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Summary

Irisin is secreted by muscle, increased with exercise and mediates certain favorable effects of 

physical activity. In particular, irisin has been shown to have beneficial effects in adipose tissues, 

brain and bone. However, the skeletal response to exercise is less clear and the receptor for irisin 

has not been identified. Here we show that irisin binds to proteins of the αV class of integrins and 

biophysical studies identify interacting surfaces between irisin and αV/β5 integrin. Chemical 

inhibition of the αV integrins blocks signaling and function by irisin in osteocytes and fat cells. 

Irisin increases both osteocytic survival and production of sclerostin, a local modulator of bone 

remodeling. Genetic ablation of FNDC5/irisin completely blocks osteocytic osteolysis induced by 

ovariectomy, preventing bone loss and supporting an important role for irisin in skeletal 

remodeling. The identification of the irisin receptor should greatly facilitate our understanding of 

irisin’s function in exercise and human health.

GRAPHICAL ABSTRACT

In Brief

Irisin, thorugh its integrin receptor, promotes skeletal remodeling with implications for stemming 

bone loss

INTRODUCTION

Physical activity has been shown to benefit several metabolic disorders, including obesity, 

diabetes and fatty liver disease (Kirwan et al., 2017). Older cross-sectional studies suggested 

exercise might prevent age-related bone loss (Krolner et al., 1983; Prince et al., 1991). Loss 

of bone mass with age has significant socio-economic and medical implications due to the 

heightened susceptibility to fractures. Osteoporosis impairs mobility, increases co-
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morbidities, reduces quality of life and can shorten lifespan, particularly in the elderly (Li et 

al., 2017).

The evidence that an exercise program can prevent bone loss is somewhat conflicted in part 

because different types of physical activity impact the skeleton at distinct sites in different 

ways. For example, several studies have shown that resistance training is associated with 

relative preservation of femoral but not lumbar bone mass in adults (Eatemadololama et al., 

2017; Spindler et al., 1997; Vincent and Braith, 2002). On the other hand, fracture risk 

reduction has not been established in randomized trials with long term physical activity. 

Importantly, results from endurance exercise trials, particularly in the elderly, are even less 

convincing, with some studies showing preservation of bone mass and others showing no 

effect or even bone loss (Braam et al., 2003; Duckham et al., 2013; Scofield and Hecht, 

2012). Consistent with the latter effect, brief bouts of endurance training have been shown to 

increase bone resorption and stimulate sclerostin, an endogenous inhibitor of bone formation 

(Baron and Kneissel, 2013; Kohrt et al., 2018; Pickering et al., 2017). Sclerostin is produced 

almost exclusively by osteocytes, the ‘command and control’ cells of the bone remodeling 

unit (Bonewald, 2011; van Bezooijen et al., 2004). Osteocytes arise from mature osteoblasts, 

are imbedded in the cortical matrix, and comprise nearly 90% of the cellular composition of 

bone (Bonewald, 2011). As such, they are thought to be the transducers of mechanical 

signals arising from physical activity and loading (Bonewald, 2011). In turn, these cells, 

through an elaborate network of canaliculi, communicate with both osteoblasts and 

osteoclasts, tightly regulating remodeling (Bonewald, 2011). Emerging evidence suggests 

that osteocytes can also directly resorb bone during periods of excessive calcium demand 

(Qing and Bonewald, 2009) or after ovariectomy (Almeida et al., 2017) and as such these 

cells have become a prime target for anabolic osteoporotic therapies such as parathyroid 

hormone and monoclonal anti-sclerostin antibodies (Bellido et al., 2005; Keller and 

Kneissel, 2005; Li et al., 2009; Ominsky et al., 2010). Anti-sclerostin antibodies increase 

bone mass dramatically in humans but also may have cardiovascular side-effects that could 

limit their use in practice (McClung, 2017).

Physical activity doesn’t only target osteocytes but also stimulates the production of several 

hormone-like molecules from skeletal muscle termed “myokines” (Pedersen and Febbraio, 

2012). These include IL-6, irisin and meteorin-like (Bostrom et al., 2012; Keller et al., 2001; 

Rao et al., 2014). Irisin has been shown to be induced in many (but not all) studies of 

endurance exercise in both mice and humans (Bostrom et al., 2012; Jedrychowski et al., 

2015; Lee et al., 2014; Pekkala et al., 2013). It is a cleaved product from a type I membrane 

protein, fibronectin type III domain-containing protein 5 (FNDC5), and is shed into the 

extracellular milieu and circulation (Bostrom et al., 2012). The crystal structure of irisin has 

been determined and contains an FNIII domain (Schumacher et al., 2013) that is also 

contained in fibronectin and many other proteins (Bork and Doolittle, 1992; Hynes, 1973; 

Potts and Campbell, 1994). FNIII domains in polypeptides are quite common, with over 200 

polypeptides having these motifs (Bork and Doolittle, 1992; Potts and Campbell, 1994). 

