ h,C∗ = j|T ≥ t,Z)
h

= lim
h→0

∑k
i=1 P (t ≤ T < t+ h,C∗ = j, C = i|T ≥ t,Z)

h
, by law of total probability,

= lim
h→0

∑k
i=1 P (t ≤ T < t+ h,C = i|T ≥ t,Z)P (C∗ = j|t ≤ T < t+ h,C = i,Z)

h

=
k∑
i=1

λi(t;Z)P (C∗ = j|T = t, C = i,Z)

For example, in a two-cause setting, where C, C∗ ∈ {1, 2}, the cause-specific hazard

for observed cause-1 given Z is:

λ∗1(t;Z) = λ1(t;Z)P (C∗ = 1|T = t, C = 1,Z) + λ2(t)P (C∗ = 1|T = t, C = 2,Z) .

Colloquially, this means that the observed cause-specific hazard under misclassification is a

linear combination of true cause-specific hazards weighted by the misclassfication probabilities.

These misclassification probabilities can be estimated using the internal-validation sample

as defined in Section 1.3.1.

Subject to outcome misclassification, in the two-cause system, the likelihood is:
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L =
n∏
i=1

f(ti, c∗i ;Zi)

=
n∏
i=1

[f∗j (ti;Zi)]δ
∗
i [S(ti;Zi)]1−δ

∗
i

=
n∏
i=1

[λ∗j (ti;Zi)S∗(ti;Zi)]δ
∗
i [S∗(ti;Zi)]1−δ

∗
i

=
n∏
i=1

[λ∗j (ti;Zi)]δ
∗
i S∗(ti;Zi)

=
n∏
i=1

[λ∗j (ti;Zi)]δ
∗
i exp

− 2∑
j=1

∫ ti

0
λ∗j (u;Zi)du


=

n∏
i=1

[ 2∑
k=1

λk(ti;Zi)P (C∗i = j|Ti = ti, Ci = k,Zi)
]δ∗
i

× exp

− 2∑
j=1

∫ ti

0
λj(u;Zi)du


=

n∏
i=1

[ 2∑
k=1

λk(ti;θk,Zi)P (C∗i = j|Ti = ti, Ci = k,Zi)
]δ∗
ij

×
2∏
j=1

exp
[
−
∫ ti

0
λj(u;θk,Zi)du

]

=
2∏
j=1

n∏
i=1

[ 2∑
k=1

λk(ti;θk,Zi)P (C∗i = j|Ti = ti, Ci = k,Zi)
]δ∗
ij

× exp
[
−
∫ ti

0
λj(u;θk,Zi)du

]

=
2∏
j=1

n∏
i=1

[ 2∑
k=1

λk(ti;θk,Zi)π∗jk(Zi,βk)
]δ∗
ij

× exp
[
−
∫ ti

0
λj(u;θk,Zi)du

]

(1.11)

For a fixed β we can compute estimates of θ through maximum likelihood estimation. In

a real data analysis, β can be estimated using an internal-validation sample such as one

described in Section 1.3.1.

At this point, the question that reader should be asking is that of how we should

be using the internal-validation sample to compute the misclassification probabilities. In

particular, should one ignore the non-validated portion of the sample when estimating

misclassification probabilities? I will not answer this questions here, rather I will devote

Chapter 2 of this dissertation to exploring the question of estimating outcome misclassification
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probabilities when one has a validation sample. I devote a whole chapter because the

problem at hand is not only a statistical problem, but also a problem of resource constraints.

Performing internal-validation/double-sample can be expensive endeavor, as such, data

generated through validation sampling should be used as efficiently as possible.

1.3.2 External-validation Based Solution

In last section, I presented internal-validation/double-sampling as a possible solution of

dealing with the detrimental effects of outcome misclassification in competing risks analyses.

However, I did not touch upon the constraints that may rule out the use internal-validation

or double-sampling. The use of internal-validation/double-sampling can be hindered by

financial constraints. This is especially true for the resource-poor treatment programs that

contribute data to IeDEA East Africa. Validating patient outcomes is expensive as it may

require treatment programs to hire, train and pay additional community-health workers,

and buy or hire transportation to enable health workers to travel to the homes of patients.

Consequently, not all treatment programs can validate patients’ vital-status data.

To deal with the outcome misclassification challenge, treatment programs that do not

have validation sampling may have to rely on misclassification information from treatment

programs with outcome validation. This reliance on misclassification information from

external settings is a form of external validation. Misclassification information is borrowed

from external settings assuming the transportability of misclassification models across different

settings (Justice, Covinsky, and Berlin 1999; Lyles et al. 2011; R. J. Carroll et al. 2006; Wu

et al. 2019). Under transportability, we assume that the misclassification-model coefficients

estimated in an external study, with validation sampling, are the same as the coefficients

in the current study (that has no validation sampling) (Lyles et al. 2011). For treatment
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programs within IeDEA East Africa, the scheme for borrowing misclassification probabilities

across treatment programs is presented in Figure 1.4.

Figure 1.4: External validation scheme for treatment programs within IeDEA East Africa
consortium.

Notice that, although, we can use the validated sample from the external study to

model both predictive values and misclassification probabilities, we only transport misclas-

sification probabilities to the current study. We do not transport predictive value models

to external settings/studies as this requires us to assume that event prevalence is the same

across different settings: Such an assumption is stringent; thus, unlikely to be satisfied in

reality. On the other hand, the transfer of misclassification probabilities from one setting to

another does not require identical prevalences across the different settings.

The last thing that the reader should note is that when one relies on external

studies/settings for outcome misclassification information, the problem of modeling cause-

specific hazards can only be framed as a misclassification problem. In contrast, when the
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information on outcome misclassification is generated internal to the study, via say double

sampling, the problem of modeling cause-specific hazards can be formulated as either a

missing-data problem or a misclassification problem.

1.4 Concluding Remarks

Thus far, I have introduced the reader to competing risks survival analysis, and detriments

of misclassifying competing events to correct estimation and inference. I also presented

how internal-validation sampling can be used as a remedy when faced with challenge of

misclassification in the competing events. Internal-validation sampling is a viable solution as

it is a cost-effective way to generate quantities that are required to adjust competing risks

analyses for misclassification. These quantities include: predictive values and misclassification

probabilities. I showed that, when modeling cause-specific hazards in the presence of

outcome misclassification, augmenting predictive values or misclassification probabilities into

likelihood resulted in likelihood formulations that contained cause-specific hazard parameters

of interest. By deriving these formulations, at minimum, I highlighted likelihood-based

structures for solving the problem of modeling cause-specific hazards in the presence of

outcome misclassification. With IeDEA-EA HIV treatment programs in mind, I will devote

this dissertation to exploring solutions to misclassification based on the theoretical-building

blocks that were highlighted in the introduction.

Moreover, in the introduction, I noted part of the mandate for IeDEA East Africa

is to analyze and share findings from data collected from HIV programs serving East

African countries. Such analysis and data sharing assists in evidence-based planning and

implementation of treatment programs, thereby encouraging the efficient use of scarce

resources. I will, therefore, attempt to frame the statistical solutions in a manner that
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supports IeDEA EA’s public health mandate. The solutions will be presented sequentially

in this dissertation’s chapters. In Chapter 2, I will present a method for estimating

misclassification probabilities in the presence of an internal-validation sample. In Chapter 3,

I will develop a parametric method for modeling cause-specific hazards while adjusting for

misclassification probabilities that will be estimated outside the study-sample of interest.

Finally, in Chapter 4, I will perform a comprehensive data analysis to examine the application

of statistical methods developed in Chapter 2 and Chapter 3. Data for the analysis will

come from, and will be used with permission from IeDEA East Africa. I am hopeful that

the knowledge generated in this work will support the goal of understanding the factors

that influence death and disengagement-from-care in IeDEA East Africa, which in turn may

inform actionable changes to treatment/care programs.
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CHAPTER 2

A Pseudo-likelihood Method for Estimating Misclassification Probabilities

When Outcome Data Are Partially Observed

Outcome misclassification occurs frequently in binary-outcome clinical studies and can result

in biased estimation of quantities such as the incidence and prevalence. A number of remedies

have been proposed to address the potential misclassification of the outcomes in such data.

The majority of these remedies lies in the estimation of misclassification probabilities, which

are in turn used to adjust analyses for outcome misclassification. A number of authors

advocate using a gold-standard procedure on a sample internal to the study to learn about

the extent of the misclassification. With this type of internal validation, the problem of

quantifying the misclassification also becomes a missing data problem as, by design, the true

outcomes are only ascertained on a subset of the entire study sample. Although, the process

of estimating misclassification probabilities appears simple conceptually, the estimation

methods proposed so far have several methodological and practical shortcomings. Most

methods rely on missing outcome data to be missing completely at random (MCAR), a

rather stringent assumption which is unlikely to hold in practice. Some of the existing

methods also tend to be computationally-intensive. To address these issues, in this chapter,

I propose a computationally-efficient, easy-to-implement, pseudo-likelihood estimator of the

misclassification probabilities under a missing at random (MAR) assumption, in studies with

an available internal validation sample. The corresponding estimates can be directly utilized

by methods for misclassification adjustment. I describe the consistency and asymptotic

distributional properties of the resulting estimate, and derive a closed-form estimator of its
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variance. The estimator is also extended to settings with clustered data. The finite-sample

performance of this estimator is evaluated via simulations. Using real-world data, I illustrate

how the proposed method can be used to estimate misclassification probabilities. I also show

how the estimated misclassification probabilities can be used in an external study to adjust

for possible misclassification bias in the framework of competing risks.

2.1 Introduction

Outcome misclassification in binary data leads to bias, and thereby poses a significant threat

to the validity of epidemiological and clinical studies (Bross 1954; Barron 1977; Magder and

Hughes 1997; Neuhaus 1999; Lyles et al. 2011; Edwards et al. 2013). The effect of this bias

can be ameliorated by adjusting estimators for possible misclassification(Lyles et al. 2011;

Tang et al. 2015; Lyles and Lin 2010). One way to make this adjustment, is to have a priori

knowledge about the misclassification probabilities. However, the extent of misclassification

is rarely known beforehand so it must be estimated.

A frequently used approach to obtain information about the extent of misclassification

is internal validation or double-sampling (Greenland 1988). In this approach, the true

outcomes for a small subset of study participants are ascertained using a gold-standard

outcome-ascertainment procedure (Tenenbein 1970). Based on this internal validated sample,

misclassification probabilities can be estimated by comparing the observed (and potentially

misclassified) outcomes with the outcomes obtained through the gold-standard procedure.

Then the resulting misclassification probabilities can be used to adjust estimators in the

current study or in other studies where, for some reason, internal validation sampling is not

possible. This latter use of the misclassification probabilities is known as external validation,
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because the validation sample is obtained outside the study of interest (Spiegelman, Carroll,

and Kipnis 2001).

The motivation for the exploration into the estimation of misclassification probabilities

is a large study in sub-Saharan Africa consisting of people living with HIV/AIDS (PLWH)

that receive care at various health facilities participating in the East-African International

Epidemiology Databases for the Evaluation of AIDS (IeDEA) consortium. One challenge that

arises in the monitoring and evaluation of care-program effectiveness is the underreporting

of death (Egger et al. 2011; Brinkhof et al. 2010; Bakoyannis and Yiannoutsos 2015).

Unreported deaths are typically classified as disengagements from care by the program staff.

The underreporting of death leads to an underestimation of mortality and an overestimation

of rates of disengagement from care. This problem can be remedied by internal validation,

wherein a more accurate (but also more expensive) method is used to ascertain the true patient

outcomes in a portion of subjects who have been initially declared as having disengaged

from care because they failed to attend to their clinic visits (internal validation sample)

(Tenenbein 1970). The reason for selecting a subset of the study population for exhaustive

outcome validation is that internal validation, although desirable, cannot be performed on a

large scale because of resource and other feasibility constraints. As a result, the outcomes in

the remaining patients are missing by design (Wacholder 1996; Zhao, Lawless, and McLeish

2009). In spite of this inherent missingness, internal validation is an efficient way to identify

misclassification probabilities, which in turn can be used to adjust statistical estimators that

target parameters such as prevalence, cause-specific hazards, cumulative incidence and so

on. We can also employ external validation, where information on the misclassification (of

death as disengagement from care) can be obtained from a validation sample outside the

main study (Spiegelman, Carroll, and Kipnis 2001).
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In the East-Africa IeDEA cohort, the internal validation scheme involves intensive

tracing in the community of a subset of patients considered disengaged from care, and active

ascertainment of their vital status (E. H. Geng et al. 2008; An et al. 2009; Yiannoutsos

et al. 2008). This patient tracing procedure is the gold-standard outcome ascertainment

approach alluded to earlier. It results in much more accurate vital-status data than initially

captured by routine review of patients’ medical records. However, as described earlier,

the data resulting from tracing are missing by design for patients where no tracing was

performed. In addition, these data are also affected by non-response as some patients cannot

be successfully traced.

When an internal validation sample is available, most authors use only the internal

validation sample to estimate the extent of outcome misclassification. By so doing, they

implicitly assume that outcome data on the non-validation sample are missing completely at

random (MCAR) (Magder and Hughes 1997; Chen 2000; Pepe 1992). That is, the probability

of missingness is independent of both the observed characteristics of the patients and the

unobserved outcomes (Rubin 1976). In reality, MCAR is rarely justifiable. Other authors

attempt to resolve this problem by augmenting the validated and the non-validated samples

allowing for the use of the entire study sample in the estimation procedure. However, such

data augmentation methods like the expectation-maximization (EM) algorithm, and multiple

imputation can be difficult to use. For example, in order to use the EM algorithm, one needs

to correctly set up the expectation and maximization steps and correctly derive the variance

estimator. On the other hand, multiple imputation can be complicated if the imputation

and the analysis models are not congenial (Meng 1994), that is if the imputation model

does not contain all the variables in the analysis model including the response variable of

interest, and auxiliary covariates that may be related to the variables being imputed. The

need for compatibility between the analysis and imputation models is a common pitfall when
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it comes to using multiple imputation (Tilling et al. 2016). The consequence of this is that

the Rubin’s variance estimator is biased (Robins and Wang 2000), and this ultimately leads

to invalid inference.

To address many of the methodological and practical shortcomings of existing meth-

ods, I propose a pseudo-likelihood approach for estimating outcome misclassification (uni-

directional or bi-directional) probabilities when some of the binary outcome data are missing

both by design and by non-response. This method relaxes the MCAR assumption, which is

untenable in the study context because not everyone who is sampled for internal validation is

available to provide data. Instead, data are assumed to be missing at random (MAR), allow-

ing missingness to be related to observed data and observed subject characteristics (Rubin

1976). Furthermore, unlike Rubin’s multiple imputation, I allow for auxiliary covariates that

may be related to the probability of missingness and can make the MAR assumption more

plausible in practice (Lu and Tsiatis 2001). The proposed method is easy to implement and

relies on existing software. Moreover, the method is computationally efficient and can thus

be used with the large data sets frequently encountered in large epidemiological studies. An

added benefit of the proposed method is that it can be can be easily extended to clustered

data settings, such as multi-site treatment programs.

This chpater proceeds as follows: In Section 2.2, I present some of the data assumptions

and notation. In Section 2.3, I present the likelihood given the data, describe the pseudo-

likelihood function and derive the large-sample properties of the resulting pseudo-likelihood

estimator. I also present an extension to a clustered data setting in Section 2.3. In Section

2.4, I evaluate the finite-sample properties of estimator using a simulation study. In Section

2.5, I present a data application to illustrate the estimation of misclassification probabilities.

In Section 2.6, I illustrate the use of misclassification probabilities estimated in Section 2.5
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to make adjustments for potential misclassification in external studies with no outcome

validation. I conclude with a brief discussion of the findings in Section 2.7.

2.2 Notation and Assumptions

This paper focuses on binary data that occur within a competing risks setting, as a result the

event types shall be referred to as causes of failure. Assume that individuals succumb to two

competing causes of failure (events) , say, cause 1 and cause 2. Also assume that the method

of ascertaining the cause of failure is subject to error, so that the observed and true causes of

failure are not always the same. We can think of the observed causes as “surrogates” for the

true causes of failure. Let C∗ ∈ {1, 2} represent the observed, and potentially misclassified

cause of failure, and C ∈ {1, 2} represent the true cause of failure. Henceforth, “observed

causes of failure” are those ascertained through a standard method that is subject to error,

and “true causes of failure” are those that ascertained using a gold-standard method that is

more accurate than the standard method.

In general, the conditional misclassification probabilities are represented as follows:

1. P [C∗ = 1|C = 2,X,β2] = π∗12(β2;X)

2. P [C∗ = 2|C = 1,X,β1] = π∗21(β1;X),

where, X represents a matrix of subject characteristics, and β = (β1,β2) represents the asso-

ciation between misclassification probabilities and subject characteristics. In order to simplify

our exposition, assume that both misclassification probabilities depend on the same set of

covariates X. It is also worth noting that the misclassification probabilities defined above

can be seen as the complements of subject-level sensitivities of a diagnostic/classification

method.
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With real-world applications in mind, I will model misclassification probabilities using

parametric logistic regression. In epidemiology, logistic regression is popular because the

resulting relationship between the log-odds and covariates has an intuitive interpretation.

The logit models for the true misclassification probabilities are defined below:

log
[

π∗12
1− π∗12

]
= XTβ2 (2.1)

log
[

π∗21
1− π∗21

]
= XTβ1 (2.2)

where β1,β2 ∈ Rq, and Xn×q.

It is worth reiterating that the binary-outcome misclassification problem of interest

occurs within competing risks, as such, most of the notation and data set-up will mimic

that of competing risks literature. Lets consider a study where each subject is followed until

he/she fails from either cause 1 or cause 2, or is censored. Observing cause 1 precludes

us from observing cause 2, and vice-versa. Outcomes are re-ascertained on a sub-sample

from those observed to fail from either cause 1 or cause 2. We refer to this outcome

re-ascertainment as internal validation or double-sampling. There is no need for outcome

validation among those censored, as censoring is assumed to be correctly ascertained. Let Ri

be the indicator that the true outcome is known, with Ri = 1 indicating that the subject i was

successfully double-sampled or censored. The true outcome, Ci, is only observed if subject i

is successfully double sampled, or is censored (Ci = 0). For each subject, i = 1, 2, ..., n, we

observe {C∗i , Xi = (Ti, X∗i ), Ri, (Ci ifRi = 1)}, where,

1. Ri: is the indicator function that the outcome for subject i is known;
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2. Ci ∈ {0, 1, 2}: is the true cause of failure, observed only if Ri = 1 or if subject i is

censored;

3. C∗i ∈ {0, 1, 2}: is the observed cause of failure, C∗i = 0 if subject i is censored;

4. X∗i : are observed covariates for subject i, excluding time contribution to study;

5. Vi: is the censoring time;

6. Ui: is the time to cause 1 or cause 2.

7. Ti = min(Ui, Vi): is the time contributed to study by subject i;

8. Xi: are the observed covariates for subject i, including time contribution to study;

We assume that the censoring time is independent of failure time and the cause of failure,

that is, (T,C) ⊥ V . We also assume that subject characteristics X are measured without

error.

Ideally, double-sampling should be able to validate the outcomes on the entire sub-

sample selected for validation. In reality, this is unlikely to be true because not everyone

who is double-sampled is available, so the true outcome cannot be ascertained. This lack

of response may not be completely at random. I relax this assumption and assume that

missing data due to non-response are missing at random (MAR) so that, among non-censored

subjects, the probability that the true outcome is missing (unknown) may depend on observed

subject characteristics measured prior to censoring and not on the unobserved true outcome.

That is, I assume that P[Ri = 0|Ci, C∗i > 0,Xi] = P[Ri = 0|C∗i > 0,Xi].

2.3 Likelihood

Under the assumptions presented above, the log-likelihood of β = (β1,β2)T ∈ R2q based on

the observed data is
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l(β) =
n∑
i=1

δ1i
{

(1− δ∗1i)XT
i β1 − log

(
1 + exp (XT

i β1)
)}

+
n∑
i=1

δ2i
{
δ∗1iX

T
i β2 − log

(
1 + exp (XT

i β2)
)}

(2.3)

where δ1i = I[Ci = 1] and δ2i = I[Ci = 2], δ∗1i = I[C∗i = 1] and δ∗2i = I[C∗i = 2] are

the true and observed event indicators. The derivation of the full-likelihood from which

log-likelihood (2.3) is obtained can be found in Section 2.8.1.

In the above full log-likelihood (2.3), notice that δ1i and δ2i are only observable

among those who were successfully double-sampled or censored, that is, some subset of

{i = 1, 2, ..., n}. As a result, maximum likelihood estimation is not straightforward. We can

proceed with maximum likelihood estimation by setting up an EM algorithm (Magder and

Hughes 1997; Dempster, Laird, and Rubin 1977). This can be challenging for even for people

with formal statistical training as it requires customized programming. In addition, the EM

algorithm is computationally-expensive, particularly with the large databases involved in

the motivating HIV study. To overcome these shortcomings, I proceed by first formulating

the objective function as a pseudo/estimated likelihood.

2.3.1 Setting up the pseudo-likelihood

I begin by recognizing that the binary-outcome indicators, δ1i and δ2i, are linear in the log-

likelihood as shown in Equation 2.3. As a result of this linearity I can still perform consistent

estimation by replacing the missing true values using their conditional expectations given

the observed data. That is, among those missing true outcome values, δji is replaced by

E [δji|δ∗ki,Zi] = pjk(γk;Zi) for j, k ∈ {1, 2}. In the context of a real data-analysis, estimation
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proceeds by replacing δ1i and δ2i, in the full log-likelihood 2.3 by δ̃1i and δ̃2i respectively,

where:

δ̃1i = Ri × δ1i + (1−Ri)×
[
p11(γ̂1;Zi)δ

∗
1ip12(γ̂2;Zi)1−δ∗

1i
]

(2.4)

and

δ̃2i = Ri × δ2i + (1−Ri)×
[
p21(γ̂1;Zi)δ

∗
1ip22(γ̂2;Zi)1−δ∗

1i
]

(2.5)

Here γ̂1, γ̂2 ∈ Rd; Zi is a 1 × d matrix containing the characteristics for subject i; and

pjk(γ̂k;Zi) = P (Ci = j|C∗i = k,Zi, γ̂k) for j, k ∈ {1, 2} is the estimated conditional

probability of the true cause C = j given the observed cause C∗ = k, for k ∈ {1, 2},∑2
j=1 pjk(γ̂k;Zi) = 1. Henceforth, for all j and k, I shall refer to pjk(γk;Zi) as the

predictive values of the standard diagnostic/classification procedure. The phrase “predictive

value” is used in a similar manner as in traditional diagnostic testing literature, where, for

example P[Diseased|Positive test result] is called the positive predictive value of a diagnostic

test. If subject i is not censored, and δ1i and δ2i are not observed, the “true” cause indicators

in the likelihood are replaced by the estimated predictive values. Missing outcome data are

assumed to be missing at random(MAR). That is, among the non-censored, the probability

that the true cause is missing conditional on the observed cause is independent of the true

cause of failure. That is,

P[Ri = 0|Ci, C∗i > 0,Zi] = P[Ri = 0|C∗i > 0,Zi]

It is also worth noting that based on notation defined in Section 2.2, I[R = 0], is also a

missing value indicator. The covariate matrix Z may also include auxiliary covariates that

make the MAR assumption plausible. From the MAR assumption defined above, without

losing generality, it immediately follows that:
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P[Ci = 1|Ri = 0, C∗i > 0,Zi] = P[Ci = 1|Ri = 1, C∗i > 0,Zi]

= P[Ci = 1|C∗i > 0,Zi] (2.6)

In other words, under the MAR assumption, among the non-censored, the predictive value

model is the same among those who were double-sampled and those who were not double-

sampled (Bakoyannis, Siannis, and Touloumi 2010). From a data analysis perspective, this

means predictive values, estimated using data from those whose outcomes were validated,

can be used to inform the predictive-value estimates among those whose outcomes were not

validated (that is, provided the validated and unvalidated subjects are drawn from the same

population).

I also estimate predictive values, pjk(γ;Z) for j, k ∈ {1, 2}, parametrically using

logistic regression as follows:

p12[γ2;Z] = exp (ZTγ2)
1 + exp (ZTγ2) (2.7)

p21[γ1;Z] = exp (ZTγ1)
1 + exp (ZTγ1) (2.8)

where Z is a matrix of subject characteristics. Note that, the subject characteristics in Z

need not be the same as those in X, the set covariates used to build the misclassification

models 2.1 and 2.2.

When δ1i and δ2i are replaced with δ̃1i and δ̃2i respectively, the resulting pseudo-log-

likelihood(estimated log-likelihood) is:
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l(β; γ̂) =
n∑
i=1

δ̃1i
{

(1− δ∗1i)XT
i β1 − log

(
1 + exp (XT

i β1)
)}

+
n∑
i=1

δ̃2i
{
δ∗1iX

T
i β2 − log

(
1 + exp (XT

i β2)
)}

(2.9)

where the overall parameter is (β,γ) ∈ R2(q+d), with β representing the parameter of interest,

and γ the nuisance parameter. The parameter γ is estimated by fitting logistic regression

models using the internal validation data as stated above. Assuming the logistic regression

models are correctly specified, γ̂ will converge in probability to γ. When γ̂ is plugged into

the log-likelihood, the problem reduces to that of optimizing l(β, γ̂), a pseudo-log-likelihood,

and the resulting estimates are called pseudo-likelihood estimates.

The maximum pseudo-likelihood estimate (MPLE), is such that, the average score

function is equal to zero, that is,

Ψ(1)
n (β1, γ̂) = 1

n

n∑
i=1
XT
i δ̃1i(γ̂)

[
(1− δ∗1i)−

exp (XT
i β1)

1 + exp (XT
i β1)

]
= 0

(2.10)

Ψ(2)
n (β2, γ̂) = 1

n

n∑
i=1
XT
i δ̃2i(γ̂)

[
δ∗1i −

exp (XT
i β2)

1 + exp (XT
i β2)

]
= 0

(2.11)

Generally, the average score function is of the form Ψn(β, γ̂). Henceforth, I shall focus on

β̂n, the general estimator of β.
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2.3.2 Asymptotics

The asymptotic properties of the proposed pseudo-likelihood estimator were established

under the same regularity conditions as those presented by Gong and Samaniego (1981)

(Gong and Samaniego 1981), Parke (1986) (Parke 1986), and Bakoyannis et al. (2018)

(Bakoyannis, Zhang, and Yiannoutsos 2018). Particularly, the regularity conditions are

the same as those in standard maximum likelihood theory, with the exception being the

following two conditions:

1. γ̂n
p−→ γ as n −→∞;

2. The ratio of the size (n) of the main sample to the size (nv) of the validation sample

is fixed. That is, limn→∞
n
nv

= s.

It was shown that β̂n is consistent estimator of β. The detailed proof for consistency

can be found in the Section 2.8.2. Additionally, it can be shown that:
√
n(β̂n − β0) d−→ N(0,Ω)

where Ω = I−1(β0,γ0) + s.I−1(β0,γ0)W(β0,γ0,X,Z)I−1(β0,γ0) with

W(β0,γ0,X,Z) = E
[
R(β0,γ0)I−1(γ0)l̇(γ0|Z)l̇(β0,γ0|X)T

]
+ E

[
l̇(β0,γ0|X)l̇(γ0|Z)T I−1(γ0)R(β0,γ0)T

]
+ R(β0,γ0)I−1(γ0)R(β0,γ0)T

where R(β0,γ0) =
[
d
dγΨn(β0,γ)|γ=γ0

]
, s = limn→∞

n
nv
, with nv being the size of the

validation sample. Ω can be estimated by replacing the parameter β0 and γ0 with their

consistent estimators so that

Ω̂n = 1
n

n∑
i=1

ψ̃(Xi|β̂n, γ̂nv)ψ̃(Xi|β̂n, γ̂nv)T
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where ψ̃(Xi|β0,γ0) = −I−1β0,γ0)
[
l̇(β0,γ0|Xi) +

√
s.R(β0,γ0)I−1(γ0)l̇(γ0|Xi)

]
. A de-

tailed proof for asymptotic normality can be found in Section 2.8.3.

2.3.3 Clustered Data

The estimation method that has been described thus far, only applies to cross-sectional

data where individuals are considered to be independent. In this section, I show that

the proposed method can be extended easily to clustered data settings, where subjects

nested within a cluster are considered to be correlated. The observed data will remain as

described in Section 2.2, with the only difference being that subjects will now have a cluster

identifier. Assuming that there are m clusters of varying sample sizes, let i be the cluster

index, such that i = 1, 2, ...,m, and let j be the subject index within cluster, such that

j = 1, 2, ..., ni. Also assume finite sample size within clusters, that is, ni < ∞, and that

the clusters are independent. Overall, there are n =
∑m
i=1 ni subjects considered. Under a

working independence assumption among clusters, asymptotic arguments will be same as

described in Section 2.3, with clusters now being the primary sample units. Generally, at

the maximum pseudo-likelihood estimate,
∑m
i=1

∑ni
j=1 Uij(β̂m, γ̂m) =

∑m
i=1 Ui.(β̂m, γ̂m) = 0.

By the central limit theorem,
√
m
(
β̂m − β0

)
−→ N(0,Ω)

where, Ω = E[ψ̃i.(β0,γ0)ψ̃Ti. (β0,γ0)], with

ψ̃i.(β0,γ0) = −I−1(β0,γ0)Ui.(β0,γ0)−
√
sR(β0,γ0)I−1(β0,γ0)I−1(γ0)Ui.(γ0)

Also, R(β0,γ0) = 1
m

∑m
i=1

d
dγUi.(β0,γ)|γ=γ0 and s = ni

ni(v)
as cluster size, ni,increases to ∞

for all i = 1, 2, ...,m. ni(v) is number of the double-sampled individuals within cluster i.

Empirically, Ω is estimated by replacing parameters with their consistent estimates, that is,

Ω̂ = E[ψ̃i.(β̂m, γ̂m)ψ̃Ti. (β̂m, γ̂m)] = 1
m

m∑
i=1

ψ̃i.(β̂m, γ̂m)ψ̃Ti. (β̂m, γ̂m)
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2.3.4 Implementing the pseudo-likelihood estimation in R

It is fairly simple to set up the estimating equation represented by Equation 2.10 (or

2.11) in R. This entails fitting a logistic regression model using the glm function, where

the binary-outcome is δ∗1i, and the weights option of the glm function is set to δ̃1i =

Riδ1i + (1−Ri)[1− p21(γ̂1;Zi)]δ
∗
1ip12(γ̂2;Zi)1−δ∗

1i , for subject indices i = 1, ..n. A subject

whose outcome was validated is weighted based on his/her validated outcome(0 versus 1),

otherwise they will be weighted based on an estimated predictive value between zero and

one. The glm function in R, however, does not return correct standard error estimates:

When it computes standard errors, it ignores the additional variability due the estimation of

predictive values, pjk(γ;Z). One needs to manually code the closed-form variance estimator

in R. Details about the composition of the closed-form estimator are presented in sub-section

2.3.2. Alternatively, one could appeal to parametric bootstrapping in order to propagate,

into the estimation, the variability due the estimation of predictive values.

2.4 Simulation Study

The finite sample properties of the pseudo-likelihood estimator were explored using a

simulation study. The details of the simulation study are described below.

2.4.1 Simulating the true cause of failure

We simulate the competing risks data using the method developed by Beyersmann et al.

(2009) (Beyersmann et al. 2009). Assume the failure time T is distributed according to

the Weibull distribution with parameters α > 0 and λ > 0, that is, T ∼W(α, λ). Under a

competing risks scenario with two causes of failure, C ∈ {1, 2}, the cause-specific hazards
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are: hi(t) = αiλit
αi−1, for i = 1, 2. The overall survival function is

S(t) = exp
(
−

2∑
i=1

∫ t

0
αiλiu

αi−1du

)
= exp

(
−

2∑
i=1

λit
αi

)
Given that an event occurs at time T = t, the probability that the cause of failure is cause

i ∈ {1, 2} is

P[C = i|T = t] = αiλit
αi−1∑2

i=1 αiλit
αi−1

Assuming proportional hazards, the survival distribution is

ST (t|Z) = exp
[
−

2∑
i=1

λit
αi exp(ZTκi)

]
and

P[C = i|T = t,Z,κ] = hi(t) exp(ZTκi)∑2
i=1 hi(t) exp(ZTκi)

where Z = (z1, z2) is the matrix of covariates.

If a subject does not experience either cause 1 or cause 2, the subject will be right

censored. Assume that censoring time, V ∼ Exp(η). For subject j, the survival data

are {min(Tj , Vj), Cj = i}, for j = 1, 2, ..., n, i = 0, 1, 2; Cj = 0 if subject j is censored.

Setting α1 = α2 = α, the formula for failure time is derived by inversion to be t =[
− log(1−U)∑2

i=1 λi exp(ZT
i
κi)

] 1
α

, where U ∼ U(0, 1). If the min(Tj = t, Vj = v) = v, then subject j is

considered to have been censored, that is Cj = 0, otherwise subject experiences either cause

1 or 2 at time t. Given that subject j experienced failure at time t, the probability that

he/she failed due to cause 1 is:

P[Cj = 1|Tj = t,Zj ,κ] =
αλ1t

α−1 exp(ZT
j κ1)∑2

i=1 αλit
α−1 exp(ZT

j κi)
(2.12)

Define Dj as the indicator function that subject j fails from cause 1, otherwise

fails from cause 2. Using the probability in (2.12), generate true cause of failure 1 from

Dj ∼ Bernoulli (P[Cj = 1|Tj = t, Zj ]). For a non-censored subject j,

Cj = 1× I(Dj = 1) + 2× I(Dj = 0)
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2.4.2 Simulating the observed cause of failure

Instead of C ∈ {1, 2}, we observe C∗ ∈ {1, 2}, where C∗ and C are the observed and

true causes of failure respectively and are not necessarily the same due to misclassification.

Assume that those who are censored are never misclassified, that is, C = 0 if and only

if C∗ = 0. Additionally, let P[C∗ = 2|C = 1] = π∗21, and P[C∗ = 1|C = 2] = π∗12 be the

misclassification probabilities as defined in Section 2.2, with true models of log-odds of

misclassification defined as

log
(

π∗21
1− π∗21

)
= Xβ1 = exp(β01 + β21t+ β21z1 + β31z2)

1 + exp(β01 + β21t+ β21z1 + β31z2)
and

log
(

π∗12
1− π∗12

)
= Xβ2 = exp(β02 + β12t+ β22z1 + β32z2)

1 + exp(β02 + β12t+ β22z1 + β32z2)
where Xn×4 = [1,Z1,Z2, t]. We generate

Mj ∼ Bernoulli
(
I(Cj = 1)× π∗21j + I(Cj = 2)× π∗12j

)
, the misclassification indicator for subject j where Mi = 1 indicates that the outcome

is misclassified, that is, the observed outcome is not the same as the true outcome. The

observed cause of failure for subject j, C∗j , is then defined as follows:

C∗j =


Cj ifMj = 0

1× I(Cj = 2) + 2× I(Cj = 1) ifMj = 1

2.4.3 True outcomes missing at random (MAR)

In addition to exploring a situation where data are missing completely at random (MCAR),

the simulation study also explores a situation where data are missing at random (MAR).

In this case, MAR will arise from the non-response among some of the double-sampled

subjects. In particular, investigation was done for a situation where the probability of

being successfully double-sampled is about 80%, and deviations from that probability are
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explained by an auxiliary variable A. Although they may not be of interest in the study,

auxiliary covariates make the MAR assumption plausible (Hardt, Herke, and Leonhart 2012).

Here the auxiliary variable, A is associated with both outcome misclassification and the

missingness in the true cause of failure. A is defined as follows:

A = I[C = C∗]×Ber(0.3) + I[C 6= C∗]×Ber(0.45)

Among the double-sampled, the probability that the double-sampling is successful (true

outcome is not missing) is given by

P[R = 1|A = a] = exp (log(4)− a)
1 + exp (log(4)− a)

2.4.4 Conducting the simulation study

Simulation parameters were set as follows:

a) Misclassification parameters: β1 = (−0.4,−0.4, 0.5,−0.5), β2 = (−0.4,−0.4, 0.5,−0.5);

b) Weibull proportional hazards parameters: κ1 = (0.5, 1), κ2 = (−0.5, 0.5);

c) Weibull shape parameter : α = 2;

d) Weibull scale parameters: λ1 = 0.75, λ2 = 1;

e) Exponential censoring parameter η = 0.6;

f) Subject characteristics: Z1 ∼ U(0, 1), Z2 ∼ N(0, 1).

Simulations were performed using datasets of sample size 5000, and varied the

following conditions:

i) double-sampling proportion (20% versus 50%), with those who are double-sampled

only drawn from the non-censored portion of the sample;

ii) missing outcome imputation (no imputation versus imputation). Not imputing is

tantamount to performing a complete case analysis wherein only those who are
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successfully double-sampled are considered. And, imputing entails using our proposed

pseudo-likelihood method of estimation.

iii) missingness mechanism (MCAR versus MAR). MCAR data occur when the double-

sampling among the non-censored is 100% successful (missingness of true outcomes is

completely by design). On the other hand, MAR data are simulated as described in

subsection 2.4.3.

iv) predictive value model specification (correct versus incorrect). When β1 6= β2, for

example β2 = (−0.3, 0.2, 0.5, 0.5), it is no longer correct to use logistic regression to

model the predictive values. That is, when β1 6= β2, the proposed logistic models

2.7 and 2.8 are no longer suitable because the linearity assumption between the logit

function and the covariates is violated. Using logistic regression to model the predictive

values will therefore be a form of model misspecification. The proof of this assertion

is provided in Appendix subsection 2.8.5. For the MCAR, the covariates that were

entered into the predictive value models were the same as those for the proposed

misclassification model. For the MAR case, the predictive value model also included

the auxiliary covariate, A, in addition to the covariates entered into the proposed

misclassification model. An additional thing to note is that the correct predictive-value

model specification coincides with a case where the misclassification models for cause 1

and cause 2 are the same. On the other hand, incorrect model specification coincides

with a case where the misclassification models for cause 1 and cause 2 are different.

For each of the 16 simulation conditions, 1000 replications were performed and the

following quantities were compute: average estimate, β̂average = 1
1000

∑1000
l=1 β̂l; absolute

percent bias of average estimate, 100×| β̂average−ββ |; Monte-Carlo standard deviation (MCSD)

,
√

1
1000−1

∑1000
l=1

(
β̂l − β

)2
; asymptotic standard error (ASE); 95% coverage probability(CP);

the relative efficiency (RE) of the complete-case estimator versus the pseudo-likelihood
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estimator. Estimation was repeated using the EM algorithm, and the computational efficiency

of the EM algorithm was compared to that of the proposed pseudo-likelihood method. Lastly,

the simulation study was repeated under a clustered data setting. Data for clustered setting

were simulated using the marginal-model approach within the SimCorMultRes R package

(Touloumis 2016). Cluster size was set at 50, and the intra-cluster correlation was set at

0.5. Under a correct model specification, as described in condition (iv), simulations were

performed for 100, 200, 400 and 800 clusters.

2.4.5 Simulation Results

Results under MCAR

The datasets used in simulations with 20% double-sampling under MCAR are summa-

rized in Figure 2.1. In the 1000 simulation datasets, on average, 37.23% of those who truly

failed from cause 1 were observed as failing from cause 2; and, 40.59% of those who truly

failed from cause 2 were observed as failing from cause 1. When missing data were MCAR,

at 20% double sampling, the complete-case and pseudo-likelihood estimators in general

showed good finite-sample performance as the estimates had small bias and attained coverage

close to the nominal level. The asymptotic standard errors (ASE) were also close to the

Monte Carlo standard deviations thereby increasing confidence in the closed-form variance

estimator. These observations held true both under correct and incorrect specifications of

the predictive value models. That being said, the pseudo-likelihood estimator was between

55.6% and 90.3% more efficient than the complete-case estimator when the misclassification

models for both causes of failure were the same. When the misclassification models for cause

1 and cause 2 were different, the pseudo-likelihood estimator was between 58.1% and 96.8%

more efficient than the complete-case estimator.
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At 50% double-sampling, both the complete-case and pseudo-likelihood estimators

gained efficiency compared to those derived at at 20% double-sampling. This gain in efficiency

also came with an attenuation of the relative efficiency gains between the pseudo-likelihood

and complete-case estimators. The results of simulations at 20% and 50% double-sampling

are presented in Table 2.1.

Results under MAR

When missing data were MAR, the actual level of double-sampling fell short of the

planned double-sampling, as the simulation allowed for some non-response (e.g., patient

who were double sampled but were not successfully traced in our motivating example).

For example, when 20% double sampling was planned, about 13.6% of the non-censored

observations were successfully double-sampled. Under MAR, the pseudo-likelihood estimator

continued to show the same good finite sample properties as those seen in MCAR. That is,

the pseudo-likelihood estimates had small bias, the standard error estimates where close

to the Monte-Carlo standard deviations and the estimates attained coverage close to the

nominal 95% level. On the other hand, under the auxiliary-variable dependent MAR setting,

the complete-case estimator showed more bias than the pseudo-likelihood estimator. The

results of simulations performed under MAR are presented in Table 2.2.

Computational efficiency

The comparison of results from the EM and pseudo-likelihood methods is presented in

Table 2.3. Compared to the maximum likelihood estimator generated by the EM algorithm,

the pseudo-likelihood estimator was generally less efficient with a relative efficiency deficit

between 10% and 20%. On the other hand, the estimates derived from the EM algorithm

had smaller variability than those from the proposed pseudo-likelihood estimation method.
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That being said, the proposed pseudo-likelihood estimation method was computationally

faster than the EM algorithm. To compare computational efficiency, I ran a series of

experiments where the samples size was increased from 5000 to 10000, 20000, 50000 and

100000 while holding the double-sampling proportion among the non-censored observations

at 20% and compared the time it took for the EM and pseudo-likelihood-based methods

to converge. The pseudo-likelihood approach was performed in R software using the glm

function with the appropriate weighting specified. The EM algorithm, on the other hand,

was programmed into R by the study authors. The starting values for the EM algorithm

were simulated from a Uniform(0, 1) distribution. All the experiments were performed in R

version 3.4.1 on a computer with the following technical specifications: {64 bit, Intel(R)

Core(TM) i5-3470 CPU @ 3.2GHz, 8GB Ram}. At all the experimental conditions, the

pseudo-likelihood-based approach was found to converge significantly faster than the EM

algorithm. The results of comparing the computational speeds of the EM algorithm and the

pseudo-likelihood approach are presented in Figure 2.2. At the different sample sizes, and

under the computational restrictions of the computer used, the pseudo-likelihood approach

was found to converge, on average, 93.6 times faster than the EM algorithm.

Clustered data

The simulation results under clustered data settings are presented in Table 2.4. Similar

to the cross-sectional data setting, the pseudo-likelihood method resulted in estimates with

small bias both under correct and incorrect predictive-value model specifications. As expected,

ignoring the clustering aspect of the data had an impact on variance estimation and coverage:

Ignoring the clustering led to underestimation of the variance and under-coverage. When the

clustering structure was recognized, the proposed variance estimator was able to correctly

estimate the variance of the pseudo-likelihood estimator as shown by the small discrepancies
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between the asymptotic standard errors and the Monte-Carlo standard deviations (this

observation was more apparent with increasing number of clusters).

2.5 Application 1: Estimating misclassification probabilities

2.5.1 Notation

In this application, C∗ is defined as the observed cause of failure, and C as the true cause of

failure. The observed cause C∗ is ascertained by an error-prone approach that results in the

under-reporting of death. C, on the other hand, is correctly ascertained. Formally,

C∗ =



0 if censored

1 if death is observed

2 if disengagement from care is observed
and

C =



0 if censored

1 if true status is death

2 if true status is disengagement from care

2.5.2 Goal

The goal of this statistical analysis is to model the probability of classifying subjects as

disengaged from care when they are in fact dead, conditional on a set of covariates, that is,

P[C∗ = 2|C = 1; covariates].
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2.5.3 Data

I consider a study consisting of cohorts of PLWH that contribute data to the International

Epidemiology Databases for the Evaluation of HIV/AIDS (IeDEA) in East Africa. In this

study, patients are followed prospectively from antiretroviral therapy (ART) initiation until

death, disengagement from care, or censoring. A patient is considered disengaged from care,

if he/she has no recorded visit in the period spanning his/her last visit and two months after

the next scheduled visit. There is possible misclassification in this study as some subjects

are classified as disengaged from care when they are, in fact, deceased. The outcome of

some of the patients who are observed as disengaged from care (i.e., those with C∗ = 2) is

validated by tracing them in the community (double-sampling). Through validation, the

true outcome C is observed for these patients, thereby providing information on outcome

misclassification. In this analysis, only uni-directional outcome misclassification is considered

(i.e., an observed death cannot be a misclassified disengagement). It is worth restating that

the proposed method can also work for bi-directional misclassification.

Our analysis of outcome misclassification consisted of 31,179 participants enrolled

at the care facilities of AMPATH (Academic Model Providing Access to Healthcare) who

had been observed as either dead or disengaged from care (i.e., non-censored). Of these,

28,460(91%) were observed as disengaged from care by the healthcare workers. Outcome

validation was performed on 4238(14.9%) of those observed as disengaged from care: Among

these cases, 1143(27%) were found to be actually deceased. After outcome validation, the

death count increased from 2719 to 3862, meaning that 29.6%(1143/3862) of deaths had

initially been misclassified as disengagements from care. The characteristics of patients

involved in the misclassification model are summarized in Table 2.5.
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2.5.4 Methods

The misclassification probabilities were modeled using the pseudo-likelihood method pre-

sented in this paper. First, the predictive value of death P[C = 1|C∗ = 2; covariates] were

modelled using the 4238 subjects who were observed as disengaged from care and whose

outcomes were validated through double-sampling. It was not necessary to model the pre-

dictive value for disengagement because observed deaths were always correctly ascertained,

so that P[C = 2|C∗ = 1; covariates] = 0.

The covariates considered included gender(male versus female), age at ART initiation,

CD4 count at ART initiation and time contributed to the study (in months). The functional

forms of the covariates and overall goodness-of-fit were verified using the Supremum goodness-

of-fit test (D. Y. Lin, Wei, and Ying 2002). There was evidence that the proposed predictive

value model fit the data well (goodness-of-fit test p-value=0.169).

Using the same set of covariates considered in the predictive value model, a model for

the misclassification probabilities, P[C∗ = 2|C = 1, covariates] was fit. Model goodness-of-fit

was assessed using the Supremum goodness-of-fit test at the 0.05 alpha level.

2.5.5 Results

The misclassification models resulting from performing a complete-case analysis and a pseudo-

likelihood-based analysis are presented in Table 2.6. There was evidence that the proposed

model was a good fit to the data (goodness-of-fit test p-value=0.641). The complete-case

analysis consisted of 3, 862(12%of 31, 179) subjects with verified deaths. In the pseudo-

likelihood estimation, 3, 862 subjects with verified deaths were each assigned weight = 1,
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whereas the remaining 24, 222(78%of 31, 179) subjects, without verified outcomes, were

weighted based on modeled predictive values (0 < weight < 1).

At the 0.05 alpha level, the complete-case model suggested a significant association

between death misclassification and square-root of CD4 count at ART initiation, age at ART

initiation, and time spent in the study. The pseudo-likelihood model suggested significant

associations between death misclassification and gender, the square root of CD4 count at

ART initiation and time spent in the study. In this case, the association between death

misclassification and time was found to be time-dependent, therefore the time spent in

the study was entered into model in a piece-wise linear form. Before month 3, there was

a positive association between death misclassification and study time, and this positive

association began to attenuate beyond month 3. By month 12, the association between

death misclassification and study time had become negative. Beyond month 12, the log odds

of death misclassification were found to decline by 0.01 units for each additional month of

follow-up, holding constant all the other factors. It is also worth noting that, as expected,

the estimates from the pseudo-likelihood method had smaller standard errors than those

from the complete-case analysis.

2.6 Application 2: Adjusting for misclassification probabilities from an exter-

nal study

This section illustrates how the misclassification probabilities estimated from an external

study can be used in a situation where no outcome validation has been performed. Misclassi-

fication probabilities derived from a treatment program with an available internal-validation

sample are used inform the possible misclassification in a treatment program that does not

have outcome validation. This borrowed information is then used to adjust the observed
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estimator of the cumulative incidence of death in the program without a validation sample.

In the motivating study, the AMPATH program traced its patients in the community, but

the FACES (Family AIDS Care & Education Services) program did not. The differential

death misclassification in AMPATH was modeled as shown in Section 2.5. Similar modeling

could not be performed in the FACES cohort because of the lack of validation data. Under

the transportability assumption, we assumed the death misclassification model for FACES

was the same as that in AMPATH. The resulting misclassification probabilities were then

used to adjust the observed cumulative incidence of death at FACES for possible death

misclassification.