Importantly, they bind to a wide range of different receptors, including fibroblast growth 

factor receptor and hemojuvelin (Kiselyov et al., 2003; Yang et al., 2008). Irisin is found in 

human blood at concentrations of 3–5 ng/ml (Jedrychowski et al., 2015); it has been shown 

to induce adipose tissue browning when FNDC5 is expressed in the liver through adenoviral 
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vectors, resulting in elevated irisin serum levels (Bostrom et al., 2012). However, the full 

range of irisin’s effects are just beginning to be explored and, critically, the functioning 

receptor for irisin has not yet been identified.

Several recent papers have shown that irisin injections can impact skeletal remodeling. For 

example, very low dose irisin injections, given intermittently, were shown to improve 

cortical bone mineral density and strength in mice (Colaianni et al., 2015; Colaianni et al., 

2017). These effects were consistent with in vitro studies showing that irisin could enhance 

osteoblast differentiation (Qiao et al., 2016). However, no studies have examined the effects 

of irisin on the osteocyte, a major regulator of bone structure and function and a cell type 

critical in the mediation of both mechanical and chemical signals. In addition, the effects of 

genetic manipulation of FNDC5/irisin on bone have not been reported. In this paper we 

demonstrate that irisin functions through a subset of αV integrin receptors to promote 

osteocyte survival and sclerostin secretion. Moreover, genetic deletion of FNDC5/irisin in 

C57BL/6J mice results in complete resistance at the trabecular and cortical compartments to 

ovariectomy-induced bone loss. These data identify the functioning receptor for irisin and 

should facilitate studies of irisin therapeutics for bone and other tissues responsive to 

physical activity.

Results

Irisin treatment induces the expression of sclerostin in osteocytes for bone 
remodeling.—To study the functional roles of irisin in osteocytes, we used the MLO-Y4 

(osteocyte-like) cell line (Kato et al., 1997). Osteocytes are lost with aging and their death is 

thought to be an important component in the pathogenesis of age-related osteoporosis. 

Treatment with hydrogen peroxide has been previously used in these osteocyte-like cells as 

an assay for apoptotic death (Kitase et al., 2018). Therefore, MLO-Y4 cells were treated 

with irisin in the presence of hydrogen peroxide at amounts sufficient to induce apoptosis 

(Figure 1A). Irisin treatment reduced hydrogen peroxide-induced apoptosis at concentrations 

of 1–500ng/ml. Importantly, these effects were seen within the physiological concentration 

found in human plasma (3– 5ng/ml) (Jedrychowski et al., 2015) (Figure 1A). Since exercise 

also raises the levels of plasma sclerostin, a specific product of osteocytes that causes bone 

resorption and initiates bone remodeling, we also examined expression of this hormone with 

irisin treatments. Irisin raised the mRNA level of sclerostin in the osteocyte cultures in a 

dose-dependent manner (Figure 1B). To examine the regulation by irisin in vivo, we injected 

recombinant irisin protein daily into mice for 6 days (see methods). As shown in Fig. 1C and 

D, these injections raised the sclerostin mRNA level in osteocyte-enriched bones, as well as 

the protein level in plasma even though a half-life of recombinant irisin in vivo is less than 

an hour (Figure S1). These results demonstrate that irisin can protect osteocytes against 

apoptosis in culture and induce the expression of sclerostin, a key regulator of bone 

remodeling, in vivo.

Deletion of FNDC5 prevents ovariectomy-induced trabecular bone loss by 
inactivating osteocytic osteolysis and osteoclastic bone resorption.—To 

investigate if irisin plays a role in the endogenous processes of normal bone resorption and 

remodeling, we first analyzed the femur in mice null for FNDC5 (the precursor of irisin) and 
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littermate wild type mice at 5 months of age (see methods). FNDC5 null mice had 

significantly lower level of RANKL mRNA in whole bones both in male and female while 

OPG was not significantly different (Figure S2B-C). RANKL is a key factor in osteoclast 

activation, so we also analyzed the microarchitecture of bones. FNDC5 null mice had 

significantly higher femoral trabecular bone mass and greater connectivity density than wild-

type mice (Table S1), which is consistent with lower bone resorption and reduced expression 

of RANKL; on the other hand, there were no differences in cortical bone indices (Table S1). 