The external validation analysis was performed using data from 3886 patients enrolled

in FACES. Of these 73 (1.88%) were observed as deceased, 1541(39.66%) were observed as

disengaged from care, and 2272 (58.47%) were censored. None of the observed disengagements

were validated in the FACES cohort. Using the misclassification probabilities from the

pseudo-likelihood method as shown in Table 2.6, the cumulative incidence of death in

the FACES cohort was adjusted for possible death misclassification. The results of the

adjustment are shown in Figure 2.3. The technical details for adjusting the cumulative

incidence function for misclassification can be found in (Bakoyannis and Yiannoutsos 2015).

In the FACES cohort, the na"{ı}ve cumulative incidence function estimate of mortality

at 12 months after ART initiation was about 1.9%, whereas the misclassification-adjusted

cumulative incidence function estimate of mortality at 12 months was about 6.4%. That

is, the misclassification-adjusted mortality was about 3.37 times the unadjusted mortality

within the first year of follow-up.
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2.7 Discussion

In this chapter, I present a pseudo-likelihood method of estimating binary misclassification

probabilities in the presence of an internal validation sample. I note that internal validation

allows for the identification of the extent to which a diagnostic procedure/classifier fails to

correctly classify the outcomes. Internal validation of outcomes tends to be very expensive;

it is, therefore, only performed on a subset of the main study sample. Moreover, not every

study unit that is earmarked for validation is available to provide an outcome. Consequently,

when using data with internal validation, researchers invariably contend with both missing-

by-design and non-response analytic challenges.

With these considerations in mind, I formulated the problem of estimating misclas-

sification probabilities for binary outcome data in the presence of internal validation as

a missing data problem. Under the missing at random (MAR) assumption, I proposed

a method that relies on imputing the missing binary outcomes among the non-validated

observations using predictive values estimated from observations with outcome validation.

This imputation changes the likelihood into a pseudo-likelihood, and the estimation of the

parameters of interest involves the maximization of the corresponding pseudo-log-likelihood

(estimated log-likelihood). The resulting maximum pseudo-likelihood estimates were found

to have good large and finite-sample properties both in cross-sectional and clustered data

settings wherein clustered units are correlated. The resulting estimates had small bias and

their variance resulted in correct coverage probabilities. The closed-form variance estimator

developed in this paper, accounts for variability due to the data generating process, estima-

tion of predictive values that were imputed and estimation of misclassification probabilities.

Our simulations also showed that the pseudo-likelihood estimates were substantially more

efficient than the complete-case estimates. This gain in efficiency is due to the fact that the
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pseudo-likelihood method allows for the use of the entire study sample during estimation of

misclassification probabilities. The observed gain in the efficiency of estimates is not a trivial

matter, especially if one considers the costs associated with collecting and validating the

data. By running a complete-case analysis, one only uses the validated data, which are only

a fraction of the full study sample resulting in significant loss of statistical efficiency. We

also saw that bias can become a problem for complete-case analysis when the missingness

was explained by auxiliary covariates. Under similar circumstances, the pseudo-likelihood

estimator had small bias because it depended on predictive values that adjusted for auxiliary

covariates. In using our proposed pseudo-likelihood estimator, one can possibly make gains

in both estimation and precision.

That being said, the proposed pseudo-likelihood approach is not a “panacea” or the

only solution. One could either use the EM algorithm or multiple imputation to address

the missing data problems addressed in this paper. Multiple imputation can be directly

implemented in many statistical software without much programming from the analyst.

The main challenge when using multiple imputation is that one has to contend with the

congeniality issue (Meng 1994). That is, one has to ensure compatibility between the

imputation and the analysis models (Tilling et al. 2016). The lack of congeniality can lead

to biased variance estimation when using multiple imputation (Robins and Wang, 2000).

One need not contend with the somewhat “esoteric” concept of congeniality when using the

pseudo-likelihood approach. In a comparison of the EM algorithm to the pseudo-likelihood

approach, simulations showed that the EM algorithm results in maximum likelihood estimates

which are more efficient than the maximum pseudo-likelihood likelihood estimates from

our proposed method. That said, the EM algorithm is much more difficult to implement

compared to our method which can be implemented with off-the-shelf software. The EM

algorithm is also more computationally intensive. In a series of simulation experiments
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at increasing sample sizes, the pseudo-likelihood method was found to be, on average,

93.6 times faster than the EM algorithm. For studies that involve large datasets, and

in simulation analyses that require many replications, it may be worthwhile to use the

proposed pseudo-likelihood estimation in order to speed up computation, notwithstanding

the gains in statistical efficiency afforded by the EM algorithm, especially given the ease

of implementation via existing statistical software. The pseudo-likelihood described in this

article can be easily implemented using the glm function in the R software. The variance

estimator of the pseudo-likelihood estimator is also relatively easy to define in the R software.

One may take issue with our use of parametric estimation, since misspecification of

the conditional mean model can lead to inconsistent estimates. Our decision to present a

parametric method was driven largely by pragmatic considerations. In practice, logistic

regression is widely used to model binary outcome data, and is accessible to practitioners

with different levels of statistical training. It may be worthwhile to consider flexible penalized

parametric models such as those discussed by Zhang and Little (2009) (G. Zhang and Little

2009) to build the predictive model used in imputing the values for the non-validated

observations. In addition, when fitting the predictive value models, practitioners need to be

wary of auxiliary covariates that make the MAR assumption plausible: Omitting important

auxiliary covariates when building the predictive value models can bias the pseudo-likelihood

estimation.

I hope the reader is convinced that the process of estimating of misclassification

probabilities is one that should be undertaken carefully. In the presence of validation sampling,

many practitioners only use the validated sample to learn about the extent of misclassification.

In this chapter, I have shown that the discarding of the unvalidated observations not only may

lead to loss in efficiency but in some instances may lead to biased estimation of the targeted
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misclassification probabilities. These findings suggest that, at minimum, practitioner needs

to be more deliberative when estimating misclassification probabilities. The reason for the

added caution/deliberation is that misclassification probabilities play an important role

in adjusting statistical estimators of interest for misclassification bias. In our motivating

example consisting of cohorts of patients from IeDEA East Africa, one important goal is

that of correctly modeling quantities such as the cause-specific hazards and the cumulative

incidence functions. This goal is, however, complicated by death under-reporting, as some

patients are considered disengaged from care when they are, in fact, deceased. Using the

collected data as-is may lead to the underestimation of the cumulative incidence of death,

which in turn can have important implications on aspects of treatment-program such as

funding, implementation, and so on. In order to reduce the extent of death-underreporting,

IeDEA East Africa has made a large investment in validating the outcomes of some patients

considered disengaged from care by tracing them in their communities. This validation yields

information that can be used adjust na"{ı}ve estimates of the cumulative incidence of death.

In our application consisting of patients from AMPATH, the presence of validation sample

allowed us to estimate differential death-misclassification probabilities as efficiently as possible.

The same estimation, however, could not be done in FACES cohort because FACES did

not perform outcome validation. We, therefore, had to rely on misclassification information

from AMPATH to make misclassification adjustments on the cumulative incidence of death

at FACES, assuming transportability of misclassification. After adjustment, the 12-month

mortality at FACES was estimated to be about 6.4%–a value that was least 3-fold higher

than the naive 12-month cumulative incidence of about 1.9%. This change, in our opinion,

delineates the importance of statistically principled ways of estimating misclassification

probabilities.
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2.8 Appendix

2.8.1 Likelihood

Based on the data assumptions presented in Section 2.2, the full-likelihood of the observed

data is derived as follows:

L(β1,β2) =
n∏
i=1

P[Ti, C∗i , X∗i ]

∝
n∏
i=1

P[Ti, C∗i |X∗i ]

=
n∏
i=1

P[Ti, C∗i , Ci = 1|X∗i ]I[Ci=1]P[Ti, C∗i , Ci = 2|X∗i ]I[Ci=2]

=
n∏
i=1

(P[Ti|X∗i ]P[C∗i , Ci = 1|Xi, Ti])I[Ci=1] (P[Ti|X∗i ]P[C∗i , C = 2|X∗i , Ti])
I[Ci=2]

∝
n∏
i=1

(P[C∗i , Ci = 1|X∗i , Ti])
I[Ci=1] (P[C∗i , Ci = 2|X∗i , Ti])

I[Ci=2]

=
n∏
i=1

(P[Ci = 1|X∗i , Ti]P[C∗i |X∗i , Ti, Ci = 1])I[Ci=1] (P[Ci = 2|X∗i , Ti]P[C∗i |X∗i , Ti, Ci = 2])I[Ci=2]

∝
n∏
i=1

(P[C∗i |X∗i , Ti, Ci = 1])I[Ci=1] (P[C∗i |X∗i , Ti, Ci = 2])I[Ci=2]

=
n∏
i=1

(
P[C∗i = 1|X∗i , Ti, Ci = 1]I[C∗

i =1]P[C∗i = 2|X∗i , Ti, Ci = 1]I[C∗
i =2]

)I[Ci=1]

×
n∏
i=1

(
P[C∗i = 1|X∗i , Ti, Ci = 2]I[C∗

i =1]P[C∗i = 2|X∗i , Ti, Ci = 2]I[C∗
i =2]

)I[Ci=2]

=
n∏
i=1

{
(1− π∗21(β1;Xi))I[C

∗
i =1] π∗21(β1;Xi)I[C

∗
i =2]

}I[Ci=1]

×
n∏
i=1

{
π∗12(β2;Xi)I[C

∗
i =1] (1− π∗12(β2;Xi))I[C

∗
i =2]

}I[Ci=2]
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2.8.2 Proving consistency

Our goal is show that ||β̂n−β0||
p−→ 0. Without loss of generality, let’s begin by showing that

the parameter of interest, β1 in the score equation 2.10 is identifiable–that is, it exists and

is unique. Existence is shown by proving that, Ψ(β1,γ) = 0 if the mean model is correctly

specified, and uniqueness by showing that d
dβΨn(β,γ)|β=β1 is negative-definite.

Under the true model Pθ, the expected score contribution for i-th study unit is given

by

Ψ(β1,γ) = Pψi(β1,γ)

= E
{
XT
i

{
Riδ1i + (1−Ri)[1− p21(γ1;Zi)]δ

∗
1ip12(γ2;Zi)1−δ∗

1i
}[

(1− δ∗1i)−
exp (XT

i β1)
1 + exp (XT

i β1)

]}

= E
{
XT
i g(γ;Ri,∆1i,Zi)

[
(1− δ∗1i)−

exp (XT
i β1)

1 + exp (XT
i β1)

]}
, where,

g(γ;Ri,∆1i,Zi) =
{
Riδ1i + (1−Ri)[1− p21(γ1; Zi)]δ

∗
1ip12(γ2; Zi)1−δ∗

1i
}

;

and∆1i = (δ1i, δ
∗
1i); γ = (γ1,γ2),

= EW

{
E

[
XT
i g(γ;Ri,∆1i,Zi)

(
(1− δ∗1i)−

exp (XT
i β1)

1 + exp (XT
i β1)

) ∣∣∣∣Wi = (Xi ∪Zi)
]}

= EW

{
XT
i E∆1

{
g(γ;Ri,∆1i,Zi)

[
E

(
1− δ∗1i

∣∣∣∣Xi, δ1i

)
− exp (XT

i β1)
1 + exp (XT

i β1)

]}}
,

if model is correctly specified,

= EW

{
XT
i E∆1

{
g(γ;Ri,∆1i,Zi)

[
exp (XT

i β1)
1 + exp (XT

i β1)
− exp (XT

i β1)
1 + exp (XT

i β1)

]}}
,

= 0.

In addition, the second derivative of the score function is clearly negative definite as

shown below:
d

dβ
Ψn(β,γ)|β=β1 = − 1

n

n∑
i=1
XT
i g(γ;Ri,∆1i,Zi)

exp(XT
i β1)(

1 + exp(XT
i β1)

)2Xi

Since existence and uniqueness conditions hold, conclude that β1 is identifiable.
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Without loss of generality, β2 is also identifiable. We prove consistency by showing that the

class of functions, {ψ(β,γ0) : β ∈ B}, indexed by β ∈ B is P Glivenko-Cantelli. With that

proof, it would follow that ||β̂n−β0||
p−→ 0. This is because, supβ∈B ||Ψn(β, γ̂n)−Ψ(β,γ0)|| p−→

0, since, by countable sub-additivity of norms,

sup
β∈B
‖Ψn(β, γ̂n)−Ψ(β,γ0)‖ = sup

β∈B
‖Ψn(β, γ̂n)−Ψn(β,γ0) + Ψn(β,γ0)−Ψ(β,γ0)‖

≤ sup
β∈B
‖Ψn(β, γ̂n)−Ψn(β,γ0)‖

+ sup
β∈B
‖Ψn(β,γ0)−Ψ(β,γ0)‖

= sup
β∈B
‖Ψn(β, γ̂n)−Ψn(β,γ0)‖+ op(1), by the law of large numbers

= sup
β∈B
‖Ψn(β,γ0) + (γ̂n − γ0).Ψ̇n(β,γ0)−Ψn(β,γ0)‖+ op(‖γ̂n − γ0‖),

Then by Taylor series expansion, the above is

sup
β∈B
‖(γ̂n − γ0)

[
Ψ̇n(β,γ0)− Ψ̇(β,γ0) + Ψ̇(β,γ0)

]
‖+ op(‖γ̂n − γ0‖)

= sup
β∈B
‖(γ̂n − γ0).op(1) + (γ̂n − γ0)Ψ̇(β,γ0)‖+ op(‖γ̂n − γ0‖)

= op(1)op(1) +Op(1)op(1) + op(Op(n−1/2))

= op(1)

2.8.3 Proving asymptotic Normality

At the maximum pseudo-likelihood estimate,

0 = Ψn(β̂n, γ̂nv)

= Ψn(β̂n,γ0) +
[
Ψn(β̂n, γ̂nv)−Ψn(β̂n,γ0)

]
(2.13)

where n is the size of the main sample, nv is the size of internal-validation sample and,
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Ψn(β̂n,γ0) is the average of the estimated score function when γ0 is known. Through a

number of Taylor Series expansions and algebraic steps on 2.13, it can be deduced that:

√
n(β̂n − β0) = − 1√

n

n∑
i=1
I−1β0,γ0)

[
l̇(β0,γ0|Xi) +

√
s.R(β0,γ0)I−1(γ0)l̇(γ0|Xi)

]
+ op(1)

= 1√
n

n∑
i=1

ψ̃(Xi|β0,γ0) + op(1), (2.14)

where R(β0,γ0) =
[
d
dγΨn(β0,γ)|γ=γ0

]
is a q × d matrix; s = n

nv
as n −→∞ and

ψ̃(Xi|β0,γ0) = I−1β0,γ0)
[
l̇(β0,γ0|Xi) +

√
s.R(β0,γ0)I−1(γ0)l̇(γ0|Xi)

]
By the central limit theorem:

√
n(β̂n − β0) = 1√

n

n∑
i=1

ψ̃(Xi|β0,γ0) + op(1) d−→ N(0,Ω)

where

Ω = I−1(β0,γ0) + s.I−1(β0,γ0)W(β0,γ0,X,Z)I−1(β0,γ0)

and,

W(β0,γ0,X,Z) = E
[
R(β0,γ0)I−1(γ0)l̇(γ0|Z)l̇(β0,γ0|X)T

]
+ E

[
l̇(β0,γ0|X)l̇(γ0|Z)T I−1(γ0)R(β0,γ0)T

]
+ R(β0,γ0)I−1(γ0)R(β0,γ0)T

Ω can be estimated by replacing the parameter β0 and γ0 with their consistent estimators

so that:

Ω̂n = 1
n

n∑
i=1

ψ̃(Xi|β̂n, γ̂n)ψ̃(Xi|β̂n, γ̂n)T .

2.8.4 Clustered data

In the clustered-data setting, I will prove the asymptotic normality of the pseudo-likelihood

estimator, and also derive the formula for the variance estimator. Assume that in each
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cluster i ∈ {1, 2, ...,m} with ni units, the number of doubled-sampled units is ni(v). Also

assume that ni
ni(v)

= s as cluster size, ni, increases to ∞ for all i = 1, 2, ...,m. Here, think

of s as the inverse proportion of the cluster that is double sampled. At the optimal point,

1
m

∑m
i=1 Ui.(β̂m, γ̂m) = 0. Begin by recognizing that:

1
m

m∑
i=1

Ui.(β̂m, γ̂m) = 1
m

m∑
i=1

[
Ui.(β̂m, γ̂m) + Ui.(β̂m,γ0)− Ui.(β̂m,γ0)

]
= 1
m

m∑
i=1

Ui.(β̂m,γ0) + 1
m

m∑
i=1

[
Ui.(β̂m, γ̂m)− Ui.(β̂m,γ0)

]
.

After some Taylor series expansions and algebraic steps, it can be deduced that the influence

function is given by:

√
m
(
β̂m − β0

)
= 1√

m

m∑
i=1

ψ̃i.(β0,γ0) + op(1)

where ψ̃i.(β0,γ0) = −I−1(β0,γ0)Ui.(β0,γ0)−
√
s.R(β0,γ0)I−1(β0,γ0)I−1(γ0)Ui.(γ0), with

R(β0,γ0) = 1
m

∑m
i=1

d
dγUi.(β0,γ)|γ=γ0 . It would then follow by the central limit theorem

that
√
m
(
β̂m − β0

)
= 1√

m

m∑
i=1

ψ̃i.(β0,γ0) + op(1) −→ N(0,Ω)

where, Ω = E[ψ̃i.(β0,γ0)ψ̃Ti. (β0,γ0)]. Empirically, Ω is estimated by replacing parameters

with their consistent estimates, that is,

Ω̂m = E[ψ̃i.(β̂m, γ̂m)ψ̃Ti. (β̂m, γ̂m)] = 1
m

m∑
i=1

ψ̃i.(β̂m, γ̂m)ψ̃Ti. (β̂m, γ̂m)

2.8.5 Model misspecification

In the proposed pseudo-likelihood estimation, when true outcome is missing, it is replaced

by its predictive value as defined above in sub-section 2.3.1. Also as stated in Section 2.3,

I have chose to estimate the predictive values parametrically, despite the risk of biased

estimation if the conditional mean model is misspecified. I conceded that, it would be up

to the practitioner to perform appropriate goodness of fit tests, and, if need be, implement
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necessary model remedies. Now, I will formally explore the impact of misspecifying the

predictive value model on parameter estimation (assuming there is no omission important

variables).

Recall that the predictive value for true cause 1 given cause 2 is observed is defined

as follows

P[C = 1|T = t, C∗ = 2,Z] = P[C∗ = 2|C = 1, T = t,Z]P[C = 1, T = t|Z]
P[C∗ = 2|C = 1, T = t,Z]P[C = 1, T = t|Z] + P[C∗ = 2|C = 2, T = t,Z]P[C = 2, T = t|Z]

This predictive value equation can also be expressed as:

P[C = 1|T = t, C∗ = 2,Z] =
λ1(t;Z)

λ1(t;Z)+λ2(t;Z)π
∗
21(t;Z)

λ1(t;Z)
λ1(t;Z)+λ2(t;Z)π

∗
21(t;Z) + λ2(t;Z)

λ1(t;Z)+λ2(t;Z)π
∗
22(t;Z)

Recognizing that P[C=1|T=t,C∗=2,Z]
P[C=2|T=t,C∗=2,Z] = λ1(t;Z)π∗

21(t;Z)
λ2(t;Z)π∗

22(t;Z) , taking the log, and performing

some algebraic operations, under the Weibull settings in Section 2.4.1, one can derive that

log
[P[C = 1|T = t, C∗ = 2,Z]
P[C = 2|T = t, C∗ = 2,Z]

]
= log

(
λ1
λ2

)
+ [κT1 − κT2 ]Z +Zβ1 + log

[1 + exp(Zβ2)
1 + exp(Zβ1)

]
.

(2.15)

Based on Equation 2.15 above, the linear relationship between log odds and co-

variates is preserved only when β1 = β2. That is, logistic regression is correct model for

predictive values if β1 = β2. Fitting a logistic model when β1 6= β2 is a form of model

misspecification. I explored the impact of misspecification in the simulations by setting:

β2 = (−0.3, 0.2, 0.5, 0.5).

64



Figure 2.1: Summary of simulation samples used when double sampling was set at 20%.
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Complete Case Estimator Pseudo-likelihood Estimator

Model, (ds %) Cause Parameter Truth Estimate % Bias MCSD ASE CP Estimate % Bias MCSD ASE CP RE

Correct (20%)

1

β01(Intercept) -0.4 -0.421 5.25 0.353 0.343 0.944 -0.419 4.75 0.281 0.275 0.941 1.556
β11 (t) -0.4 -0.399 0.25 0.359 0.348 0.945 -0.398 0.50 0.284 0.275 0.931 1.601
β21 (z1) 0.5 0.525 5.00 0.414 0.416 0.952 0.520 4.00 0.325 0.324 0.941 1.649
β31 (z2) -0.5 -0.499 0.20 0.144 0.146 0.945 -0.498 0.40 0.114 0.114 0.946 1.640

2

β02(Intercept) -0.4 -0.408 2.00 0.298 0.292 0.950 -0.409 2.25 0.215 0.214 0.948 1.862
β12 (t) -0.4 -0.410 2.50 0.306 0.298 0.943 -0.409 2.25 0.222 0.216 0.949 1.903
β22 (z1) 0.5 0.517 3.40 0.416 0.406 0.942 0.518 3.60 0.314 0.309 0.948 1.726
β32 (z2) -0.5 -0.506 1.20 0.145 0.142 0.945 -0.503 0.60 0.109 0.107 0.943 1.761

Incorrect (20%)

1

β01(Intercept) -0.4 -0.397 0.75 0.347 0.342 0.933 -0.399 0.25 0.281 0.272 0.940 1.581
β11 (t) -0.4 -0.418 4.50 0.358 0.349 0.942 -0.397 0.75 0.276 0.272 0.942 1.646
β21 (z1) 0.5 0.505 1.00 0.421 0.416 0.943 0.484 3.20 0.316 0.317 0.949 1.722
β31 (z2) -0.5 -0.510 2.00 0.151 0.147 0.943 -0.497 0.60 0.111 0.109 0.937 1.819

2

β02(Intercept) -0.3 -0.315 5.00 0.298 0.290 0.936 -0.302 0.67 0.213 0.207 0.937 1.963
β12 (t) 0.2 0.215 7.50 0.296 0.296 0.947 0.206 3.00 0.213 0.211 0.939 1.968
β22 (z1) 0.5 0.514 2.80 0.415 0.401 0.944 0.496 0.80 0.301 0.298 0.947 1.811
β32 (z2) 0.5 0.517 3.40 0.139 0.141 0.955 0.503 0.60 0.101 0.102 0.948 1.911

Correct (50%)

1

β01(Intercept) -0.4 -0.394 1.50 0.214 0.214 0.952 -0.397 0.75 0.187 0.189 0.954 1.282
β11 (t) -0.4 -0.405 1.25 0.221 0.217 0.952 -0.400 0.00 0.190 0.190 0.956 1.304
β21 (z1) 0.5 0.491 1.80 0.262 0.260 0.951 0.492 1.60 0.231 0.226 0.947 1.324
β31 (z2) -0.5 -0.501 0.20 0.089 0.092 0.950 -0.499 0.20 0.079 0.079 0.950 1.356

2

β02(Intercept) -0.4 -0.406 1.50 0.181 0.183 0.952 -0.406 1.50 0.155 0.154 0.943 1.412
β12 (t) -0.4 -0.398 0.50 0.186 0.186 0.946 -0.399 0.25 0.157 0.156 0.956 1.422
β22 (z1) 0.5 0.506 1.20 0.254 0.255 0.950 0.506 1.20 0.218 0.218 0.943 1.368
β32 (z2) -0.5 -0.499 0.20 0.089 0.089 0.949 -0.500 0.00 0.076 0.076 0.946 1.371

Incorrect (50%)

1

β01(Intercept) -0.4 -0.395 1.25 0.211 0.214 0.949 -0.394 1.50 0.183 0.188 0.964 1.296
β11 (t) -0.4 -0.401 0.25 0.219 0.216 0.943 -0.398 0.50 0.188 0.188 0.952 1.320
β21 (z1) 0.5 0.492 1.60 0.255 0.261 0.954 0.486 2.80 0.222 0.224 0.955 1.358
β31 (z2) -0.5 -0.502 0.40 0.091 0.092 0.955 -0.498 0.40 0.077 0.078 0.953 1.391