In male mice, there were no differences in bone mass, either in the cortical or trabecular 

compartment (Table S1).

To further investigate the role of irisin in bone resorption, particularly in this pathological 

context, we performed ovariectomy (OVX) (Idris, 2012) in mice null for FNDC5 and their 

littermate controls. As expected, ovariectomy increased bone resorption and caused bone 

loss in wild-type mice, compared to the sham operated group (Figure 2A-D, Figure S3). This 

was apparent by the ratio of bone volume to total bone volume, trabecular number and the 

separation between trabeculae in the lumbar vertebrae (Figure 2E-G, Table S2). However, 

FNDC5 null mice were strikingly resistant to OVX-induced trabecular bone loss (Figure 2A-

D, Figure S3). The maintenance of bone mass in the absence of estrogen in FNDC5 null 

mice was principally due to marked reduction in bone resorption. (Figure 2H-J, Table S2). 

Consistent with the lack of resorption in the OVX’d null mice, whole bone RANKL mRNA 

remained unchanged (Figure S2E). On the other hand, there were no differences in 

osteoblast number or bone formation rate for the OVX’d FNDC5 null mice compared to 

OVX’d wild-type mice (Table S2). To ascertain the mechanism responsible for the absence 

of bone loss and lack of change in RANKL with estrogen deficiency in the FNDC5 KO 

mice, we compared cortical bone histologically from both controls and null mice after OVX. 

In the FNDC5 null mice there was a striking lack of osteocytic osteolysis and lacunae 

enlargement (Figure 3A-E, Table S3) compared to OVX’d control mice, whose cortical bone 

was characterized by marked enlargement in osteocytic lacunae due to enhanced osteocytic 

osteolysis (Figure 3A-E, Table S3). Taken together, these data indicate that FNDC5/irisin is 

required for ovariectomy-induced osteolysis and strongly suggest that endogenous FNDC5/

irisin induces bone resorption, at least partly through its actions on osteocytes.

In light of these data, we asked whether ovariectomy changed irisin levels. OVX was 

performed in 8-week-old wild-type mice; irisin was measured in plasma 2 weeks after OVX 

using quantitative mass spectrometry by the AQUA method (Jedrychowski et al., 2015). 

Control (sham operated) mice had 0.3 ng/ml of irisin in plasma, while the OVX mice had 2.4 

fold more (Figure S2G). Interestingly, this is 10 fold less than healthy young human males 

(Jedrychowski et al., 2015).

Quantitative proteomic analysis identified integrin β1 as a candidate for the 
irisin receptor and irisin treatment triggers integrin-like signaling.—The irisin 

receptor has not been identified. Since our data showed that MLO-Y4 osteocytes directly 

respond to low concentration of irisin, we used these cells to identify its receptor. Irisin with 

a his-tag or an identically tagged control protein (Adipsin) were first incubated with intact 

cell surfaces at 4°C. A chemical cross-linker was then added and incubated with cells, and 

the ligands were re-purified with (presumptive) cellular proteins covalently attached. The 
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cross-links were then reversed and the products were subjected to quantitative mass 

spectrometry (Figure 4A). This quantitative proteomic analysis, using isobaric tagging, 

revealed five cell surface proteins as potential receptor candidates for irisin (Figure 4B, 

Table S4). Among them, only integrin β1 is known to bind protein ligands and to trigger 

downstream signaling. Integrin β1 (like all β-integrins) binds α-integrins to form obligate 

heterodimers. These heterodimers, upon ligand binding, usually trigger canonical signaling 

by phosphorylation of focal adhesion kinase (FAK), AKT, and cAMP response element-

binding protein (CREB) (D’Amico et al., 2000; Giancotti and Ruoslahti, 1999; Schaller et 

al., 1994) (Figure 4C). In response to ligand binding to many integrins, FAK is auto-

phosphorylated on tyrosine 397 and then downstream signaling follows (Giancotti and 

Ruoslahti, 1999). MLO-Y4 cells were treated with irisin at 10nM or norepinephrine at the 

same concentration (as a positive control for phosphorylation of CREB); irisin treatment 

caused phosphorylation of FAK in 1 minute and the signal decreased after 10 minutes 

(Figure 4D). AKT was phosphorylated on threonine 308 while phosphorylation of serine at 

amino acid 473 was not induced. Additionally, CREB was phosphorylated after 5 minutes 

with irisin and as expected, norepinephrine also did this (Figure 4D). The dose response of 

these signaling events was then examined. Treatment of these osteocytes with irisin doses as 

low as 10pM induced the phosphorylation of FAK (Figure 4E). Zyxin, another downstream 

protein of the integrin signaling pathway (Brancaccio et al., 2006), was phosphorylated 

potently as well (Figure 4E). These data show that irisin stimulates a very potent pathway of 

integrin-like signaling.