2

β02(Intercept) -0.3 -0.298 0.67 0.186 0.181 0.944 -0.295 1.67 0.157 0.151 0.932 1.437
β12 (t) 0.2 0.202 1.00 0.191 0.184 0.943 0.205 2.50 0.161 0.152 0.928 1.465
β22 (z1) 0.5 0.493 1.40 0.254 0.251 0.947 0.483 3.40 0.218 0.213 0.943 1.389
β32 (z2) 0.5 0.505 1.00 0.090 0.088 0.931 0.502 0.40 0.077 0.074 0.934 1.414

Table 2.1: Comparison of finite-sample properties of complete-case estimator and the
pseudo-likelihood estimator when data are missing completely at random (MCAR). Simu-
lations were performed at 20% and 50% double-sampling and under correct and incorrect
model specification. (ds%) represents the double-sampling percent among the non-censored
observations.
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Complete Case Estimator Pseudo-likelihood Estimator

Model*,Planned
DS%(Actual
DS%)**

Cause Parameter True Value Estimate % Bias MCSD ASE CP Estimate % Bias MCSD ASE CP RE

Correct, 20%(13.6%)

1

β01(Intercept) -0.40 -0.492 23.00 0.421 0.424 0.944 -0.420 5.00 0.336 0.331 0.951 1.570
β11 (t) -0.40 -0.404 1.00 0.436 0.432 0.947 -0.399 0.25 0.338 0.328 0.939 1.664
β21 (z1) 0.50 0.526 5.20 0.516 0.514 0.947 0.528 5.60 0.394 0.386 0.951 1.715
β31 (z2) -0.50 -0.514 2.80 0.176 0.182 0.953 -0.509 1.80 0.133 0.136 0.960 1.751

2

β02(Intercept) -0.40 -0.489 22.25 0.375 0.360 0.932 -0.415 3.75 0.264 0.251 0.929 2.018
β12 (t) -0.40 -0.405 1.25 0.398 0.368 0.934 -0.407 1.75 0.265 0.253 0.941 2.256
β22 (z1) 0.50 0.517 3.40 0.497 0.500 0.943 0.521 4.20 0.363 0.365 0.945 1.875
β32 (z2) -0.50 -0.518 3.60 0.185 0.176 0.938 -0.510 2.00 0.132 0.128 0.942 1.964

Correct, 50%(34%)

1

β01(Intercept) -0.4 -0.459 14.75 0.261 0.263 0.943 -0.393 1.75 0.221 0.220 0.953 1.395
β11 (t) -0.4 -0.415 3.75 0.259 0.266 0.958 -0.408 2.00 0.218 0.219 0.951 1.412
β21 (z1) 0.5 0.490 2.00 0.322 0.320 0.947 0.495 1.00 0.263 0.261 0.947 1.499
β31 (z2) -0.5 -0.512 2.40 0.114 0.112 0.943 -0.510 2.00 0.091 0.092 0.954 1.569

2

β02(Intercept) -0.4 -0.460 15.00 0.225 0.224 0.940 -0.382 4.50 0.174 0.174 0.946 1.672
β12 (t) -0.4 -0.410 2.50 0.236 0.228 0.944 -0.411 2.75 0.178 0.176 0.946 1.758
β22 (z1) 0.5 0.487 2.60 0.311 0.312 0.952 0.478 4.40 0.256 0.250 0.939 1.476
β32 (z2) -0.5 -0.512 2.40 0.113 0.109 0.938 -0.509 1.80 0.090 0.087 0.943 1.576

Incorrect, 20%(13.6%)

1

β01(Intercept) -0.4 -0.483 20.75 0.432 0.424 0.931 -0.403 0.75 0.326 0.325 0.950 1.756
β11 (t) -0.4 -0.407 1.75 0.421 0.431 0.950 -0.402 0.50 0.317 0.320 0.945 1.764
β21 (z1) 0.5 0.509 1.80 0.533 0.514 0.943 0.497 0.60 0.386 0.375 0.946 1.907
β31 (z2) -0.5 -0.516 3.20 0.174 0.181 0.951 -0.506 1.20 0.124 0.128 0.954 1.969

2

β02(Intercept) -0.3 -0.366 22.00 0.364 0.356 0.939 -0.291 3.00 0.247 0.242 0.946 2.172
β12 (t) 0.2 0.191 4.50 0.362 0.364 0.955 0.196 2.00 0.245 0.246 0.946 2.183
β22 (z1) 0.5 0.504 0.80 0.480 0.490 0.955 0.485 3.00 0.340 0.351 0.965 1.993
β32 (z2) 0.5 0.506 1.20 0.168 0.172 0.949 0.499 0.20 0.114 0.119 0.959 2.172

Incorrect, 50%(34%)

1

β01(Intercept) -0.4 -0.475 18.75 0.266 0.262 0.941 -0.402 0.50 0.220 0.218 0.945 1.462
β11 (t) -0.4 -0.397 0.75 0.261 0.265 0.941 -0.396 1.00 0.210 0.216 0.951 1.545
β21 (z1) 0.5 0.501 0.20 0.324 0.319 0.949 0.495 1.00 0.267 0.256 0.927 1.473
β31 (z2) -0.5 -0.508 1.60 0.111 0.112 0.951 -0.503 0.60 0.089 0.088 0.941 1.555

2

β02(Intercept) -0.3 -0.372 24.00 0.227 0.222 0.937 -0.295 1.67 0.173 0.170 0.937 1.722
β12 (t) 0.2 0.199 0.50 0.225 0.226 0.953 0.205 2.50 0.172 0.172 0.953 1.711
β22 (z1) 0.5 0.488 2.40 0.308 0.307 0.953 0.477 4.60 0.235 0.242 0.964 1.718
β32 (z2) 0.5 0.501 0.20 0.109 0.108 0.953 0.498 0.40 0.085 0.083 0.950 1.644

Table 2.2: Comparison of finite-sample properties of complete-case estimator and the pseudo-
likelihood estimator when data are missing at random (MAR). Simulations were performed
under correct and incorrect predictive-value model specifications(*). In each study, double-
sampling (ds) was performed on either 20% or 50% of the non-censored, however due to
subject non-response the actual double-sampling was smaller than the planned double-
sampling (**). These simulations explore a situation where the actual double-sampling is
about 80% of the planned double-sampling among the non-censored.
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Estimation Method

Expectation Maximization (EM) Pseudo-likelihood

Cause Parameter True Value Estimate % Bias MCSD Estimate % Bias MCSD RE

1

β01 (Intercept) -0.4 -0.415 3.75 0.266 -0.412 3.00 0.280 0.903
β11 (t) -0.4 -0.392 2.00 0.266 -0.405 1.25 0.266 1.000
β21 (z1) 0.5 0.512 2.40 0.302 0.517 3.40 0.337 0.803
β31 (z2) -0.5 -0.501 0.20 0.105 -0.507 1.40 0.118 0.792

2

β02 (Intercept) -0.4 -0.405 1.25 0.202 -0.399 0.25 0.215 0.883
β12 (t) -0.4 -0.405 1.25 0.209 -0.407 1.75 0.215 0.945
β22 (z1) 0.5 0.508 1.60 0.288 0.503 0.60 0.314 0.841
β32 (z2) -0.5 -0.503 0.60 0.098 -0.505 1.00 0.111 0.779

Table 2.3: Simulation Results: Comparison of finite sample properties of maximum likelihood
estimates from EM to pseudo-likelihood estimates. Sample size=5000; Double sampling
percent is 20%.
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Figure 2.2: Computation time: EM versus pseudo-likelihood approach. As sample size
increases: (a) represents the computational time for the EM; (b) represents the computational
time of the pseudo-likelihood approach; (c) represents the computational times of the EM
and pseudo-likelihood approach on the same time-scale; (d) represents the relative time of
the EM versus the pseudo-likelihood approach.
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Ignore Clustering Structure Consider Clustering Structure

Number of clusters Cause Parameter Truth Estimate % Bias MCSD ASE CP Estimate % Bias MCSD ASE CP

100

1

β01(Intercept) -0.4 -0.410 2.50 0.462 0.285 0.788 -0.410 2.50 0.462 0.439 0.930
β11 (t) -0.4 -0.410 2.50 0.451 0.286 0.808 -0.410 2.50 0.451 0.427 0.924
β21 (z1) 0.5 0.511 2.20 0.576 0.336 0.748 0.511 2.20 0.576 0.544 0.932
β31 (z2) -0.5 -0.508 1.60 0.203 0.120 0.747 -0.508 1.60 0.203 0.192 0.935

2

β02(Intercept) -0.4 -0.420 5.00 0.408 0.222 0.702 -0.420 5.00 0.408 0.393 0.949
β12 (t) -0.4 -0.409 2.25 0.382 0.226 0.771 -0.409 2.25 0.382 0.369 0.940
β22 (z1) 0.5 0.528 5.60 0.524 0.318 0.770 0.528 5.60 0.524 0.524 0.951
β32 (z2) -0.5 -0.515 3.00 0.186 0.113 0.766 -0.515 3.00 0.186 0.186 0.939

200

1

β01(Intercept) -0.4 -0.425 6.25 0.316 0.197 0.782 -0.425 6.25 0.316 0.308 0.948
β11 (t) -0.4 -0.388 3.00 0.313 0.197 0.789 -0.388 3.00 0.313 0.299 0.940
β21 (z1) 0.5 0.526 5.20 0.393 0.232 0.751 0.526 5.20 0.393 0.383 0.941
β31 (z2) -0.5 -0.502 0.40 0.139 0.082 0.754 -0.502 0.40 0.139 0.135 0.946

2

β02(Intercept) -0.4 -0.408 2.00 0.273 0.153 0.742 -0.408 2.00 0.273 0.277 0.949
β12 (t) -0.4 -0.406 1.50 0.272 0.155 0.739 -0.406 1.50 0.272 0.261 0.943
β22 (z1) 0.5 0.510 2.00 0.378 0.220 0.755 0.510 2.00 0.378 0.371 0.944
β32 (z2) -0.5 -0.510 2.00 0.133 0.077 0.761 -0.510 2.00 0.133 0.130 0.935

400

1

β01(Intercept) -0.4 -0.403 0.75 0.224 0.138 0.769 -0.403 0.75 0.224 0.219 0.947
β11 (t) -0.4 -0.400 0.00 0.213 0.138 0.814 -0.400 0.00 0.213 0.211 0.941
β21 (z1) 0.5 0.508 1.60 0.272 0.162 0.755 0.508 1.60 0.272 0.273 0.954
β31 (z2) -0.5 -0.503 0.60 0.098 0.057 0.751 -0.503 0.60 0.098 0.095 0.937

2

β02(Intercept) -0.4 -0.397 0.75 0.200 0.107 0.709 -0.397 0.75 0.200 0.196 0.955
β12 (t) -0.4 -0.404 1.00 0.190 0.108 0.726 -0.404 1.00 0.190 0.184 0.943
β22 (z1) 0.5 0.498 0.40 0.268 0.154 0.740 0.498 0.40 0.268 0.261 0.945
β32 (z2) -0.5 -0.499 0.20 0.091 0.054 0.746 -0.499 0.20 0.091 0.092 0.957

800

1

β01(Intercept) -0.4 -0.394 1.50 0.157 0.097 0.770 -0.394 1.50 0.157 0.154 0.945
β11 (t) -0.4 -0.409 2.25 0.149 0.097 0.802 -0.409 2.25 0.149 0.148 0.946
β21 (z1) 0.5 0.499 0.20 0.198 0.114 0.738 0.499 0.20 0.198 0.192 0.941
β31 (z2) -0.5 -0.506 1.20 0.068 0.040 0.750 -0.506 1.20 0.068 0.067 0.949

2

β02(Intercept) -0.4 -0.401 0.25 0.142 0.075 0.702 -0.401 0.25 0.142 0.139 0.946
β12 (t) -0.4 -0.406 1.50 0.131 0.075 0.740 -0.406 1.50 0.131 0.129 0.943
β22 (z1) 0.5 0.509 1.80 0.192 0.109 0.732 0.509 1.80 0.192 0.185 0.945
β32 (z2) -0.5 -0.503 0.60 0.067 0.038 0.719 -0.503 0.60 0.067 0.065 0.944

Table 2.4: Model results from using the pseudo-likelihood method when data are clustered.
Cluster size was set at 50, double sampling percent was set at 20%.
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Verifiable Outcome

Variables Total, N=31179 [%] No, N=24222 [%] Yes, N=6957 [%]

Independent Variables

Age at ART initiation
Mean (SD) 37.4 (9.7) 37.6 (9.3) 38.4 (10.0)
Median (min - max) 36.2 (18.0 - 90.1) 36.4 (18.2 - 82.2) 37.1 (18.1 - 81.4)

Gender
Female 19961 [64] 15958 [66] 4003 [58]
Male 11218 [36] 8264 [34] 2954 [42]

Study time in months
Mean (SD) 14.3 (15.3) 15.1 (15.5) 11.5 (14.3)
Median (min - max) 8.4 (0 - 108.2) 9.5 (0.2 - 104.9) 5.4 (0.0 - 108.2)

CD4 count at ART initiation
Mean (SD) 188.8 (174.6) 194.3 (175.2) 169.4 (171.2)
Median (min - max) 155 (0.0 - 3030.0) 163.0 (0.0 - 2869.0) 131.0 (0.0 - 3030.0)

Outcome Variables

Observed Cause Of Failure
Death 2719 [8.7] 0 [0.0] 2719 [39]
Loss to Clinic 28460 [91] 24222 [100] 4238 [61]

Confirmed Cause of Failure
Death 3862 [12] 0 [0.0] 3862 [56]
Loss to Clinic 3095 [9.9] 0 [0.0] 3095 [44]
None (Outcome not validated) 24222 [78] 24222 [100] 0 [0.0]

Table 2.5: Characteristics of patients involved in the missclassification model of the proba-
bility of classifying patients as disengaged from care when they are in fact dead. All the
patients came from the AMPATH program.
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Complete Case Analysis, N=3862 Pseudo-likelihood Method, N=28084

Estimate SE Z Pr(> |Z|) Estimate SE Z Pr(> |Z|)

(Intercept) -1.075 0.0870 -12.363 0.0000 0.656 0.0743 8.838 0.0000

Gender (Male versus Female) -0.113 0.0724 -1.555 0.1200 -0.208 0.0635 -3.273 0.0011

Centered Age (Age minus mean of age) 0.011 0.0035 3.097 0.0020 0.006 0.0030 1.886 0.0594
√
CD4 Count 0.012 0.0061 1.965 0.0495 0.016 0.0059 2.653 0.0080

Study time (months) 0.025 0.0115 2.161 0.0307 0.058 0.0087 6.629 0.0000
I(3 ≤ Study time < 6)× (Study time - 3) 0.016 0.0601 0.269 0.7876 -0.031 0.0358 -0.868 0.3856
I( 6 ≤ Study time < 12)×(Study time - 6) -0.028 0.0379 -0.743 0.4574 -0.053 0.0232 -2.299 0.0215
I(Study time ≥ 12)×(Study time - 12) -0.027 0.0155 -1.711 0.0871 -0.068 0.0107 -6.370 0.0000

Table 2.6: Misclassification model when using complete-case analysis, and the proposed
pseudo-likelihood method. Complete case analysis consisted of 3862 subjects, and the
pseudo-likelihood based analysis consisted of 28084 subjects, where 3862 received weight of
1, and the rest received a weight between 0 and 1.

72



Figure 2.3: Naive (unadjusted) and misclassification-adjusted cumulative incidence functions
of death at FACES. The light-blue dashed lines represent the point-wise 95% confidence-
interval limits for the misclassification-adjusted CIF.
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CHAPTER 3

Modeling Cause-specific Hazards While Adjusting for Externally-sourced

Outcome-misclassification Information

In competing risks models, misclassified outcomes often lead to biased estimation of cause-

specific hazards. Properly accounting for outcome misclassification, therefore, becomes a

critical issue in the analysis. The accommodation, however, depends on the availability of

the misclassification probabilities, which can be estimated either from internal or external

sources. In real scientific investigations, misclassification errors can rarely be quantified

from within the study; analysts, therefore, rely on estimates ascertained from external

sources. In this chapter, I describe a parametric pseudo-likelihood method for estimating

cause-specific hazards, under the assumption that the misclassification probabilities obtained

from external sources are transferrable. I show that under such an assumption, the resulting

pseudo-likelihood estimator remains consistent and asymptotically normal. I also show that

the variance of the pseudo-likelihood estimator has a closed-form expression that accounts

for different sources of variability. I assess the finite-sample properties of the estimator

through a simulation study. To illustrate the use of the proposed method, I analyzed data

generated by a real clinical investigation.

3.1 Introduction

Estimation of cause-specific hazard functions in competing-risk models requires accurate

assessments of the causes of failures. For example, in analyses of survival outcomes, causes
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of death must be ascertained accurately to ensure the validity of analytical results. Direct

and verifiable assessment of failure causes, i.e., the gold-standard cause ascertainment, is

often cost inhibitive and thus is rarely feasible in large scale scientific investigations. In some

instances, alternative data sources are available for determination of the causes. For example,

in studies of HIV/AIDS, causes of death could be ascertained from patient medical records

in lieu of autopsy reports. Such external sources, if not treated with care, could introduce

errors to the cause determination. In the case of cause of death, medical records are often

subject to physician errors and coding inaccuracies, and thus giving rise to misclassification

(Flanders, 1992). In a competing-risk analysis, misclassified causes tend to undermine the

validity of the model parameter estimation and inference.

One way to alleviate the impact of incorrectly determined failure causes is to adjust

for the probabilities of misclassification. For all practical purposes, these probabilities are

unlikely to be available a priori; estimates can be obtained by evaluating the true failure

causes in a validation sample and then extrapolate to the full sample (Spiegelman, Carroll,

and Kipnis 2001). In general, an internal validation based on a sub-sample is preferred

as it is more likely to be representative of the original study population. Estimating the

misclassification probabilities from external sources is only used when internal validation is

logistically or operationally unfeasible. But in many situations, external validation does have

an advantage of reduced validation cost. For example, for HIV-related studies conducted in

resource-limited countries, determining the causes of death from existing external data is of

considerable appeal.

Several authors have studied the impact of outcome misclassification in competing-risk

models, and proposed methods for outcome misclassification adjustments. Among these,

Ebrahimi (1996) proposed a Bayesian approach for accommodating outcome misclassification
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in competing-risks estimation (Ebrahimi 1996). Van Rompaye et al. (2012) proposed a

semi-parametric method for estimating the cause-specific hazards in the presence of failure

cause misclassification (Van Rompaye, Jaffar, and Goetghebeur 2012).Gravel et al. (2018)

proposed a parametric full-likelihood approach that uses internal-validation as a source

of misclassification information(Gravel et al. 2018). Bakoyannis and Yiannoutsos (2015)

described a nonparametric method for modeling the cumulative incidence functions while

accounting for non-differential outcome misclassification (Bakoyannis and Yiannoutsos 2015).

Bakoyannis et al. (2018) proposed a semiparametric approach for modeling cause-specific

hazards when the misclassification information came from an internal validation sample

(Bakoyannis, Zhang, and Yiannoutsos 2018). Most recently, Edwards et al. (2019) extended

the work of Bakoyannis and Yiannoutsos (2015) to cater to a scenario where misclassification

rates differ among the subjects in a study (differential misclassification).

In this research, I present a parametric method for modeling cause-specific hazards

in the presence of outcome misclassification, and I focus on the situation where the mis-

classification information used for estimation adjustment comes from an external source.

In the proposed method, I first estimate the misclassification probabilities from external

data, and then incorporate the estimates into the true likelihood. In essence, the method

amounts to a pseudo-likelihood estimation. I show that under appropriate conditions, the

final estimator is consistent and asymptotically normally distributed. For inference, I also

derive a closed-form variance estimator that accounts for various sources of uncertainty,

including the data-generating process, cause-specific hazard parameter estimation, and the

estimation of misclassification probabilities based on external data.

In the following sections, I present the method in the context of a real clinical

investigation.
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3.2 Motivation: Real-world example

Among HIV clinics that contribute data to the International Epidemiologic Databases for

the Evaluation of HIV/AIDS (IeDEA East Africa), one prominent research question is that

of identifying the factors that influence the hazards of death and disengagement from care.

Answering this question in a statistical fashion entails performing a competing-risks analysis

by modeling the cause-specific hazards of death and disengagement from care. Outcomes

are treated as competing risks since interest lies in whichever of the two outcomes comes

first: Observing death precludes us from observing disengagement from care; the opposite is

also true. For IeDEA, the process of using competing risks methods is complicated by the

potential for misclassification among patients deemed disengaged from care: Some of these

patients may actually be dead. As a result, the extent of death misclassification should be

estimated before performing a competing-risks analysis.

IeDEA East Africa estimates the level of misclassification by re-ascertaining, through

patient outreach, the outcomes for a sample of those deemed disengaged from care (Elvin H

Geng et al. 2011; E. H. Geng et al. 2008; Egger et al. 2012). This outreach is sometimes

referred to as internal validation/double-sampling. Using data from outreach, IeDEA can

infer the death misclassification probabilities in the cohort from which the validation sample

is drawn. These misclassification probabilities are then used to adjust competing-risks

analyses of interest. That said, the aforementioned internal-validation scheme is not possible

to perform at a large scale due the prohibitive cost of outreaching patients. As a result, not

all treatment programs that contribute data to IeDEA can perform patient-outreach. In

order to perform competing risks analyses that are adjusted for misclassification in settings

without outcome validation, one way to proceed is to rely on misclassification information

from settings that have outcome validation. This transfer of information is done under the
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assumption of “transportability” of misclassification probabilities across geographical areas

(Justice, Covinsky, and Berlin 1999).

In this chapter, I will present an application using data from two treatment programs

that contribute data to IeDEA. The first dataset will come from AMPATH(Academic Model

Providing Access to Healthcare), and the second dataset will come from FACES(Family

AIDS Care and Education Services ). The main difference between these two datasets is

that the AMPATH data has an internal-validation sample, whereas the FACES data does

not. Using these datasets, we will illustrate how the death misclassification probabilities

estimated in AMPATH can be used to adjust the estimation of cause-specific hazards of

death and disengagement from care in FACES. A scheme of the analysis is presented in

Figure 3.1.
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IeDEA
East AfricaAMPATH FACES

Outcome validation
through outreach

No outcome
validation performed

Estimate
misclassification
probabilities

Compute
predicted

misclassification
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Model cause-
specific
hazards

Assuming transportability

Figure 3.1: Scheme for modeling cause-specific hazards of death and disengagement from
care at FACES while adjusting for death misclassification information that was derived from
AMPATH.
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3.3 Methods

3.3.1 Notation

Assume we have a m-cause competing-risks system wherein a subject can fail from any one

of m causes. Let the true cause of failure be represented by C ∈ {1, 2, ...,m}. Given the

potential for outcome misclassification, we may observe C∗ ∈ {1, 2, ...,m}, where C∗ may

not be consistent with C. Let U be the failure time; V be the censoring time, and T be

the right-censored failure time, where T = min(U, V ). We will assume that U and V are

independent. In addition, we will assume that censoring distribution is independent of the

cause of failure. Lastly, let Z be the subject characteristics. For each of the n subjects,

i = 1, 2..., n, were will observe (Ti, C∗i ,Zi).

Outcomes that are ascertained using gold-standard approaches will be referred to as

true outcomes, and those that are ascertained using error-prone approaches are referred to

as observed/misclassified outcomes.

3.3.2 Likelihood

When there is no misclassification among the competing outcomes, the observed cause C∗

is consistent with the underlying true cause C. This means for each subject i, we observe

(Ti = ti, C
∗
i ,Zi) = (Ti = ti, Ci,Zi). For such a scenario, the likelihood is a function of the

true cause-specific hazards as shown by Equation 3.1.

L(θ) =
m∏
j=1

n∏
i=1

λj(ti;θj ,Zi)δij exp
[
−
∫ ti

0
λj(u;θj ,Zi)du

]
(3.1)
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where:

1. λj(t;Z) is the true cause-specific hazard of cause j at time t conditional on covariates

Z, for j ∈ {1, 2, ...,m};

2. δij = I[Ci = j] is the event indicator of cause-j for subject i;

3. θ = (θ1,θ2), captures the association between the risk factors and the cause-specific

hazards.

When there is a possibility of outcome misclassification, (Ti = ti, C
∗
i ,Zi) is not

necessarily the same as (Ti = ti, Ci,Zi), on account of the fact that C and C∗ are not

necessarily the same. As a result, the likelihood with respect to the observed data changes

to the form shown in Equation 3.2.

L(θ∗,θ) =
m∏
j=1

n∏
i=1

λ∗j (xi;θ∗j ,Zi)
δ∗
ij exp

[
−
∫ xi

0
λj(u;θj ,Zi)du

]
(3.2)

where:

1. λ∗j (t;Z) is the cause-specific hazard of observed cause j at time t conditional on

covariates Z, for j ∈ {1, 2, ...,m};

2. δ∗ij = I[C∗i = j] is the event indicator of observed cause-j for subject i.

The cause-specific hazard of observed cause j at time t, λ∗j (t;Z), is not necessarily

the same as the cause-specific hazard of interest (true cause-specific hazards), λj(t;Z). In

fact,

λ∗j (t;θ∗,Z) =
m∑
k=1

λk(t;θk,Z)P (C∗ = j|T = t, C = k,Z,βk) .

In other words, λ∗j (t) is a linear combination of the true cause-specific hazards, with the

weights being functions of misclassification probabilities. The likelihood with respect to

possibly misclassified outcomes can, therefore, be written as follows:
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L(θ,β) =
m∏
j=1

n∏
i=1

[
m∑
k=1

λk(ti;θj ,Zi)π∗jk(βk;Zi)
]δ∗
ij

× exp
[
−
∫ ti

0
λj(u;θj ,Zi)du

]
(3.3)

where π∗jk(βk;Z) = P (C∗ = j|T = t, C = k,Z,βk) is the probability of observing

cause j when the true cause of failure is k, conditional on (Z, T = t). Loosely, these

probabilities which include misclassification probabilities, sensitivities and specificities will

be referred to as misclassification probabilities.

In order to proceed with estimation using the likelihood in (3.3), we need to either

have prior knowledge about π∗jk or estimate π∗jk using available data. When an internal-

validation sample is available, π∗jk can be estimated efficiently using a pseudo-likelihood

approach presented in Mpofu et al. (2019). That being said, when an internal-validation

sample is available, we can forgo the estimation of π∗jk(βk;Z). This is because when an

internal validation sample is available, there exist other likelihood formulations (other than

likelihood 3.3) that will result in more efficient estimates of cause-specific hazard parameters.

One such formulation is presented by Bakoyannis et al. (2018) (Bakoyannis, Zhang, and

Yiannoutsos 2018). When an internal-validation sample is available, Bakoyannis et al. (2018)

proposed that the likelihood should be expressed as follows:

L(θ,η) =
m∏
j=1

n∏
i=1

λj(xi;θj ,Zi)[Ri×δij+
∑m

k=1 δ
∗
ik×(1−Ri)×pjk(ηk;Zi)]

× exp
[
−
∫ xi

0
λj(u;θj ,Zi)du

]
(3.4)

where,

1. Ri = 1 indicates that the outcome for subject i was validated (thereby known);

2. δij = I[Ci = j] is the event indicator of true cause-j for subject i;
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3. δ∗ik = I[C∗i = k] is the event indicator of observed cause-k for subject i;

4. pjk(ηk;Zi) = P [Ci = j|C∗i = k, Ti = ti,Zi,ηk], is the probability that the true cause

of failure is cause-j given the observed cause is cause-k(i.e., predictive values), given

(Z, T = t).

In this likelihood formulation (3.3.2), Bakoyannis et al. (2018) treated unvalidated

outcomes as missing values, and replaced the missing values by their predictive values.

When there is no outcome validation, neither likelihood (3.3) nor (3.3.2) is immediately

applicable. The reason for this is that neither the misclassification probabilities required for

likelihood (3.3) nor the predictive values required for likelihood (3.3.2) are identifiable from

the sample at hand. In fact, it would be imprudent to use the method by Bakoyannis et al.

(2018) since the unavailability of validation sample also means 100% missingness of the true

cause of failure variable (C). That being said, we can still use likelihood (3.3) in estimation

if we can borrow outcome-misclassification information from settings that have internal-

validation sampling. This transfer of information is made assuming that misclassification

probabilities are transportable across different populations. The same assumption cannot be

made for predictive values, therefore likelihood (3.3.2) cannot be used in settings that do

not have internal validation.

3.3.3 Transportability of misclassification probabilities

Misclassification probabilities in settings without outcome validation can be estimated

by appealing to the transportability of misclassification probabilities (Lyles et al. 2011).

That is, we assume that the misclassification probability models in the current study

are the same as those from an external study (R. J. Carroll et al. 2006; Spiegelman

2010). According to Spiegelman (2010), a downside to the transportability assumption
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is that it is not empirically verifiable (Spiegelman 2010). Spiegelman also notes that the

similarity in covariate distributions across different settings can support the credibility of

the transportability assumption, however, it does not guarantee that the assumption truly

holds.

In our motivating example that consists of East-Africa IeDEA HIV-treatment pro-

grams, the borrowing of misclassification information across different settings has both

plausibility and statistical justifications. Plausibility is driven by fact that IeDEA sites are

geographically proximal, and typically collect data on the same covariates. Statistically, the

transfer of misclassification probabilities is favorable because misclassification probabilities

are independent of the underlying prevalences of the causes of failure. The latter justification

is in the same spirit as in medical diagnostic tests wherein the sensitivities and specificities of

tests are invariant across settings with different disease prevalences. The same justification,

however, cannot be used for predictive values as they are dependent on the underlying

prevalence.

3.4 Theory

I will begin by clarifying the statistical model. Let ζ = (θ,β) ∈ Rd1+d2 be the full-parameter

space. In the problem, θ defines the cause-specific hazard model and is the parameter

of interest(i.e, the structural parameter), and β defines the misclassification model and

is the nuisance parameter. In addition, let’s define the random variable Y = (T,C∗,Z).

Assuming that probability density of Y is p(y; ζ), the statistical model is family of densities,

Pζ = {p(y; ζ) : ζ ∈ ζ ⊂ Rd1+d2 , d1, d2 ∈ N}. Given independent and identically distributed

realizations, y1,y2, ...,yn from density g(y), in general, the estimation goal is find ζ0 ∈ ζ

such that p(y; ζ0) = g(y) (Grace 2016).
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3.4.1 Pseudo-likelihood estimation

In our estimation problem, the parameter of interest is θ = (θ1,θ2, ...,θm), with θk being

the parameter associated with cause-k. The misclassification parameter β in the likelihood

is replaced by its estimate β̂, thereby reducing the parameter-space to Rd1 . Consequently,

the goal of maximum pseudo-likelihood estimation is to find θ̂n ∈ Rd1 that maximizes the

log-pseudo-likelihood, that is:

l̇(θ̂, β̂ne) =
n∑
i=1

l̇i(θ̂n, β̂ne) = 0 (3.5)

where β̂ne ∈ Rd2 is misclassification parameter estimate borrowed from an external

setting, that has sample size ne.

3.4.2 Asymptotic properties

The asymptotic properties of the maximum pseudo-likelihood estimator were studied under

mild regularity conditions, similar to those in Gong and Samniego (Gong and Samaniego

1981). The conditions were as follows:

1. p(y; ζ) 6= p(y; ζ∗) =⇒ ζ 6= ζ∗

2. The support, S = {y : p(y; ζ) > 0} does not depend on ζ = (θ,β).

3. ζ is an interior point in ζ.

4. For all y, (θ,β), the partial derivatives l̇θ, l̈θθ,
...
l θθθ, l̇β,l̈θβ,

...
l θθβ,

...
l θββ exist.

5. The third partial derivatives are bounded by an integrable function, that is

|
...
l θθθ;

...
l θθβ;

...
l θββ| ≤M(y)
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for all (θ,β) and y, where M(y) is an integrable function.

6. For all (θ,β) ∈ ζ and for all y,∣∣∣∣ ddβ log p(y;θ,β)
p(y;θ,β0)

∣∣∣∣ ≤M(y,θ),

where E[M(y,θ)] <∞, ∀θ ∈ Θ, and M(y) is an integrable function.

7. The estimator of the misclassification parameter is consistent, that is, ‖β̂n − β0‖
p−→ 0.

Theorem 1 : Under conditions 1-4 and 7, the maximum pseudo-likelihood estimator

θn is consistent, that is,

‖θ̂n − θ‖
p−→ 0

The proof of consistency is presented in Section 3.10.2.

Theorem 2 : Under conditions 4 through 7, the maximum pseudo-likelihood estimator

is asympotically normal, that is:
√
n(θ̂n − θ0) d−→ N (0,Ω) .

where,

a. Ω = I−1(θ0,β0) + q.W(θ0,β0)I−1(β0)W(θ0,β0)T ,

b. W(θ0,β0) = I−1(θ0,β0) d
dβΨ(θ0,β)|β=β0 is a d1 × d2 matrix ((d1 × d1)× (d1 × d2)),

c. q = n
ne

as n → ∞ is the limiting ratio of the current study sample size (n) and the

external study sample size(ne).

This derivation is consistent with one from Ogden and Tarpey (2006) (Ogden and

Tarpey 2006). The proof for asympotic normality is presented in Section 3.10.3.

Remark 1 : With the sample at hand, Ω = I−1(θ0,β0)+q.W(θ0,β0)I−1(β0)W(θ0,β0)T ,

can be estimated by replacing the parameters with their consistent estimators. That is:

Ω̂ = I−1(θ̂n; β̂ne) + q.W(θ̂n, β̂ne)I−1(β̂ne)W(θ̂n, β̂ne)T .

Empirically, the variance of maximum pseudo-likelihood estimate, θ̂n, can be estimated
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as follows:

V̂ (θ̂n) = 1
n

[
I−1(θ̂n, β̂ne) + q.W(θ̂n, β̂ne)I−1(β̂ne)W(θ̂n, β̂ne)T

]
= 1
n
.I−1(θ̂n, β̂ne) + q

n
.W(θ̂n, β̂ne)I−1(β̂ne)W(θ̂n, β̂ne)T

= 1
n
.I−1(θ̂n, β̂ne) + 1

ne
.W(θ̂n, β̂ne)I−1(β̂ne)W(θ̂n, β̂ne)T .

Remark 2 : The variance estimator accounts for the different sources, namely: the

variance due to estimating θ0 as captured by 1
n .I
−1(θ̂n, β̂ne), and the variance due to

estimating β0 in a external setting as captured by 1
ne
.W(θ̂n, β̂ne)I−1(β̂ne)W(θ̂n, β̂ne)T .

Remark 3 : In a situation when an internal-validation sample is available, the asym-

pototic variance in Theorem 2 changes to: Ω = E[Ψ̃i(θ0,β0)Ψ̃i(θ0,β0)T ] where,

Ψ̃i(θ0,β0) = I−1(θ0,β0)l̇i(θ0;β0) + W(θ0)I−1(β0)l̇i(β0)

The new variance estimator, Ω̂, is formed by replacing the parameters (θ0;β0) with their

consistent estimators (θ̂n; β̂n). The estimators have the same sample size index, n, since the

cause-specific hazard and misclassification parameters are estimated using exactly the same

sample. Empirically, Ω̂ = 1
n

∑n
i=1 Ψ̃i(θ̂n; β̂n)Ψ̃i(θ̂n; β̂n)T .

Remark 4 : If the misclassification-parameter estimator, β̂ne , is also a pseudo-likelihood

estimator as in Mpofu et al. (2019), the variance estimator of Ω, can be partitioned into

components that clearly capture the sources of variance when one creates a pseudo-likelihood

estimator using another pseudo-likelihood estimator as a plug-in.

In Mpofu et al. (2019), it was shown that, in the presence of an internal-validation

sample, the misclassification parameter, β, could be estimated efficiently using a pseudo-

likehood approach that uses as a plug-in, the estimate of the predictive-value parameter, γ.

In general, asymptotic variance of the misclassfication parameter β̂ne can be partitioned as

follows:

Σborrowed = Σ1 + s.Σ2
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where Σ1 is the variance associated with estimating the misclassification paramter when

there is 100% double-sampling, Σ2 is the variance associated with estimating the predictive

value parameter using the internal-validation sample, and s = ne
nv

is ratio of the main-study

sample size, ne, and the internal-validation sample size, nv, as ne −→∞.

Σborrowed represents I−1(β0) in

Ω = I−1(θ0,β0) + q.W(θ0,β0)I−1(β0)W(θ0,β0)T

It then follows that:

Ω = I−1(θ0,β0) + q.W(θ0,β0)Σ1W(θ0,β0)T + c.W(θ0,β0)Σ2W(θ0,β0)T

where:

i. I−1(θ0,β0) is variance associated with cause-specific hazards parameter estimation in

the current study assuming the misclassification parameter β is known.

ii. q.W(θ0,β0)Σ1W(θ0,β0)T is the additional variance associated with borrowing an

misclassification parameter from an external study with 100% double-sampling among

the non-censored (that is, an external study where all event data have been validated).

iii. c.W(θ0,β0)Σ2W(θ0,β0)T is the additional variance due to using a pseudo-likelihood

approach to estimate the misclassification parameter in an external setting.

iv. c = n
nv

is the ratio of current study sample size n and the size of the internal-validaton

sample in an external study as n −→∞.

The estimator, θ̂n, depends on an external misclassification estimator, β̂ne . When an

internal-validation sample is available in an external setting, the misclassification parameters

can be estimated using a pseudo-likelihood approach as shown in Mpofu et al. (2019). The
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asymptotic variance Ω can be partitioned into three components that capture the process

within which the pseudo-likelihood estimator θ̂n was created

3.5 Example: Parametric estimation under a two-cause system

Without losing generality, I will focus on a competing risks system with two causes of failure.

Let the baseline cause-specific hazard for cause j ∈ {1, 2} be λ0j(t;φj).

Assuming proportional hazards, the cause-specific hazard for cause j ∈ {1, 2} is

λj(t;θj ,φj) = λ0j(t;φj) exp (Zθj) , where

λ0j(t;φj) =



φj : φj ∈ R, φj > 0 exponential shape,

φjt
φj−1 : φj ∈ R, φj > 0 Weibull shape,

g(t;φj : φj ∈ Rl+ , l+ ∈ N, l+ ≥ 2) general parametric shape

• Z is design matrix consisting of the risk factors (covariates);

• θj for j ∈ {1, 2} captures the association between the risk factors and the cause-specific

hazards.

Under any of the parametric cause-specific hazard formulations given above, the

pseudo-log-likelihood is:
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l(θ1,θ2,φ1,φ2) =
n∑
i=1

{
δ∗i1 log

[ 2∑
k=1

λ0k(ti;φk) exp (Ziθk)π∗1k(β̂k;Zi)
]
− exp (Ziθ1)

∫ ti

0
λ01(u;φ1)du

}

+
n∑
i=1

{
δ∗i2 log

[ 2∑
k=1

λ0k(ti;φk) exp (Ziθk)π∗2k(β̂k;Zi)
]
− exp (Ziθ2)

∫ ti

0
λ02(u;φ2)du

}

=
n∑
i=1

{
δ∗i1 log

[ 2∑
k=1

λ0k(ti;φk) exp (Ziθk)π∗1k(β̂k;Zi)
]
− Λ01(ti;φ1) exp (Ziθ1)

}

+
n∑
i=1

{
δ∗i2 log

[ 2∑
k=1

λ0k(ti;φk) exp (Ziθk)π∗2k(β̂k;Zi)
]
− Λ02(ti;φ2) exp (Ziθ2)

}

where (θj ,φj) are the parameters associated with cause j, for j ∈ {1, 2}.

The score function is given by Equation 3.5.

∇l(θ1,θ2,φ1,φ2) =



∑n
i=1Zi

{(
δ∗
i1π

∗
11(β̂1;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
21(β̂1;Zi)

p∗
2(θ,φ,β̂,Zi)

)
.λ01(ti;φ1)− Λ01(ti;φ1)

}
exp (Ziθ1)

∑n
i=1Zi

{(
δ∗
i1π

∗
12(β̂2;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
22(β̂2;Zi)

p∗
2(θ,φ,β̂,Zi)

)
λ02(ti;φ2)− Λ02(ti;φ2)

}
exp (Ziθ2)

∑n
i=1

{(
δ∗
i1π

∗
11(β̂1;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
21(β̂1;Zi)

p∗
2(θ,φ,β̂,Zi)

)
.dλ01(ti;φ1)

dφ1
− dΛ01(ti;φ1)

dφ1

}
exp (Ziθ1)

∑n
i=1

{(
δ∗
i1π

∗
12(β̂2;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
22(β̂2;Zi)

p∗
2(θ,φ,β̂,Zi)

)
.dλ02(ti;φ2)

dφ2
− dΛ02(ti;φ2)

dφ2

}
exp (Ziθ2)



where,

1. p∗1(θ,φ, β̂,Zi) =
∑2
k=1 λ0k(ti;φk) exp (Ziθk)π∗1k(β̂k;Zi);

2. p∗2(θ,φ, β̂,Zi) =
∑2
k=1 λ0k(ti;φk) exp (Ziθk)π∗2k(β̂k;Zi).

Based on the Equation 3.5, it is clear that part of task when setting up the score

function is computing the gradients of baseline cause-specific hazards and baseline cumulative

cause-specific hazards with respect to pertinent parameters.
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3.5.1 Example: Exponential-shaped baseline cause-specific hazards

Assume that λ1(t;Z) = exp(Zθ1), and λ2(t;Z) = exp(Zθ2),

where Z =
[
ZT

1 ,Z
T
2 , ...,Z

T
n

]
is an n× d1 matrix, and θ1 and θ2 are d1 × 1 matrices.

The respective baseline and cumulative cause-specific hazards for cause 1 and 2 are:

1. λ01(t;α1) = 1, Λ01(t;α1) = t;

2. λ02(t;α2) = 1, Λ01(t;α2) = t.

It then follows that:

1. p∗1(θ,α, β̂,Zi) =
∑2
k=1 exp (Ziθk)π∗1k(β̂k;Zi);

2. p∗2(θ,α, β̂,Zi) =
∑2
k=1 exp (Ziθk)π∗2k(β̂k;Zi).

Based on Equation 3.5, the score function is:

∇l =


∑n
i=1Zi

{(
δ∗
i1π

∗
11(β̂1;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
21(β̂1;Zi)

p∗
2(θ,φ,β̂,Zi)

)
− ti

}
exp (Zθ1)

∑n
i=1Zi

{(
δ∗
i1π

∗
12(β̂2;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
22(β̂2;Zi)

p∗
2(θ,φ,β̂,Zi)

)
− ti

}
exp (Zθ2)



3.5.2 Example: Weibull-shaped baseline cause-specific hazards

Assume that the respective cause-specific hazards for cause 1 and cause 2 are:

1. λ1(t;Z) = α1t
α1−1 exp (Zθ1)

2. λ2(t;Z) = α2t
α2−1 exp (Zθ2).

In order to proceed with estimation, plug components a to j below into score Equation

3.5:
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a) λ01(t;α1) = α1t
α1−1

b) λ02(t;α2) = α2t
α2−1

c) Λ01(t;α1) = tα1

d) Λ02(t;α2) = tα2

e) dλ01(t;α1)
dα1

= tα1−1 + α1t
α1−1 log t

f) dλ02(t;α2)
dα2

= tα2−1 + α2t
α2−1 log t

g) dΛ01(t;α1)
dα1

= tα1 log t

h) dΛ02(t;α2)
dα2

= tα2 log t

i) p∗1(θ,α, β̂,Z) =
∑2
k=1 αkt

αk−1 exp (Zθk)π∗1k(β̂k;Zi)

j) p∗2(θ,α, β̂,Z) =
∑2
k=1 αkt

αk−1 exp (Zθk)π∗2k(β̂k;Zi).

3.6 Simulation Study

I studied the finite-sample properties of the pseudo-likelihood estimator using a simulation

study. Each simulation iteration involved two datasets: one for the external study, and an-

other one for the current study. The latter is the dataset of interest from which cause-specific

hazards are modeled, and the former is used for estimating misclassification probabilities.

That being said, the current and external-study datasets were simulated using the same

procedure.

3.6.1 Generating the true cause of failure

I considered a study with two competing causes for failure, cause 1 and cause 2. Let

C ∈ {1, 2} represent the true cause of failure: The “true cause” of failure being one that is

ascertained correctly. In the study, a subject/participant was followed until he/she failed

from cause 1 or 2, or was censored. Letting, U represent the time-to-event, and V represent
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the censoring time, the time contributed to study by a subject was T = min(U, V ). Censoring

time was assumed to be independent of both the time-to-event and cause of failure. For

each subject, i = 1, 2, ..., n, we observed (Ti, Ci,Zi), with Ci = 0 indicating that subject i

had been censored, and Zi representing the covariates belonging to subject i.

Assuming the baseline cause-specific hazards were of the Weibull-form, and assuming

proportional hazards, the cause-specific hazard for cause k ∈ {1, 2} took the form:

λk(t|Z) = αkt
αk−1 exp (Zθk) ,

where, αktαk−1 is the baseline cause-specific hazard at time t associated with cause k ∈ {1, 2};

and, θk captures the multiplicative dependence of cause-specific hazard with covariates Z.

In order to simplify the illustration, we assumed that cause-specific hazards for cause 1 and

2 depended on the same Z.

Competing risks data were simulated using the method described by Beyersmann et

al. (2009) (Beyersmann et al. 2009). For the two-cause system described above, this began

with simulating the time-to-event by solving:

tα1 exp (Zθ1) + tα2 exp (Zθ2) + log(1−Q) = 0, t ≥ 0

where Q ∼ U(0, 1).

For subject i = 1, 2, ..., n, the process of generating the time-to-event and the cause

of failure proceeded as follows:

1. The time-to-event, ui, was generated

2. For given ui, the conditional probability of failing due to cause 1 at time T = ui was

computed using the formula
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P [Ci = 1|Zi, T = ui] = λ1(t = ui|Zi)
λ1(t = ui|Zi) + λ2(t = ui|Zi)

(3.6)

3. A Bernoulli random variable, Di, was generated with probability of success P [Ci =

1|Zi, T = ui]). If Di = 1, then true cause of failure was cause 1 (Ci = 1), otherwise

the true cause of failure was 2 (Ci = 2).

4. The censoring time vi was generated from Vi ∼ Exp(η).

5. The time contribution to the study was ti = min(ui, vi)

6. If was ti = vi, then the subject was censored, that is, Ci = 0, otherwise Ci = 1× (Di =

1) + 2× (Di = 2).

3.6.2 Generating the observed/misclassified cause of failure

Assuming that the outcome-detection method was subject to error, we observed C∗, where

C∗ was not necessarily the same as C. If C∗ 6= C, the subject(study-unit) was said to be

misclassified. In addition, those who were censored were assumed to be correctly classified,

that is C∗ = 0 ⇐⇒ C = 0.

The observed/misclassified cause of failure was generated as follows:

a. Given Ci ∈ 1, 2, the probability of misclassification for subject i was defined as follows:

P [C∗i = j|Ci = k,Wi,βk] = πjk(βk; Wi) = exp(Wiβk)
1 + exp(Wiβk)

(3.7)

where W represented the covariates that were associated with misclassification.

b. The misclassification indicator was generated as follows:

Mi|Ci,Wi ∼ Ber [I(Ci = 1)× π21(β1; Wi) + I(Ci = 2)× π12(β2; Wi)]
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where Mi = 1 indicated that outcome was misclassifieed (that is, the observed outcome

was not the same as the true outcome).

c. The observed/misclassified cause of failure was generated as follows:

C∗i =


Ci ifMi = 0

1× (Ci = 2) + 2× (Ci = 1) ifMi = 1.

3.6.3 Simulation dataset generation

In each simulation, two datasets were generated: one to act as an external-study dataset,

and another to act as the current-study dataset. The datasets were generated as described

in Subsections 3.6.1 and 3.6.2. For a fixed misclassification model, as defined by Equation

3.7, the datasets were generated based on the characteristics presented in Table 3.1.
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Study

Cause External Current

Data settings
Sample Size 5000 1000
Double-sampling (%) i) 20; ii) 50 NA
Covariate 1, Z1 Z1 ∼ N(0, 1) Z1 ∼ N(2, 1)
Covariate 2, Z2 Z2 ∼ Beta(1, 1) Z2 ∼ Beta(4, 1)

Cause-specific hazard parameters
1 α1 (Shape) 2.00 1.50
1 θ12 (z1) -0.60 -0.50
1 θ13 (z2) 0.80 0.80

2 α2 (Shape) 2.00 2.50
2 θ22 (z1) -0.50 -0.30
2 θ23 (z2) 0.70 0.60

Censoring distribution V ∼ Exp(0.75) V ∼ Exp(0.6)

Misclassification parameters
1 β10 (Intercept) log m1

1−m1
log m1

1−m1
, m1 ∈ {0.2, 0, 4}

1 β11 (z1) 0.10 0.10
1 β12 (z2) 0.70 0.70
1 β13 (t) -1.00 -1.00

2 β20 (Intercept) log m2
1−m2

log m2
1−m2

, m2 ∈ {0.1, 0, 3}
2 β21 (z1) 0.15 0.15
2 β22 (z2) 0.80 0.80
2 β23 (t) -0.90 -0.90

Table 3.1: Data characteristics for external and current settings.