Irisin binds directly to integrin complexes through an RGD-analogous motif of 
irisin and well-known ligand-binding motifs within integrin αV/β5.—To 

determine whether irisin binds directly to integrins, we performed a binding assay using 

purified recombinant irisin and many integrin complexes that were commercially available 

(Figure 5A). Most integrin complexes showed relatively weak binding to irisin (Figure 

S4A). In particular, several of the β1-containing complexes showed binding to irisin above 

the background (Figure 5A). However, αV/β5 integrin, both murine and human, showed by 

far the highest extent of binding.

Using quantitative proteomics with mass spectrometry (spectral counting method), we 

analyzed expression of multiple integrins in MLO-Y4 that bind to irisin. Integrin αV is the 

most abundant integrin protein in MLO-Y4 cells, followed by integrin β1, integrin α5, 

integrin β5 and integrin β3 (Table S5). We also observed minor amounts of integrin β6 and 

integrin β8. Therefore, we focused mainly on integrin αV/β1, integrin αV/β3, integrin αV/

β5 and integrin α5/β1 in cell culture experiments.

Gain of function experiments were next performed, using ectopic expression of integrin 

subunits in cultured HEK293T cells. These cells showed little basal signaling in response to 

irisin; cells with forced expression of integrin αV/β5 but not of integrin αV/β3 showed an 

enhanced level of phosphorylation of FAK upon irisin treatment (Figure 5B). As a positive 

control, the cells were treated with vitronectin, a ligand for integrin αV family, in the 

presence of integrin αV/β3 or integrin αV/β5. Vitronectin treatment induced 

phosphorylation of FAK in both, indicating that the integrins are active forms (Figure S4B). 

In addition to integrin αV/β5, irisin treatment increased FAK phosphorylation after forced 
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expression of the integrin αV/β1 (Figure S4C). However, cells with forced expression of an 

empty vector, integrin α5/β1, or integrin α11/β1 showed little phosphorylation of FAK 

above background upon irisin treatment (Figure S4D).

The response of these cells to irisin was also tested in a loss of function format, namely in 

the presence of antagonistic antibodies against integrin αV/β3 or integrin αV/β5. MLO-Y4 

cells were treated with control mouse monoclonal IgG, or antagonistic antibodies against 

integrin αV/β3 or integrin αV/β5 before irisin treatment. We observed that anti-integrin αV/

β5 completely blocked the irisin-mediated phosphorylation of FAK, Zyxin and CREB, while 

control Igg or the anti-integrin αV/β3 did not block signaling (Figure 5C). We also observed 

the same pattern in the irisin-mediated sclerostin gene expression (Figure 5D). These results, 

taken together, indicate that integrin αV/β5 has both the highest affinity for irisin and is 

required for the cellular response to irisin; certain other integrins such as αV/β1 also have a 

significant affinity and response. Importantly, the well-known integrin αV/β3 complex does 

not trigger a response to irisin in this osteocyte-like cell line.

To confirm a direct interaction between irisin and integrin αV/β5 and to help identify which 

domains in both irisin and αV/β5 integrin participate in this binding event, we used 

differential hydrogen-deuterium exchange linked to mass spectrometry (HDX/MS). 

HDX/MS measures deuterium incorporation of peptides via exchange of backbone amide 

hydrogens which is sensitive to hydrogen bonding and solvent accessibility. If the protein-

protein interaction occurred, we would expect a reduction of solvent exchange in the regions 

of the protein driving the interaction. We performed the experiment as a differential 

comparing integrin αV/β5 ± saturating irisin and irisin ± saturating integrin αV/β5. 