3.6.4 Experimental considerations

For a fixed sample size as shown in Table 3.1, I explored the impact, on estimation, of the

level of misclassification and the level of double sampling. Simulations were performed while

setting double sampling in the external sample at 20% and 50%. Misclassification was set at

low and moderate levels. Low misclassification coincided with setting (m1 = 0.2,m2 = 0.1),

and moderate misclassification coincided with setting (m1 = 0.4,m2 = 0.3).
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3.6.5 Parameter estimation and performance

In each iteration of the simulation study, parameter estimation proceeded as follows:

1. Using the external sample, the misclassification paramaters, β1 and β2, were estimated

using the pseudo-likelihood approach described in Mpofu et al. (2019).

2. Under the assumption of transportability, I used the misclassification estimates from

the external setting to estimate misclassification probabilities, πjk(β̂k; Xi), for the

current sample of interest.

3. Using the current study-sample, I estimated τ = (α1, α2,θ1,θ2) using the proposed

pseudo-likelihood approach for modeling cause-specific hazards while adjusting for

misclassification probabilities derived from external studies.

4. In addition, for the current sample, I estimated τ = (α1, α2,θ1,θ2) using a naive

approach that ignores outcome misclassification.

The steps described in 3.6.1, 3.6.2,3.6.3 and 3.6.5 were repeated for 2000 times. With

the 2000 estimates, the following summary statistics were computed: average estimates: τ̃ =

1
n

∑n
i=1 τ̂i ; the absolute percent bias: %Bias =

∣∣∣100× τ̃−τtrue
τtrue

∣∣∣; the asympotic standard error:

ASE(τ̃ ) = 1
n

∑n
i=1 SE(τ̂i); the Monte-Calo standard deviation: SD (τ̃ ) = 1

n−1
∑n
i=1 (τ̂i − τ̃ )2;

and the 95 % coverage probability.

3.7 Simulation Results

I began the simulation study by considering the low misclassification setting. For the

2000 datasets used, on average, 24.4% of those who failed from cause 1 were classified as

failing from cause 2, and 13.3% of those who failed from cause 2 were classified as failing

from cause 1. With 20% double sampling in the external sample, the proposed estimation
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resulted in estimates with small bias and close to nominal 95% coverage. The variability of

the pseudo-likelihood estimates was correctly estimated as shown by the closeness of the

asymptotic standard errors (ASE) and Monte-Carlo standard deviations (MCSD). The same

good performance was observed when there was 50% double sampling in the external study.

At 50% double sampling, there was an attenuation in the variability of the estimates.

At moderate misclassification, on average, 45.7% of those who failed from cause 1

were classified as failing from cause 2, and 36.4% of those who failed from cause 2 were

classified as failing from cause 1. The proposed method continued to show some of the

good finite sample properties as seen under low misclassification. The proposed method

resulted in point estimates with small bias. That said, the proposed method did not correctly

compute the standard errors when double sampling was set at 20%: This was evidenced

by the discrepancies between the ASE and MCSD. When double sampling was increased

to 50%, the discrepancies between the ASE and MCSD between smaller than when double

sampling was set at 20%.

In all the simulation scenarios considered in this study, naïve estimation was found

to results in biased estimation. The results for all the simulations performed are presented

in Table 3.2.
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Naïve Proposed

Study Cause Misclass. (%) Truth Estimate % Bias ASE MCSD CP Estimate % Bias ASE MCSD CP

Double-samp. %
1 24.4

α1 = 1.5 (Shape) 1.661 10.7 0.073 0.076 0.417 1.509 0.6 0.094 0.090 0.962
20 θ11 = −0.5 -0.471 5.8 0.054 0.054 0.920 -0.508 1.6 0.094 0.084 0.966
Sample Size θ21 = 0.8 0.656 18.0 0.141 0.141 0.826 0.804 0.5 0.183 0.176 0.959
External=5000
Current= 1000

2 13.3
α2 = 2.5 (Shape) 2.186 12.6 0.078 0.084 0.040 2.514 0.6 0.201 0.180 0.964

Covariate Dist. θ12 = −0.3 -0.318 6.0 0.047 0.045 0.948 -0.301 0.3 0.074 0.069 0.967
Different θ22 = 0.6 0.731 21.8 0.132 0.127 0.835 0.599 0.2 0.201 0.190 0.968

Double-samp. %
1 24.4

α1 = 1.5 (Shape) 1.661 10.7 0.073 0.076 0.417 1.508 0.5 0.084 0.081 0.958
50 θ11 = −0.5 -0.471 5.8 0.054 0.054 0.920 -0.505 1.0 0.079 0.075 0.964
Sample Size θ21 = 0.8 0.656 18.0 0.141 0.141 0.826 0.803 0.4 0.172 0.170 0.958
External=5000
Current= 1000

2 13.3
α2 = 2.5 (Shape) 2.186 12.6 0.078 0.084 0.040 2.513 0.5 0.166 0.157 0.958

Covariate Dist. θ12 = −0.3 -0.318 6.0 0.047 0.045 0.948 -0.301 0.3 0.067 0.065 0.968
Different θ22 = 0.6 0.731 21.8 0.132 0.127 0.835 0.600 0.0 0.187 0.179 0.961

Double-samp. %
1 45.7

α1 = 1.5 (Shape) 1.873 24.9 0.078 0.081 0.001 1.523 1.5 0.166 0.168 0.965
20 θ11 = −0.5 -0.409 18.2 0.053 0.052 0.576 -0.505 1.0 0.148 0.128 0.950
Sample Size θ21 = 0.8 0.619 22.6 0.142 0.142 0.746 0.752 6.0 0.408 0.359 0.956
External=5000
Current= 1000

2 36.4
α2 = 2.5 (Shape) 1.983 20.7 0.074 0.081 0.000 2.518 0.7 0.328 0.275 0.950

Covariate Dist. θ12 = −0.3 -0.357 19.0 0.048 0.045 0.806 -0.311 3.7 0.107 0.094 0.960
Different θ22 = 0.6 0.755 25.8 0.131 0.126 0.796 0.599 0.2 0.411 0.357 0.952

Double-samp. %
1 45.7

α1 = 1.5 (Shape) 1.873 24.9 0.078 0.081 0.001 1.518 1.2 0.153 0.159 0.956
50 θ11 = −0.5 -0.409 18.2 0.053 0.052 0.576 -0.508 1.6 0.134 0.126 0.938
Sample Size θ21 = 0.8 0.619 22.6 0.142 0.142 0.746 0.762 4.8 0.358 0.353 0.942
External=5000
Current= 1000

2 36.4
α2 = 2.5 (Shape) 1.983 20.7 0.074 0.081 0.000 2.529 1.2 0.278 0.274 0.943

Covariate Dist. θ12 = −0.3 -0.357 19.0 0.048 0.045 0.806 -0.308 2.7 0.100 0.096 0.952
Different θ22 = 0.6 0.755 25.8 0.131 0.126 0.796 0.594 1.0 0.361 0.349 0.938

Table 3.2: The simulation results from modeling cause-specific hazards using the naive and
proposed approaches.

3.8 Application

As stated in Section 3.1, I performed a data analysis in order to illustrate the use of the

proposed method of modeling cause-specific hazards while adjusting for externally-sourced

misclassification information. Particularly, I modelled the cause-specific hazards of death

and disengagement from care among people living with HIV/AIDS (PLWH) that contributed

data to IeDEA to East Africa. Data used in modeling were collected at two IeDEA programs:

AMPATH(Academic Model Providing Access to Healthcare) and FACES (Family AIDS Care

& Education Services). The data were collected between year 2001 and year 2011. In this

period, AMPATH contributed 63,890 patients, and FACES contributed 3,886 patients. Study

participants were followed from anti-retroviral (ART) initiation until death, disengagement

from care or censoring. A patient was considered to be disengaged from care if he/she did
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not report for his/her next scheduled clinic visit and did not report for care within 60 days

after next-scheduled visit date. The problem with such an approach is that some patients

are mistakenly identified as disengaged from care when in fact they are dead. Given this

possibility of death under-reporting, the outcomes for a sub-sample of patients deemed to

be disengaged from care by the program workers were re-ascertained at AMPATH. The

re-ascertainment entailed tracing patients within their communities and ascertaining the

correct vital status. The same outcome validation, however, was not performed at FACES.

As result, the extent of death misclassification was not identifiable at FACES. The time to

any event (disengagement or death) at AMPATH and FACES was summarized as shown in

Figure 3.2. Patient characteristics were further summarized as shown in Table 3.3.

Figure 3.2: Summary of time to any event at AMPATH and FACES.
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East Africa IeDEA Program

Variable AMPATH, N=63890 FACES, N=3886 P Value

Gender, n(%) 0.722
Female 41944 (66) 2562 (66)
Male 21946 (34) 1324 (34)

Age at ART initiation <.001
Mean [SD] 38.3 [9.2] 34.0 [ 9.7]
Median (min - max) 37.3 (18.2 - 81.1) 32.2 (18.0 - 77.6)

Time contributed to the study <.001
Mean [SD] 31.6 [25.0] 14.7 [11.7]
Median (min - max) 30.1 (0.0 - 115.3) 11.3 (0.1 - 45.9)

CD4 count <.001
Mean [SD] 172.5 [155.4] 202.8 [163.7]
Median (min - max) 145.0 (0.0 - 2379.0) 182.0 (1.0 - 2811.0)

Observed Cause Of Failure, n(%) <.001
Censored 32711 (51) 2272 (58)
Observed Death 2719 (4.3) 73 (1.9)
Observed Loss to Clinic 28460 (45) 1541 (40)

Table 3.3: Patient Characteristics at AMPATH and FACES

Except for the variable gender, there was evidence of differences of covariate distribu-

tions at AMPATH and FACES. The covariate distributions were summarized as shown in

Figure 3.3.
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Figure 3.3: Covariate distributions at AMPATH and FACES.

3.8.1 Death misclassification model

Using data from AMPATH, I modeled the probability of being classified as disengaged from

care when in fact dead (death misclassification). Among the 28,460 patients deemed to

be disengaged from care by the healthcare workers, outcome validation was performed on

4238(14.9%). Among these cases, 1143(27%) were found to be actually deceased. As a result,

the number of deaths increased from 2719 to 3862, meaning that 29.6%(1143/3862) were

misclassified. The misclassification probabilities were modeled using the pseudo-likelihood

approach presented by Mpofu et al. (2019). Death misclassification was modeled conditional

on gender(male versus female), age at ART initiation, CD4 count at ART initiation (in

square-root form), and time contributed to the study (in months) (in piece-wise linear form).

The model for the log-odds of death misclassification at AMPATH was as shown in Table

3.4.
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Estimate SE Z Pr(>|Z|)

(Intercept) 0.656 0.0743 8.838 0.0000

Gender (Male versus Female) -0.208 0.0635 -3.273 0.0011

Centered Age (Age minus mean of age) 0.006 0.0030 1.886 0.0594
√
CD4 0.016 0.0059 2.653 0.0080

Study time (months) 0.058 0.0087 6.629 0.0000
I(3 ≤ Study time < 6)× (Study time - 3) -0.031 0.0358 -0.868 0.3856
I( 6 ≤ Study time < 12)×(Study time - 6) -0.053 0.0232 -2.299 0.0215
I(Study time ≥ 12)×(Study time - 12) -0.068 0.0107 -6.370 0.0000

Table 3.4: The model for the log-odds of death misclassification model at AMPATH.

The conditional death misclassification model at FACES was assumed to be same

as that at AMPATH, assuming the transportability of misclassification across the two

programs. The misclassification model as shown in Table 3.4 was used to compute predicted

death misclassification probabilities at FACES. The resulting probabilities were adjust the

models for the cause-specific hazards of death and disengagement from care at FACES. I

assumed that the baseline cause-specific hazards took on the Weibull form, and also assumed

multiplicative dependence between the hazards and the covariates. The cause-specific hazard

model results at FACES were as presented in Table 3.5.

Unadjusted Adjusted

95% CI 95% CI

Outcome Parameter Estimate SE Lower Upper Estimate SE Lower Upper

Death

Shape (α1) 0.446 0.048 0.351 0.541 0.621 0.039 0.545 0.696
Scale (θ01) -4.131 0.318 -4.753 -3.508 -2.920 0.298 -3.504 -2.336

Male vs. Female (θ11) 0.529 0.243 0.052 1.005 0.060 0.226 -0.382 0.502√
CD4 (θ21) -0.102 0.022 -0.145 -0.058 -0.119 0.023 -0.163 -0.075

Centered Age (θ31) -0.001 0.013 -0.026 0.024 0.027 0.011 0.004 0.049

Disengagement

Shape (α2) 0.781 0.017 0.747 0.815 0.796 0.020 0.757 0.834
Scale (θ02) -2.641 0.086 -2.809 -2.472 -3.040 0.127 -3.288 -2.792

Male vs. Female (θ12) 0.079 0.056 -0.031 0.189 0.110 0.076 -0.039 0.259√
CD4 (θ22) -0.028 0.005 -0.038 -0.019 -0.014 0.007 -0.027 -0.001

Centered Age (θ32) -0.025 0.003 -0.031 -0.019 -0.037 0.005 -0.047 -0.027

Table 3.5: Models for cause-specific hazards of death and disengagement from care. In the
first instance, there is no adjustment for possible misclassification, whereas, in the second
instance, there is adjustment for possible misclassification.
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The results showed several differences in the misclassification-unadjusted and -adjusted

models. First, the adjusted model suggests a higher instantaneous risk of death, compared

to the unadjusted model. The unadjusted model suggest that risk of death decreases with

age, although the effect is not statistically significant at the 0.05 alpha level. The adjusted

model, on the other hand, suggests that the risk of death increases with age, and the

effect is statistically significant at the 0.05 alpha level. For disengagement from care, the

adjusted model results were consistent with those of the unadjusted model, although the

point estimates were different.

3.9 Discussion

Event cause misclassification represents a critical challenge in survival analysis with competing

events. As many have shown, misattribution of the events could lead to bias in parameter

estimation and undermine the validity of statistical inference. Appropriate estimating the

misclassification probabilities and accounting for them help to alleviate the problem. In

this research, I present a parametric method based on an external validation sample. I

showed that the cause-specific hazards could be estimated using a pseudo-likelihood method,

when the misclassification probabilities are estimated from an external validation sample

under the assumption of transportability. The resultant hazard estimates remain consistent

and asymptotically normally distributed. With a close-formed estimator for the variance,

the proposed method provides a theoretical basis for large sample inference. An extensive

simulation study further confirmed that the proposed model has a good finite-sample

performance under various parameter settings.

Using the proposed method, I modeled the cause-specific hazards of death and care

disengagement among people living with HIV/AIDS (PLWH) enrolled in the IeDEA network
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in East Africa. Taking advantage of the two IeDEA programs, namely AMPATH and

FACES, I estimated the misclassification probabilities from the AMPATH sample, which had

an internal validation subsample, transported the estimates to the FACES sample, which

did not have a validation subsample, and successfully estimated the parameters of interest in

a Weibull model. The example has clearly demonstrated the practical utility of the method.

A fundamental assumption used in this research is the transportability of the misclas-

sification rates. Admittedly, short of a validation study, it is difficult to directly assess the

validity of this assumption in a given application. An indirect verification of the assumption,

however, can be ascertained from a goodness-of-fit test. We are currently examining the

viability of such an indirect validation. Notwithstanding this limitation, we put forward a

practical competing risk model that accounts for the misclassification errors in failure cause

determination.
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3.10 Appendix

3.10.1 Estimation objective

The estimating Equation 3.5 can also be written as follows:

0 =
n∑
i=1

l̇i(θ̂n, β̂ne)

= 1
n

n∑
i=1

l̇i(θ̂n, β̂ne)

= 1
n

n∑
i=1

ψi(θ̂n, β̂ne)

= Pnψ(θ̂n, β̂ne)

= Ψn(θ̂n, β̂ne)

3.10.2 Proof of consistency

I will prove Theorem 1 from Section 3.4.2 by showing that supθ∈Θ ‖Ψn(θ, β̂n)−Ψ(θ,β0)‖ p−→ 0.

That is, by showing that class of functions indexed by θ ∈ Θ, {ψ(θ,β) : θ ∈ Θ} is P-

Glivenko-Cantelli.

First, recognize that:

sup
θ∈Θ
‖Ψn(θ, β̂n)−Ψ(θ,β0)‖ = sup

θ∈Θ
‖Ψn(θ, β̂n)−Ψn(θ,β0) + Ψn(θ,β0)−Ψ(θ,β0)‖

≤ sup
θ∈Θ
‖Ψn(θ, β̂n)−Ψn(θ,β0)‖

+ sup
θ∈Θ
‖Ψn(θ,β0)−Ψ(θ,β0)‖, by countable sub-addivity of norms

Secondly:

a. supθ∈Θ ‖Ψn(θ,β0)−Ψ(θ,β0)‖ as∗−−→ 0, by the strong law of large numbers.
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b. Through a Taylor series expansion at β = β0,

Ψn(θ, β̂n) ≈ Ψn(θ,β0) + (β̂n − β0)Ψ̇n(θ,β0) + op
(
‖β̂n − β0‖

)
It then follows that, supθ∈Θ ‖Ψn(θ, β̂n)−Ψn(θ,β0)‖ is approximately equal to

sup
θ∈Θ
‖(β̂n − β0)Ψ̇n(θ,β0) + op

(
‖β̂n − β0‖

)
‖.

sup
θ∈Θ
‖(β̂n − β0)Ψ̇n(θ,β0) + op

(
‖β̂n − β0‖

)
‖ = sup

θ∈Θ
‖(β̂n − β0)

[
Ψ̇n(θ,β0)− Ψ̇(θ,β0) + Ψ̇(θ,β0)

]
+ op

(
‖β̂n − β0‖

)
‖

≤ sup
θ∈Θ
‖(β̂n − β0)

[
Ψ̇n(θ,β0)− Ψ̇(θ,β0)

]
‖

+ sup
θ∈Θ
‖(β̂n − β0)Ψ̇(θ,β0)‖+ op(1)

= op(1)

Given the results in a and b, one can conclude that supθ∈Θ ‖Ψn(θ, β̂n)−Ψ(θ,β0)‖ p−→ 0,

hence ‖θ̂n − θ‖
p−→ 0.

3.10.3 Proof of asymptotic normality

In order to prove Theorem 2 from Section 3.4.2, begin by recognizing that,

Ψn(θ̂n, β̂ne) = Ψn(θ̂n, β̂ne) + Ψn(θ̂n,β0)−Ψn(θ̂n,β0)

= Ψn(θ̂n,β0) +
[
Ψn(θ̂n, β̂ne)−Ψn(θ̂n,β0)

]
.

By Taylor expansion at θ = θ0,

Ψn(θ̂n,β0) = Ψn(θ0,β0) + Ψ̇n(θ0,β0)(θ̂n − θ0) + op(|θ̂n − θ0|) (3.8)

And by Taylor series expansion at β = β0

107



Ψn(θ̂n, β̂ne) = Ψn(θ̂n,β0) + d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) + op(|β̂ne − β0|) (3.9)

Plugging Equations 3.8 and 3.9 into Equation 3.10.3, it would follow that:

Ψn(θ̂n, β̂ne) = Ψn(θ̂n, β̂ne) + Ψn(θ̂n,β0)−Ψn(θ̂n,β0)

= Ψn(θ̂n,β0) +
[
Ψn(θ̂n, β̂ne)−Ψn(θ̂n,β0)

]
= Ψn(θ0,β0) + Ψ̇n(θ0,β0)(θ̂n − θ0) + op(|θ̂n − θ0|)

+
[
Ψn(θ̂n,β0) + d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) + op(|β̂ne − β0|)−Ψn(θ̂n,β0)

]
= Ψn(θ0,β0) + Ψ̇n(θ0,β0)(θ̂n − θ0) + op(|θ̂n − θ0|)

+
[
d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) + op(|β̂ne − β0|)

]
,

where d
dβΨn(θ̂n,β)|β=β0 is a d1 × d2 matrix.

Assume that n
ne
−→ q, q > 0, as the sample size goes to ∞. That is, the study and

external sample will grow towards infinity at the same rate.

Pre- and post-multiply the left- and right-hand sides of Equation 3.10.3 by
√
n.
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√
nΨn(θ̂n, β̂ne) =

√
nΨn(θ0,β0) +

√
nΨ̇n(θ0,β0)(θ̂n − θ0) +

√
nop(|θ̂n − θ0|)

+
√
n
d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) +

√
nop(|β̂ne − β0|)

0 =
√
nΨn(θ0,β0) +

√
nΨ̇n(θ0,β0)(θ̂n − θ0) + op(

√
n|θ̂n − θ0|)

+
√
n
d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) +√q.op(

√
ne|β̂ne − β0|)

0 =
√
nΨn(θ0,β0) +

√
nΨ̇n(θ0,β0)(θ̂n − θ0) + op(Op(n−1/2))

+
√
n
d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) +√q.op(Op(ne−1/2))

0 =
√
nΨn(θ0,β0) +

√
nΨ̇n(θ0,β0)(θ̂n − θ0)

+
√
n
d

dβ
Ψn(θ̂n,β)|β=β0(β̂ne − β0) + op(1).

Based on Equation 3.10.3 it follows that:
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0 =
√
nΨn(θ0,β0) +

√
n(θ̂n − θ0)Ψ̇n(θ0,β0)

+
√
n(β̂ne − β0) d

dβ
Ψn(θ̂n,β)|β=β0 + op(1)

=
√
nΨn(θ0,β0)

+
√
n
(
Ψ̇n(θ0,β0)− I(θ0;β0) + I(θ0;β0)

)
(θ̂n − θ0)

+
√
n

(
d

dβ
Ψn(θ̂n,β)|β=β0 −

d

dβ
Ψ(θ0,β)|β=β0 + d

dβ
Ψ(θ0,β)|β=β0

)
(β̂ne − β0) + op(1)

=
√
nΨn(θ0,β0)

−
√
nI(θ0;β0)(θ̂n − θ0) + op(1)

+√q d
dβ

Ψ(θ0,β)|β=β0

√
ne(β̂ne − β0) + op(1) + op(1)

=
√
nΨn(θ0,β0)

−
√
nI(θ0;β0)(θ̂n − θ0)

+√q d
dβ

Ψ(θ0,β)|β=β0

√
ne(β̂ne − β0) + op(1)

From above, one can deduce that:

√
nI(θ0;β0)(θ̂n − θ0) =

√
nΨn(θ0,β0) +√q d

dβ
Ψ(θ0,β)|β=β0

√
ne(β̂ne − β0) + op(1)

√
nI(θ0;β0)(θ̂n − θ0) = 1√

n

n∑
i=1

l̇i(θ0,β0) +√q d
dβ

Ψ(θ0,β)|β=β0

√
ne(β̂ne − β0) + op(1)

√
n(θ̂n − θ0) = 1√

n

n∑
i=1

I−1(θ0,β0)l̇i(θ0;β0) +√qI−1(θ0,β0) d
dβ

Ψ(θ0,β)|β=β0

√
ne(β̂ne − β0) + op(1)

√
n(θ̂n − θ0) = 1√

n

n∑
i=1

I−1(θ0,β0)l̇i(θ0;β0) +√q
√
neW(θ0,β0)(β̂ne − β0) + op(1),

where, W(θ0,β0) = I−1(θ0,β0) d
dβΨ(θ0,β)|β=β0 is a d1×d2 matrix ((d1×d1)× (d1×

d2)).
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By the central limit theorem:
1√
n

n∑
i=1

I−1(θ0,β0)l̇i(θ0;β0) d−→ N
(
0, I−1(θ0,β0)

)
,

and,
√
ne.
√
qW(θ0,β0)(β̂ne − β0) d−→ N

(
0, q.W(θ0,β0)I−1(β0)W(θ0,β0)T

)
, for fixed q.

Since the estimation of β is performed external to the sample of interest, one can

assume the independence of the above two components. One can, therefore, deduce that:
√
n(θ̂n − θ0) = 1√

n

n∑
i=1

I−1(θ0,β0)l̇i(θ0;β0) +
√
ne.
√
qW(θ0,β0)(β̂ne − β0) + op(1)

implies that:
√
n(θ̂n − θ0) d−→ N

(
0, I−1(θ0,β0) + q.W(θ0,β0)I−1(β0)W(θ0,β0)T

)
.

When there is an internal-validation in the current study, there is no need to use

misclassification probabilities from an external study since misclassification probabilities can

now be estimated within the current study. In such a scenario, the independence between

θ̂n and β̂n that was assumed above no longer holds, since the same study sample is used in

calculating both β̂n and θ̂n. For this scenario:
√
n(θ̂n − θ0) = 1√

n

n∑
i=1

I−1(θ0,β0)l̇i(θ0;β0) +
√
nW(θ0,β0)(β̂n − β0) + op(1)

= 1√
n

n∑
i=1

I−1(θ0,β0)l̇i(θ0;β0) + 1√
n

n∑
i=1

W(θ0,β0)I−1(β0)l̇i(β0) + op(1)

= 1√
n

n∑
i=1

[
I−1(θ0,β0)l̇i(θ0;β0) + W(θ0,β0)I−1(β0)l̇i(β0)

]
+ op(1)

= 1√
n

n∑
i=1

Ψ̃i(θ0,β0) + op(1)

where Ψ̃i(θ0,β0) = I−1(θ0,β0)l̇i(θ0;β0) + W(θ0,β0)I−1(β0)l̇i(β0).

By the central-limit theorem,
√
n(θ̂n − θ0) d−→ N

(
0, E

[
Ψ̃i(θ0,β0)Ψ̃i(θ0,β0)T

])
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3.10.4 Derivation of the general score function

The derivation of the general socre function as shown in Equation 3.5 is presented below:

∇l(θ1,θ2,φ1,φ2) =



dl(θ1,θ2,φ1,φ2)
dθ1

dl(θ1,θ2,φ1,φ2)
dθ2

dl(θ1,θ2,φ1,φ2)
dφ1

dl(θ1,θ2,φ1,φ2)
dφ2



=



∑n
i=1Zi

{
δ∗
i1π

∗
11(β̂1;Zi)λ01(ti;φ1) exp (Zθ1)∑2

k=1 λ0k(ti;φk) exp (Ziθk)π∗
1k(β̂k;Zi)

+ δ∗
i2π

∗
21(β̂1;Zi)λ01(ti;φ1) exp (Zθ1)∑2

k=1 λ0k(ti;φk) exp (Ziθk)π∗
2k(β̂k;Zi)

− Λ01(ti;φ1) exp (Ziθ1)
}

∑n
i=1Zi

{
δ∗
i1π

∗
12(β̂2;Zi)λ02(ti;φ2) exp (Ziθ2)∑2

k=1 λ0k(ti;φk) exp (Ziθk)π∗
1k(β̂k;Zi)

+ δ∗
i2π

∗
22(β̂2;Zi)λ02(ti;φ2) exp (Zθ2)∑2

k=1 λ0k(ti;φk) exp (Ziθk)π∗
2k(β̂k;Zi)

− Λ02(ti;φ2) exp (Ziθ2)
}

∑n
i=1

{
δ∗
i1π

∗
11(β̂1;Zi) exp (Ziθ1) dλ01(ti;φ1)

dφ1∑2
k=1 λ0k(ti;φk) exp (Ziθk)π∗

1k(β̂k;Zi)
+

δ∗
i2π

∗
21(β̂1;Zi) exp (Zθ1) dλ01(ti;φ1)

dφ1∑2
k=1 λ0k(ti;φk) exp (Ziθk)π∗

2k(β̂k;Zi)
− dΛ01(ti;φ1)

dφ1
exp (Ziθ1)

}
∑n
i=1

{
δ∗
i1π

∗
12(β̂2;Zi) exp (Zθ2) dλ02(ti;φ2)

dφ2∑2
k=1 λ0k(ti;φk) exp (Ziθk)π∗

1k(β̂k;Zi)
+

δ∗
i2π

∗
22(β̂2;Zi) exp (Zθ2) dλ02(ti;φ2)

dφ2∑2
k=1 λ0k(ti;φk) exp (Ziθk)π∗

2k(β̂k;Zi)
− dΛ02(ti;φ2)

dφ2
exp (Ziθ2)

}



=



∑n
i=1Zi

{(
δ∗
i1π

∗
11(β̂1;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
21(β̂1;Zi)

p∗
2(θ,φ,β̂,Zi)

)
.λ01(ti;φ1)− Λ01(ti;φ1)

}
exp (Ziθ1)

∑n
i=1Zi

{(
δ∗
i1π

∗
12(β̂2;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
22(β̂2;Zi)

p∗
2(θ,φ,β̂,Zi)

)
λ02(ti;φ2)− Λ02(ti;φ2)

}
exp (Ziθ2)

∑n
i=1

{(
δ∗
i1π

∗
11(β̂1;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
21(β̂1;Zi)

p∗
2(θ,φ,β̂,Zi)

)
.dλ01(ti;φ1)

dφ1
− dΛ01(ti;φ1)

dφ1

}
exp (Ziθ1)

∑n
i=1

{(
δ∗
i1π

∗
12(β̂2;Zi)

p∗
1(θ,φ,β̂,Zi)

+ δ∗
i2π

∗
22(β̂2;Zi)

p∗
2(θ,φ,β̂,Zi)

)
.dλ02(ti;φ2)

dφ2
− dΛ02(ti;φ2)

dφ2

}
exp (Ziθ2)


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CHAPTER 4

Showcasing of Validation-sampling Remedies when Modeling Cause-specific

Hazards in the Presence of Outcome Misclassification

In the previous chapters, I spent time to state the problem of outcome misclassification in

competing risks analysis. I proposed statistical solutions for adjusting for misclassification

when modeling cause-specific hazards. In this chapter, I will recapitulate all the ideas

presented in Chapters ??, 2 and 3. With an epidemiology audience in mind, I illustrate

internal- and external-validation sampling remedies for dealing with outcome misclassification

in studies with competing risks. Specifically, I will present pseudo-likelihood-based methods

for correctly modeling cause-specific hazards, depending on the availability of an outcome

validation sample. I will highlight the statistical methods by modeling of cause-specific

hazards of death and disengagement from care, among people living with HIV/AIDS who

contribute data to IeDEA East Africa: Standard competing risks methods are not suitable

for such a task because of death misclassification, with some patients being classified as

disengaged from care when they are truly dead.

4.1 Introduction

Time-to-event studies with competing events may be susceptible to event misclassification.

For example, in a mortality study considering cardiovascular and non-cardiovascular causes of

death, it is possible for some of those who die from cardiovascular diseases to be classified as

having died from non-cardiovascular diseases, and vice versa. Such an error in classification
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can lead to bias when modeling competing-risks quantities such as cause-specific hazards

and cumulative incidence functions. Estimation bias may be remedied by either using

gold-standard approaches to repeat data collection or by using statistical methods that

adjust estimators of interest for misclassification. The latter approach is cost-effective, hence

more favorable than the former remedy. That said, statistical remedies are only suitable

when there exist information about the extent of outcome misclassification.

One way to identify the extent of outcome misclassification is using internal-validation

or double sampling. This involves re-ascertaining outcomes on a sub-sample of the main-

study sample using a gold-standard approach, that is more accurate, and is usually more

expensive than the initial outcome-ascertainment approach (Tenenbein 1970; R. J. Carroll

et al. 2006). Such internal validation is used in studies of vital status among people living

with HIV/AIDS (PLWH) who contribute data to the International Epidemiologic Databases

for the Evaluation of HIV/AIDS in East Africa (IeDEA-EA). In this context, the need for

outcome validation arises because some patients are mistakenly identified as disengaged from

care when, in fact, they are dead. This error in observation can bias competing-risks analyses

wherein death and disengagement from care are the outcomes of interest (Bakoyannis and

Yiannoutsos 2015). That being said, such bias may be be avoided by adjusting estimators

using the death-misclassification information resulting from internal-validation sampling.

For IeDEA, validation entails re-ascertaining vital-status on sub-samples of those who are

initially deemed to be disengaged from care. However, due to financial constraints, it is not

feasible to perform the aforementioned internal validation at all the treatment programs

that contribute data to IeDEA-EA. Consequently, not all the treatment programs have

misclassification information required to adjust competing-risks estimators for possible death

misclassification.
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The challenge for treatment programs that do not have outcome validation is two-fold:

First, competing-risks quantities estimated using the observed data are likely to be biased

due to possible misclassification; Secondly, misclassification adjustment is not immediately

available based on the study sample at hand. The aforementioned challenges may be solved

by using misclassification probabilities modeled in an external setting that has outcome

validation, assuming the transportability of misclassification probabilities across different

settings. In other words, we assume that for a fixed set of patient characteristics, an

individual from a setting without validation has the same propensity to be misclassified

as an individual from a setting with outcome validation. In epidemiology, such a use of

external information is refered to as external validation (Lyles and Lin 2010).

With an epidemiologic audience in mind, I will illustrate internal- and external-

validation sampling solutions when modeling the cause-specific hazards of death and disen-

gagement from care as described in the motivating example. I will follow the pseudo-likelihood

approach for modeling cause-specific hazards as presented in Chapter 3. Under this approach,

the additional parameters in the likelihood are related to outcome misclassification, and are

replaced by their estimates. The advantage of this approach is that it is not only statistically

principled, but it is also easy to understand and implement in readily available statistical

software such as R. Moreover, as shown in Chapter 3, the approach has nice large- and finite-

sample properties assuming the transportability assumption holds. The presentation will

proceed as follows: In Section 4.2 I review some basics of competing risks survival analysis,

under the ideal scenario with no misclassification, and when there is misclassification. In

Section 4.3, I describe the data analysis methodology. In Section 4.4, I describe the results,

and provide a brief discussion of the findings in Section 4.5.
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4.2 Review of competing risks survival analysis

Survival analysis involving competing events is called competing risks. Events are called

competing risks, within the study context or by nature, if observing one event precludes

us from observing the other events. In the motivating study, death and disengagement

are considered to be competing risks because interest lies in whichever event comes first.

Observing disengagement from care, within the study context, precludes us from observing

death, and vice versa.

4.2.1 Notation

In keeping with the two-cause system similar to that of our motivating study, let C ∈ {1, 2}

represent the true cause of failure, and C∗ ∈ {1, 2} represent the observed cause cause of

failure. The observed cause is subject to observation error, therefore C∗ is not necessarily

the same as C. Censoring is represented by C = C∗ = 0. The right-censoring time to failure

is defined as T = min(U, V ), where U is the time to event, and V is the time to censoring.

The time to censoring is assumed to be independent of both the time to event and the cause

of failure. Lastly, let Z represent the independent variables.

4.2.2 Definitions of common quantities

In competing risks analysis, the quantities of interest usually include: cause-specific hazards

and cumulative incidence functions. Assuming a world where people can fail from any cause

j ∈ {1, 2}:

1. The cause-specific hazard, λj(t), is defined as the instantaneous rate of failing to due to
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cause j at time t, conditional of on surviving to at least beyond t, in a world where one

can fail from the other cause (Kalbfleisch and Prentice 2011). In biomedical studies,

models of cause-specific hazards are typically used for identifying the risk factors for

causes of failure (Hinchliffe, Abrams, and Lambert 2013; Austin, Lee, and Fine 2016).

2. The cumulative incidence function for cause-j, Fj(t) = P [T ≤ t, J = j], measures

the absolute risk of failure due to cause-j by a certain time point, say t (Kalbfleisch

and Prentice 2011). In biomedical studies, cumulative incidence functions are used

to make predictions (Hinchliffe, Abrams, and Lambert 2013; Austin, Lee, and Fine

2016). The cumulative incidence for cause-j can be also written as follows: Fj(t) =∫ t
0 λj(u) exp

[
−
∫ u
0
∑2
j=1 λj(s)ds

]
du. This definition highlights the dual use of cause-

specific hazards in competing risks. That is, cause-specific hazard models can be used

for studying relationships and, after transformation, for making predictions.

Similar of Chapter 3, I will restrict our focus to cause-specific hazards. In particular, I

model cause-specific hazards in order to identify the risk factors of death and disengagement

from care in a cohort of PLWH who contribute data to IeDEA East Africa.

4.2.3 Cause-specfic hazards in the presence of outcome misclassification

In a world without outcome misclassification, that is, C = C∗, Kalbfliesh and Prentice

(2011) (Kalbfleisch and Prentice 2011) showed that the modeling cause-specific hazards is

fairly simple, since the likelihood of interest is a function of cause-specific hazards. The

log-likelihood for a two-cause system with no outcome misclassification is as shown in

Equation 4.1 (Kalbfleisch and Prentice 2011).
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l(θ) =
2∑
j=1

n∑
i=1

{
δij log λj(ti;Zi,θj)−

∫ ti

0
λj(u;Zi,θj)du

}

(4.1)

where

1. λj(t;Z) is the cause-specific hazard of cause j at time t conditional on covariates Z,

for j ∈ {1, 2};

2. δij = I[Ci = j] is the event indicator of cause-j for subject i.

3. θ = (θ1,θ2) is the parameter of interest: It captures the association between the

cause-specific hazards and the independent variables.

The log-likelihood presentation shown in Equation 4.1 allows for modeling cause-

specific hazards as regular marginal hazards. That is, without losing generality, when

modeling cause-specific hazard for cause 1, events attributed to cause 2 are treated as

censored outcomes.

In the presence of outcome misclassification, it can be shown that the log-likelihood

can be written in as shown by Equation 4.2.

l∗(θ,βββ) =
2∑
j=1

n∑
i=1

δ∗ij log
[ 2∑
k=1

λk(ti;Zi, θθθk)π∗jk(βββk;Xi)
]

−
2∑
j=1

n∑
i=1

∫ ti

0
λj(u;Zi,θj)du,

(4.2)

1. δ∗ij = I[C∗ = j] is the event indicator of observed cause-j for subject i

2. For j, k ∈ {1, 2}, π∗jk(Xi;βββk) = P (C∗i = j|Ci = k,Xi = (Zi, T = t),βββk) is the proba-
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bility of observing cause j when the true cause of failure is k, conditional on subject

characteristics Xi (misclassification probability).

In the log-likelihood 4.2, θ is the parameter of interest, and βββ is a nuisance parameter.

Under this likelihood formulation, we can no longer model the cause-specific hazards

individually as when using log-likelihood 4.1.

The likelihood formulation given in Equation 4.2 is suitable in both situations where

there exists or there does not exist an internal-validation sample. The former is a case

of internal validation, and the latter is case of external validation. It is, however, not

efficient to use likelihood formulation 4.2 when there is an internal-validation sample. Reason

being that likelihood 4.2 does not directly incorporate the validated outcomes into the

likelihood and, therefore, a waste of data. A likelihood form suitable when there is internal-

validation sampling is presented in Bakoyannis et al. (2019), and can be written as shown

by log-likelihood 4.3 (Bakoyannis, Zhang, and Yiannoutsos 2018).

l(θ,η) =
2∑
j=1

n∑
i=1

[
Riδij +

2∑
k=1

δ∗ik × (1−Ri)× pjk(ηk;Zi)
]

log λj(ti;θj ,Zi)

−
2∑
j=1

n∑
i=1

∫ ti

0
λj(u;θj ,Zi)du

(4.3)

where,

1. Ri = 1 indicates that the outcome for subject i was validated (thereby known);

2. δij = I[Ci = j] is the event indicator of true cause-j for subject i;

3. δ∗ik = I[C∗i = k] is the event indicator of observed cause-k for subject i;

4. pjk(ηk;Zi) = P [Ci = j|C∗i = k, Ti = ti,Zi,ηk], is the probability that the true cause
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of failure is cause-j given the observed cause is cause-k(i.e., predictive values), given

(Z, T = t).

Log-likelihood 4.3 represents a re-expression of a misclassification problem as a

missing-data problem. When using log-likelihood 4.3, outcomes for those whose observed

outcomes were not validated are treated as missing data. In this case, the missing values

are replaced by the conditional expectations of the true outcome values given the observed

data; that is, the predictive values. Such a substitution is justified by the linearity between

the log-likelihood and the true outcomes as shown by log-likelihood 4.1. Moreover, missing

outcome values are assumed to be missing at random (MAR). That is, missingness can be

explained by the observed data, and not the unobserved outcomes (Rubin 1976). Under the

notation defined above, the MAR assumption is formally defined as follows:

P [R = 0|C = 1, C∗ 6= 0,Z] = P [R = 0|C = 2, C∗ 6= 0,Z] = P [R = 0|C∗ 6= 0,Z]

Without losing generality, this implies that,

P [C = 1|R = 0, C∗ 6= 0,Z] = P [C = 1|R = 1, C∗ 6= 0,Z] = P [C = 1|C∗ 6= 0,Z]

Colloquially this means that the predictive value model is independent of whether or not

observed outcome was validated. Therefore, one can use the predictive value model for those

whose outcomes were validated to inform the predictive values for those whose outcomes

were not validated.

4.3 Methods

4.3.1 Study design and setting

This study is a retrospective-cohort study consisting of PLWH who initiated anti-retroviral

therapy (ART) at treatment centers that contributed data to the East Africa IeDEA
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consortium. The treatment programs included AMPATH (Academic Model Providing

Access to Healthcare), and FACES (Family AIDS Care & Education Services). AMPATH

contributed 63,890(84.14%) patients, and FACES contributed 12,043(15.86%) patients. Data

from AMPATH were collected between 2001 and 2011, and data from FACES were collected

between 2007 and 2014. The study was restricted to patients who initiated ART at age 18

or older. Patients were followed from ART initiation until death, disengagement from care,

or administrative censoring.

4.3.2 Data collection and management

The data used in this study were collected during the routine care of patients at 31 treament

centers belonging to AMPATH, and 8 FACES treatment centers. Data abstraction from

electronic medical records, data quality control, and data preparation for analysis were

managed by the Data management team at IeDEA East Africa.

4.3.3 Ethics Statement

Data were used in this manuscript with permission from both AMPATH and FACES. Insti-

tutional Reviews Boards (IRB) associated with AMPATH, FACES and Indiana University

approved this study.

4.3.4 Outcomes and outcome validation

The outcomes of interest in the study were death and disengagement while in HIV care. A

patient was considered to be disengaged from care if he/she missed the next scheduled clinic

visit on the medical chart, and did not report for care within the 60 days following the next
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scheduled visit. Death and disengagement from care were considered to be competing risks,

because time-to-event was based on whichever event came first. For the purpose of this

analysis, let C = 1 and C = 2 represent the true death and disengagement events respectively.

In addition, let C∗ = 1 and C∗ = 2 represent observed death and disengagement respectively.

Once again, I reiterate to the reader that “observed” events are those ascertained using an

error-prone method, and “true” events are those ascertained using a gold-standard methods.

In our study, “observed” deaths were always correctly ascertained. The same, however,

could not be said for “observed” disengagers because of death under-reporting: Some of

those observed as disengaged were actually dead. Given this death under-reporting, both

AMPATH and FACES traced some of the patients who had been absent from care for 90 at

least days. This community outreach, although done to improve patient retention in HIV

care, had a useful side-effect: It validated the vital-status data from those who were initially

classified as disengaged from care. AMPATH validated the vital-status data of about 15.3%

of those who were initially classified as disengaged. FACES, on the other hand, validated

about 2.3% of the vital-status data of those who were initially classified as disengaged from

care. The validation data from FACES was considered too small, and was not used in further

analyses. I relied on misclassification information from AMPATH to adjust cause-specific

hazard models at FACES.

4.3.5 Identifying misclassified deaths among the "observed" disengagers at

AMPATH

Misclassified deaths could be observed/identified within the validated portion of the study

sample at AMPATH. In the temporal-frame of study, death misclassification or lackthereof

could be divided into the following four cases:
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1. Case 1 : Patient is initially classified as disengaged from care, and found to be alive

during outreach. The initial decision to classify the patient as disengaged from care is

correct. This case is illustrated in Figure 4.1.

Enter

a

Last visit

b

Next scheduled-visit

c

Considered Disengaged

d

Validate=disengaged

Figure 4.1: Case 1: Dealing with observed disengagement

In case 1, the observed outcome was C∗ = 2; the true outcome was C = 2, and the

time-to-event was t = a+ b+ c.

2. Case 2 : Patient is initially classified as disengaged from care, and found to be dead

during outreach, however the death occurred after date of disengagement. The initial

decision to classify the patient as disengaged from care is correct. This case is illustrated

in Figure 4.2.

Enter

a

Last visit

b

Next scheduled-visit

c

Considered Disengaged

k1 × d Dead

d

Validate=disengaged

Figure 4.2: Dealing with observed disengagement

In case 2, the observed outcome was C∗ = 2; the true outcome was C = 2, and the

time-to-event was t = a+ b+ c.

3. Case 3 : Patient is initially classified as disengaged from care, and found to be dead

during outreach, and the death occurred before date of disengagement. In fact, death

occurred before the planned next-scheduled visit date. The initial decision to classify

the patient as disengaged from care is incorrect. This case is illustrated in Figure 4.3.
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Enter

a

Last visit

k2 × b Dead

b

Next scheduled-visit

c

Considered Disengaged

d

Validate=dead

Figure 4.3: Dealing with observed disengagement

For case 3, the observed outcome was C∗ = 2; the true outcome was C = 1, the

time-to-event was t = a+ b+ c.

4. Case 4 : Patient is initially classified as disengaged from care, and found to be dead

during outreach, and the death occurred before date of disengagement. In fact, death

occurred between the next-scheduled visit date and the supposed disengagement date.

The initial decision to classify the patient as disengaged from care is inccorrect. This

case is illustrated in Figure 4.4.

Enter

a

Last visit

b

Next scheduled-visit

c

k3 × c Dead

Considered Disengaged

d

Validate=dead

Figure 4.4: Dealing with observed disengagement

In case 4, the observed outcome was C∗ = 2; the true outcome was C = 1, and the

time-to-event was t = a+ b+ c.

For all the four cases considered, the time-to-event was ascertained at the date

when the patient was initially considered to be disengaged from care. For case 3 and 4,

time-to-event is over-estimated by at most 90 days.
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4.3.6 Independent variables

The covariates considered in this study included: Sex(Male versus female), age at ART

initiation, CD4 count at ART initiation per (µL), WHO Stage at ART initiation (1,2,3,4),

BMI at ART initiation, care facility type(clinic, hospital) and the setting of care facility

(urban, rural). The time contributed to the study, although part of the survival outcome, was

also considered to be an independent variable when modeling misclassification probabilities

and predictive values.

4.3.7 Statistical Analysis

Data were summarized by treatment program. Continuous variables were summarized using

mean, standard deviation, median, and inter-quartile range (IQR). Categorical variables

were summarized using frequencies. As appropriate, independent variables were compared

by treatment program using one-way ANOVA, Pearson Chi-squared or Fisher’s exact test.

The dataset used consisted of 66934(88.15%) complete cases, and 8999(11.85%)

subjects with at least one missing value. At AMPATH, about 10.29% (6572/63890) of

subjects had a missing value, and 20.15% (2427/12043) of the subjects at FACES had a

missing value. With data stratified by treatment program (AMPATH, FACES), the missing

values for CD4 count, weight, height and WHO stage at ART initiation were multiply

imputed 100 times using the fully conditional specification (FCS) (???).

At AMPATH, the cause-specific hazards of death and disengagement were modelled

using two approaches. First using likelihood 4.2, and secondly using likelihood 4.3. The

analysis was performed as depicted in Figure 4.5.
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IeDEA East Africa

AMPATH FACES

Outcome
validation

No
outcome
validation

Estimate
predictive values

Estimate
misclassification
probabilities Borrow mis-

classification
information

from AMPATH

l3

l2

l2

Figure 4.5: Scheme for modeling cause-specific hazards of death and disengagement from
care at AMPATH and FACES while adjusting for death misclassification.

4.3.7.1 Predictive value model of death among "observed" disengagers at AM-

PATH

The probability that a patient was truly dead given that he/she was observed to be

disengaged was modelled using logistic regression. Specifically, I modeled the log-odds of

P [C = 1|C∗ = 2,X = (Z, T = t)]. The model included the independent variables noted

in Section 4.3.6, and the time to the observed disengagement. The goodness-of-fit for the

overall model was assessed using the Supremum goodness-of-fit test at the 0.05 alpha level

(D. Y. Lin, Wei, and Ying 2002).
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4.3.7.2 Death misclassification model at AMPATH

The probability of being classified as disengaged from care when, in fact, dead was modeled

using the logistic pseudo-likelihood approach presented in Chapter 2. Under this approach,

true outcomes for those who were not validated were assumed to be missing at random

(MAR). This assumption allowed us to replace the missing true outcome values with their

predictive values, as modeled in Section 4.3.7.1. This approach for modeling misclassification

probabilities was used because it uses both the validated and the unvalidated sample,

thereby leading to significant efficiency gains over an approach that only uses the validated

sample(complete-case analysis). The covariates included in the misclassification model were

the same as those included in the predictive value model in Section 4.3.7.1.

4.3.7.3 Cause-specific hazards

I modeled the cause-specific hazards of death and disengagement from care at AMPATH and

FACES parametrically using the schematic presented in Figure 4.5. In addition to assuming

proportional hazards, I assumed that the baseline cause-specific hazards took on the Weibull

form. Generically, the cause-specific hazard model could be represented as follows:

λj(t|Z) = αjρjt
αj−1 exp (Zθj)

for j ∈ {1, 2}, with αj being the shape parameter, ρj being the scale parameter, Z being the

matrix of covariates noted in Section 4.3.6, and θj being the logarithm of the multiplicative

dependence between the covariates and the cause-specific hazard for cause-j.

Cause-specific hazards were modeled using either internal- or external-validation

approaches as outlined in Table 4.1. The analysis at AMPATH was based on internal

validation, and the analysis at FACES was based on external validation since misclassification
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information was borrowed from AMPATH. Death misclassification probabilities were used

to adjust cause-specific hazards models as described by Mpofu et al. (2019) in Chapter 3,

and depicted by Figure 4.6. Predictive values were used as described by Bakoyannis et al.

(2019), and shown in Figure Figure 4.7.

Treament Program Validation Problem treated as Remedy relies on Data source Likehood form used

AMPATH
Internal Missing-data problem Predictive values AMPATH l3

Misclassification problem Misclassification probabilities AMPATH l2

FACES External Misclassification problem Misclassification probabilities AMPATH and FACES l2

Table 4.1: Statistical methods considered for dealing with death misclassification when
modeling the cause-specific hazards of death and disengagement from care.

π∗jk(X;βββk)Model using internal or external data β̂ββk, V (β̂k)

l∗(θ, β̂ββ) =
2∑
j=1

n∑
i=1

δ∗ij log
[ 2∑
k=1

λk(ti;Zi, θθθk)π∗jk(β̂ββk;Xi)
]

−
2∑
j=1

n∑
i=1

∫ ti

0
λj(u;Zi,θj)du,

θ̂k, V (θ̂k)

keep

replace βββk with β̂ββk

use log pseudo-likelihood to obtain

Figure 4.6: Misclassification-probability based pseudo-likelihood approach for modeling
cause-specific hazards.

pjk(ηk;X)Model using internal data η̂ηηk, V (η̂k)

l∗∗(θ, η̂) =
2∑
j=1

n∑
i=1

[
Riδij +

2∑
k=1

δ∗ik × (1−Ri)× pjk(η̂k;Zi)
]

log λj(ti;θj ,Xi)

−
2∑
j=1

n∑
i=1

∫ ti

0
λj(u;θj ,Zi)du

θ̂k, V (θ̂k)

keep

replace βββk with β̂ββk

use log pseudo-likelihood to obtain

Figure 4.7: Predictive-value based pseudo-likelihood approach for modeling cause-specific
hazards.

Lastly, the cause-specific hazards of death and disengagement were modelled under
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the assumption that there was no death misclassification. These analyses were referred to

as unadjusted analyses. Hypothesis tests were performed using two-sided tests at the 0.05

alpha-level. Statistical analyses were performed using R version 3.4.1 and SAS version 9.4.

4.4 Results

The characteristics patients who initiated anti-retroviral therapy at AMPATH and FACES

were summarized as shown in Table 4.2. AMPATH contributed 63,890 patients between

2001 to 2011. Of these, 32711(51.2%) were administratively censored, 3493 (5.5%) died,

and 27686 (43.3%) were deemed to be disengaged from care. FACES contributed 12,043

patients in the period spanning from 2007 to 2014. Of the 12,043 patients, 6483 (53.8%)were

administratively censored (that is, were alive and in care when the study ended), 303 (2.5)

died, and 5257(43.7%) were deemed to be disengaged from care. With the competing events,

death and disengagement, pooled into a a composite event, the median survival time at

AMPATH was 32.3months (95% C.I., 31.7-32.8 months), and the median survival time at

FACES was 19.0 months(95% C.I., 18.2-19.7 months).

Among the 27686 patients initially classified as disengaged at AMPATH, 15.3% (4238

of 27686) were double-sampled. Through double-sampling an additional 1143 death cases

were discovered at AMPATH. In other words, 24.7% of the deaths were initially classified

as disengaged from care. FACES, on the other hand, double-sampled 2.3% (122 of 5257)

of those who were initially deemed to be disengaged from care. The validation sample

at FACES was considered too small, and therefore not used for misclassification-remedial

purposes. In order to model cause-specific hazards, at FACES, while adjusting for death

misclassification, I relied on death misclassification information from AMPATH.
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East Africa IeDEA Program

Variable Total, N=75933(%) AMPATH,
N=63890(%)

FACES,
N=12043(%)

P Value

Gender 0.003
Female 50016 (65.9) 41944 (65.7) 8072 (67.0)
Male 25917 (34.1) 21946 (34.3) 3971 (33.0)
Age at ART initiation <.001
Mean (SD) 37.4 (10.0) 38.2 (9.8) 32.9 (9.7)
Median (IQR) 36.1 (30.1 – 43.5) 37.0(31.1 – 44.3) 30.9 (25.9 – 38.0)
Time contributed to the study <.001
Mean (SD) 21.6 (19.8) 23.1 (20.7) 13.7 (11.8)
Median (IQR) 15.1 (5.6 – 31.6) 16.5 (6.0 – 34.3) 9.7 (4.0 – 20.1)
CD4 at ART initiation <.001
Mean (SD) 218.7 (172.2) 200.3 (149.5) 316.5 (238.7)
Median (IQR) 188.0(105.0 – 282.1) 177.0 (100.3 – 259.4) 285.0 (158.0 – 417.0)
Weight at ART initiation <.001
Mean (SD) 56.4 (10.7) 56.0 (10.6) 58.7 (10.9)
Median (IQR) 55.5 (49.0 - 62.0) 55.0 (49.0 – 62.0) 58.0 (51.5 – 65.0)
Height at ART initiation <.001
Mean (SD) 165.9 (8.3) 165.8 (8.3) 166.5 (8.3)
Median (IQR) 165.0 (160.0 – 171.5) 165.0 (160.0- 171.5) 166.0 (160.6 - 172.0)
WHO Stage at ART initiation <.001
1 20999 (27.7) 16662 (26.1) 4337 (36.0)
2 17992 (23.7) 14086 (22.0) 3906 (32.4)
3 29852 (39.3) 26697 (41.8) 3155 (26.2)
4 7090 (9.34) 6445 (10.1) 645 (5.4)
Observed Cause Of Failure <.001
Censored 39194 (51.6) 32711 (51.2) 6483 (53.8)
Observed Death 3796 (5.0) 3493 (5.5) 303 (2.52)
Observed Loss to Clinic 32943 (43.4) 27686 (43.3) 5257 (43.7)
True Cause of Failure <.001
Censored 39194 (51.6) 32711 (51.2) 6483 (53.8)
Confirmed Death 4987 (6.6) 4636 (7.3) 351 (2.9)
Confirmed Lost to Clinic 3169 (4.2) 3095 (4.8) 74 (0.6)
Missing 28583 (37.6) 23448 (36.7) 5135 (42.6)
Care Facility <.001
Hospital 53328 (70.2) 46444 (72.7) 6884 (57.2)
Clinic 22605 (29.8) 17446 (27.3) 5159 (42.8)
Setting <.001
Rural 31267 (41.2) 27798 (43.5) 3469 (28.8)
Urban 44666 (58.8) 36092 (56.5) 8574 (71.2)

Table 4.2: Characteristics of patients at AMPATH and FACES.

4.4.1 Predictive value and misclassification models at AMPATH

Using the internal-validation sample from AMPATH, a predictive model of death was fit

using data from those who were initially observed as disengaged from care. The minimal

goal in this modeling exercise was to find a predictive value model that fit the data well,

without regard to model interpretability. The first model identified to fit the data well

was summarized as shown in Table 4.3. The p-value for the Supremum goodness-of-fit test

associated with this model was 0.0594. This model was then used in two seperate tasks. First,
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to model the cause-specific hazards of death and disengagement from care at AMPATH,

while treating as missing, the true outcome data among the unvalidated disengers. Secondly,

to model the death misclassification probabilities at AMPATH using the pseudo-likelihood

approach presented in Chapter 2. In both modeling instances, the missing true outcomes

among the unvalidated disengagers were replaced with estimated predictive values, assuming

outcome data were missing at random (MAR). The results of modeling the log-odds of death

misclassfication given the subject characteristics were presented in Table 4.4.

Term Estimate SE Z Pr[> |Z|]
1 (Intercept) 11.884 0.859 13.827 0.000
2 I[Male = 1] -0.419 0.220 -1.905 0.057
3 Centered Age 0.039 0.004 9.552 0.000
4
√
CD4 -0.220 0.028 -7.823 0.000

5 LogTime -1.612 0.142 -11.371 0.000
6 LogBMI -2.836 0.256 -11.075 0.000
7 WHO stage 2 vs 1 0.449 0.146 3.082 0.002
8 WHO stage 3 vs 1 0.599 0.132 4.540 0.000
9 WHO stage 4 vs 1 1.268 0.154 8.248 0.000

10 Clinic vs Hospital -0.778 0.119 -6.523 0.000
11 Urban vs Rural -0.431 0.101 -4.281 0.000
12 I[Male = 1]×

√
CD4 0.033 0.018 1.892 0.058

13 LogTime×
√
CD4 0.065 0.011 5.776 0.000

Table 4.3: Predictive value model of true event being death given disengagement from care
is observed

Term Estimate SE Z Pr[> |Z|]
1 (Intercept) 0.069 0.396 0.173 0.862
2 Male vs Female -0.174 0.060 -2.913 0.004
3 Centered Age 0.005 0.003 1.902 0.057
4
√
CD4 0.026 0.007 3.941 0.000

5
√
BMI 0.037 0.087 0.429 0.668

6
√
Study time 0.042 0.020 2.072 0.038

7 WHO stage 2 vs 1 0.182 0.129 1.408 0.159
8 WHO stage 3 vs 1 0.012 0.117 0.100 0.921
9 WHO stage 4 vs 1 0.040 0.125 0.320 0.749

10 Clinic vs Hospital -0.342 0.083 -4.102 0.000
11 Urban vs Rural 0.367 0.071 5.203 0.000

Table 4.4: Model for the probability of observing disengagement from care when individual
is actually dead.

At the 0.05 alpha level, the misclassification model suggested that males had lower
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odds of death misclassification than females, after adjusting for other model covariates.

Model also suggested that those who were treated at clinics (health centers) had lower

odds of death misclassification than those treated at larger hospitals, holding constant the

other model covariates. In addition, the model suggested that those with higher CD4 count,

contributed more study time or based in urban versus rural areas had higher odds of being

classified as disengaged when, in fact, dead. Lastly, there was not sufficient evidence at 0.05

alpha level to support an association between death misclassification and the covariates BMI

and WHO stage.

The death misclassification model as shown in Table 4.4 was then used to compute

misclassification probabilities for the study sample. Since there was no misclassification

among those who were initially observed as dead, the probability of observing death among

true disengagers was zero; that is, P [C∗ = 1|C = 2,Z] = 0.

4.4.2 Cause-specific hazards at AMPATH

The cause-specific hazards of death and disengagement from care at AMPATH were modeled

in three ways. In the first approach, I ignored misclassification; in the second approach, I

adjusted for death misclassification using the predictive values calculated from the model

in Table 4.3, and in third approach, I adjusted for misclassification using misclassification

probabilities calculated from the model in Table 4.4. The second and third model approached

relied on maximization of pseudo-log-likelihood from log-likelihood 4.2 and 4.3 respectively.

The model results were as shown in Table 4.5. The scale, shape and hazard-ratio estimates

from the three modeling approaches were also compared visually as shown in Figure 4.8,4.9,

and 4.10 and 4.11 respectively.
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After adjusting for death misclassification, the shape parameter of the baseline cause-

specific hazard of death increased from 0.584 (95% C.I., 0.567-0.601) regardless of whether I

adjusted using predictive values or misclassification probabilities. When using a predictive-

value adjustment, the shape-parameter estimate was 0.668(95% C.I., 0.656 - 0.680), and when

using misclassification probabilities to adjust, the shape-parameter estimate was 0.731(95%

C.I., 0.721-0.742). Although the shape-parameter estimates from the two adjustments were

different, they both suggested that the hazard of death was decreasing a rate lower than

when do not consider death misclassification. In contrast, the two adjustments resulted in

shape parameters with different interpretations when modeling the cause-specific hazards of

disengagement. The shape-parameter estimate after predictive-value adjustment suggested

that the risk of disengagement increased with time. The opposite was found after adjusting

using misclassification probabilities. That said, as shown in Table 4.5, the log-hazard ratios

of death and disengagement after either adjustment were not very different in magnitude.

At the 0.05 alpha level, the models for the cause-specific hazard of death after

adjusting for death misclassification, suggested that the hazard of death was higher in males,

among the older, and among those who had a higher WHO stage at ART initiation. Models

also suggested that the risk of death was lower in those who had higher CD4 count, higher

BMI, received care at clinics versus hospitals, and received care in urban areas. I also found

that the hazard of disengagement was higher among males, those with higher CD4 count,

those with higher BMI, those who received care at clinics, and those who received care

in urban settings. The models also suggested that older patients had a lower hazard of

disengagement than younger patients. WHO stage did not have a statistically significant

association with the cause-specific hazard of disengagement.
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Figure 4.8: Scale parameters associated with the baseline cause-specific hazards at AMPATH.

Figure 4.9: Shape parameters associated with the baseline cause-specific hazards at AM-
PATH.
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Figure 4.10: Hazard ratios representing the effects of covariates on the cause-specific hazard
of death at AMPATH. The forest plot captures results from three scenarios. In scenario 1
(pink), cause-specific hazard of death was modeled without considering death misclassification.
Scenerio 2 (green) adjusted for misclassification using predictive values. Scenario 3 (blue)
adjusted for death misclassification using misclassification probabilities.

Figure 4.11: Hazard ratios representing the effects of covariates on the cause-specific hazard
of disengagement from care at AMPATH.
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4.4.3 Cause specific hazards at FACES

Under assumptions similar to AMPATH, I modeled the cause-specific hazards of death

and disengagement from care FACES. However, unlike AMPATH I did not have sufficient

validation data at FACES to quantify the extent of misclassification. As a result, the

cause-specific hazards models were adjusted for misclassification using misclassification

probabalities from AMPATH. The borrowing of information from AMPATH was done

assuming the transportability of misclassification. Cause-specific hazards were also modeled

ignoring death misclassification. The model results for aforementioned scenarios are presented

in Table 4.6. The model results were also presented in forest plots as shown by Figures 4.12,

4.13 and 4.14.

Unadjusted Adjusted

95% CI 95% CI

Event Covariate Estimate SE Lower Upper Estimate SE Lower Upper

Death

Shape (alpha1) 0.567 0.029 0.510 0.623 0.860 0.031 0.800 0.920
Intercept(Scale) -1.340 0.473 -2.266 -0.414 -0.969 0.409 -1.770 -0.168
Sex(Male vs Female) 0.190 0.120 -0.045 0.426 0.140 0.096 -0.049 0.329
Centered Age 0.015 0.006 0.004 0.027 0.020 0.005 0.011 0.030
Root cd4 -0.082 0.010 -0.102 -0.062 -0.054 0.009 -0.072 -0.036
BMI -0.179 0.021 -0.221 -0.137 -0.177 0.018 -0.213 -0.142
WHO Stage
2 vs 1 0.512 0.230 0.061 0.963 0.600 0.223 0.162 1.037
3 vs 1 1.199 0.218 0.773 1.625 1.199 0.239 0.730 1.668
4 vs 1 1.799 0.242 1.325 2.273 1.590 0.261 1.079 2.101

Clinic vs Hospital 0.060 0.138 -0.210 0.331 0.060 0.113 -0.161 0.281
Urban vs Rural -0.090 0.156 -0.396 0.215 -0.190 0.125 -0.434 0.055

Disengagement

Shape (alpha2) 1.091 0.012 1.068 1.115 1.123 0.015 1.094 1.151
Intercept (Scale) -3.011 0.106 -3.220 -2.802 -3.980 0.197 -4.366 -3.594
Sex(Male vs Female) -0.045 0.032 -0.108 0.017 -0.070 0.047 -0.161 0.022
Centered Age -0.019 0.002 -0.022 -0.015 -0.030 0.003 -0.036 -0.024
Root cd4 -0.011 0.002 -0.015 -0.006 -0.002 0.003 -0.008 0.005
BMI -0.020 0.004 -0.029 -0.012 0.008 0.007 -0.005 0.022
WHO Stage
2 vs 1 0.118 0.036 0.048 0.188 0.100 0.045 0.012 0.188
3 vs 1 0.296 0.037 0.223 0.369 0.150 0.060 0.033 0.267
4 vs 1 0.402 0.062 0.281 0.522 0.110 0.112 -0.110 0.330

Clinic vs Hospital -0.191 0.034 -0.258 -0.124 -0.261 0.049 -0.356 -0.166
Urban vs Rural -0.209 0.037 -0.281 -0.137 -0.201 0.049 -0.296 -0.105

Table 4.6: Cause-specific hazards models at FACES. First model is not adjusted for death
misclassification, and the second model is adjusted for death misclassification.
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When I adjusted for death misclassification, the shape-parameter of the baseline

cause-specific hazard of death increased from 0.57 (95% C.I.: 0.51-0.623) to 0.86 (95% C.I.:

0.80-0.92). Both the adjusted and unadjusted shape parameters suggested that the risk

of death decreased over time. That said, the rate of decline was slower after adjusting

for death misclassification. The shape parameter for the baseline cause-specific hazard of

disengagement did not change by much from adjusting for death misclassification: The

estimate changed from 1.091(95% C.I., 1.068-1.115) to 1.123 (95% C.I., 1.094-1.151). These

results suggested that the risk of disengagement increased with time.

For all the covariates considered, as shown in Table 4.6, the hazard ratios of death did

not change by much after adjusting for death misclassification. This observation held both

in terms of the magnitude and the interpretability of the coefficients. A comparison of the

hazard-ratio estimates before and after adjusting for misclassification is presented in Figure

4.12. At the 0.05 alpha level, the misclassification-adjusted model for the cause-specific

hazard of death suggested a higher risk of death among older patients, and those with higher

WHO stage classification at ART initiation. Model also suggested a lower risk of death with

increasing CD4 count, and BMI at ART initiation.

Adjusting for death-misclassification also did not change log-hazard ratios of dis-

engagement by very much as shown in Table 4.6. That being said, adjusting for death-

misclassification did alter some statistical relationships between the covariates and the

cause-specific hazard of disengagement. For example, at the 0.05 alpha level, the unadjusted

model suggested a negative relationship between CD4 count and the hazard of disengagement

from care. The relationship remained negative after adjusting for death misclassification,

however, there was insufficent evidence to support this relationship at the 0.05 alpha level.
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A visual comparison of the changes in hazards ratios of disengagement from care, before

and after adjusting for death misclassification, is presented in Figure 4.12.

Figure 4.12: Hazard ratios representing the effects of covariates on the cause-specific hazard
of death and disengagement from care at FACES.

Figure 4.13: Scale parameters associated with baseline cause-specific hazards at FACES.
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Figure 4.14: Shape parameters associated with baseline cause-specific hazards at FACES.

4.5 Discussion

This chapter revisits the problem of outcome misclassification in studies with competing risks.

It is well known that such misclassification can result in biased estimation and statistical

inference. That being said, the examples of how to deal with this misclassification are sparse in

epidemiologic literature. This is especially true when it comes to parametric methods. In this

chapter, I set out to provide a gentle and yet comprehensive overview of how one may remedy

for outcome misclassification when modeling cause-specific hazards in a parametric fashion.

Specifically, I presented remedies that rely on internal-and external-validation sampling to

identify the extent of misclassification. I presented validation sampling as a viable solution

because validation sampling provides misclassification information, which in turn can be used

to adjust cause-specific hazard models. In this exploration, I noted that the misclassification

information is usually packaged as predictive values or misclassification probabilities (that is

complements of sensitivities and specifities), which also influences the statistical methods

used when modeling cause-specific hazards. I also noted that predictive values are used

when one desires to use missing data methods, and misclassification probabilities are used
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when one wants to treat the problem as a misclassification problem. Whichever method one

chooses, I presented pseudo-likelihoods that be used to perform parameter estimation.

Pseudo-likelihood based estimation is appealing because it is intuitive and simple to

implement. In fact, implementation resembles maximum likelihood estimation, with the

major difference being in the variance estimation. When using pseudo-likelihood estimation,

one needs to also contend with the variability from estimating the components that are

plugged into the true likelihood. In modeling cause-specific hazards using pseudo-likelihod

approaches that I present, one has to contend with the additional variability from modeling

predictive values or misclassification probabilities. Mpofu et al. (2019) derived the closed-

variance estimator for a situation where the misclassification probabilities used in forming

the pseudo-likelihood are derived from an external setting or study. In the case where the

misclassification probabilities or predictive values used are derived internal to the study, the

derivation of a closed-form variance estimator is also fairly simple. Moreover, the whole

process of obtaining pseudo-likelihood estimates and their variance estimates is simple to

perform within the R software.

As an illustration, I modeled the cause-specific hazards of death and disengagement

from care among PLWH who contributed data to two treatment programs at IeDEA East

Africa, namely AMPATH and FACES. I assumed that the baseline cause-specific hazards

were of a Weibull form, and also assumed proportional hazards relationships between the

covariates and the hazard functions. The challenge in the motivating example was that some

of the patients who were observed as disengaged from care were actually dead. I, therefore,

had to contend with death misclassification when modeling the cause-specific hazards.

AMPATH had a sufficiently large validation sample among those who disengaged from care,

so misclassification information from AMPATH was used to adjust the cause-specific hazards
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models at both AMPATH and FACES. The misclassification probabilities from AMPATH

were used in FACES assuming the transportability of misclassification. A comparision of the

cause-specific hazard models at AMPATH and FACES is illustrated in Figures 4.15, 4.16,

4.18 and 4.17. Of note is that the hazard ratio estimates for death were fairly consisent

across the two programs. There was, however, more variability in the hazards ratio estimates

for disengagement. At both AMPATH and FACES, the (baseline cause-specific hazard)

shape-parameter estimates suggested a decline in the risk of death over time, with the rate

of decline being slower at FACES. On the other hand, the shape parameters associated with

disengagement suggested an increase in the risk of disengagement, over time, at FACES, and

a decreased risk, over time, at AMPATH. Also discernable in the model results from FACES

and AMPATH is that the standard errors for point estimates at AMPATH were smaller

than those at FACES. This observation is explained by the fact that AMPATH had a larger

sample size, and that the misclassification adjustment at FACES relied on the transfer of

misclassification information from AMPATH. If the observed differences the cause-specific

hazard models at AMPATH and FACES are true, they can serve as a cautionary note to

practitioners, who may try to transport/transfer predictive values across different settings.

That said, I should concede that the model results from FACES must be viewed with some

skepticism as they depend on the transportability of misclassification probabilities. The

validity of this assumption is not empirically testable (Spiegelman 2010). As a result, when

presenting the cause-specific hazard models to stakeholders I recommend that the analyst

present both results from before and after adjusting for misclassification.
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Figure 4.15: Comparing the hazard ratios of death at AMPATH and FACES, after adjusting
for death misclassification.

Figure 4.16: Comparing the hazard ratios of disengagement at AMPATH and FACES, after
adjusting for death misclassification.
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Figure 4.17: Shape parameters associated with baseline cause-specific hazards at AMPATH
and FACES.

Figure 4.18: Scale parameters associated with baseline cause-specific hazards at AMPATH
and FACES.

The work of developing parametric methods for modeling cause-specific hazards, in

the presence of outcome misclassification, is far from over. The next step in this work may

be to develop model goodness-of-fit methods which are crucial in parametric modeling. At

the moment, I am exploring visual assessments with semi-parametric versions of the models

used as the references. Setting aside the future plans, thus far, I am hopeful that I have
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presented an accessible exposition to validation sampling-based methods for dealing with

outcome misclassification when modeling cause-specific hazards in a parametric fashion.
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