HDX/MS identified putative binding regions in the βA domain of integrin β5 which are 

stabilized (reduction in solvent exchange) when irisin is bound (Figure S5A). Interestingly, 

these regions or motifs in integrin β5 have been previously reported to interact with ligands 

such as fibronectin, osteopontin and vitronectin (Hu et al., 1995; Humphries et al., 2006; 

Marinelli et al., 2004; Smith et al., 1990; Van Agthoven et al., 2014). HDX/MS also 

identified a putative integrin-binding region of irisin at amino acids 60– 76 and 101~118 

(Figure S5B). Interestingly, this region of irisin is proximal to that which has been suggested 

as a candidate for receptor binding site based on crystal structural similarity with fibronectin 

(Schumacher et al., 2013). Moreover, the three-dimensional structure of the proximal motif 

(amino acid 55–57) is very similar to the well-known “RGD” motif in fibronectin, even 

though irisin does not have the key amino acid primary sequence(RGD) except for aspartic 

acid (XXD) (Schumacher et al., 2013). Likely the direct interaction of this loop motif with 

integrin further stabilizes the proximal region of irisin leading to reduced solvent exchange 

(Figure S5C). The direct interaction of other identified motifs with integrin also has the 

same pattern as well (Figure S5D-E). These results demonstrate that irisin directly binds 

integrin αV/β5 and the regions within each protein that are protected from solvent exchange 

allow us to make a working model of its three-dimensional interaction (Figure 5E). Further 

studies will need to be performed to refine this model.

Other integrin inhibitors prevent irisin-induced signaling and sclerostin 
expression.—Certain peptides with an RGD motif are well-known inhibitors that prevent 

integrin-ligand binding and function (Plow et al., 2000; Plow et al., 1987).While irisin does 
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not contain an RGD sequence, irisin has a loop that has close structural similarity with 

certain RGD motifs (Schumacher et al., 2013) and this loop is used by irisin to bind to 

integrin αV/β5 (Figure 5E).

Therefore, we tested whether RGD inhibitory peptides block the interaction between 

integrins and irisin. As shown in Fig. 6A, the RGDS peptide, which is a commercially 

available form of the RGD peptide, dramatically suppressed irisin-induced phosphorylation 

of FAK, Zyxin, and CREB (Figure 6A). To test whether the αV integrins are major 

components for FAK signaling in the osteocytes, cells were treated with echistatin, an 

inhibitor known to affect primarily integrin αV complexes (Kumar et al., 1997). Echistatin 

also effectively prevented irisin signaling (Figure 6B). In addition, we tested irisin-induced 

signaling with other specific inhibitors for integrin αV, such as cyclo RGDyK and 

SB273005 (Chen et al., 2004; Dechantsreiter et al., 1999; Lark et al., 2001; Miller et al., 

2000; Yu et al., 2014). These inhibitors all block irisin-induced signaling (Figure S6A).

We also tested whether cyclo RGDyK blocked the irisin-integrin αV/β5 signaling in a dose- 

dependent manner. After forced expression of integrin αV/β5 in HEK293T cells, cyclo 

RGDyK was co-treated with irisin. Immunoblot data showed that 10nM cyclo RGDyK 

prevented phosphorylation of FAK significantly and 100nM cyclo RGDyK blocked the 

phosphorylation completely, indicating that IC50 is 10~50nM in the presence of irisin 

(Figure S6B). We then extended these observations to the level of gene expression: MLO-Y4 

cells were treated with irisin in the presence of a negative control RGD peptide, RGD 

peptide or cyclo RGDyK and echistatin (Figure 6C). In the presence of control RGD 

peptide, irisin raised the mRNA level of sclerostin, while these inhibitors all prevented 

sclerostin induction. We also injected the irisin peptide into wild-type mice, in combination 

with control RGD peptide or cyclo RGDyK, an integrin inhibitor that is widely used for in 
vivo studies (Chen et al., 2004; Guo et al., 2014) (Figure 6D-E). Cyclo RGDyK prevented 

the irisin-induced gene expression of sclerostin in osteocyte-enriched bones, as well as the 

protein level in plasma. Additionally, SB273005, which has a higher affinity to integrin αV/

β5 than integrin αV/β3, was also employed. As shown in Fig. S6C, SB273005 significantly 

prevented the irisin-induced gene expression in vivo. These results together strongly suggest 

that irisin acts on integrin αV family and integrin αV/β5 is particularly important in the 

functions of irisin on osteocyte cells.

Integrins mediate the irisin-induced thermogenic gene program.—It has been 

shown that irisin raised the expression of Ucp1 and other thermogenic genes in fat cells. 

(Bostrom et al., 2012; Huh et al., 2014; Lee et al., 2014). Furthermore, thermogenic gene 

expression was also elevated when FNDC5 was expressed from the liver with adenoviral 

vectors and irisin was released in the circulation (Bostrom et al., 2012). To examine whether 

recombinant irisin induced the thermogenic gene expression in vivo, we injected 

recombinant irisin into wild-type mice for one week; irisin treatment increased the mRNA 

level of Ucp1 more than 2-fold (Figure 7A). The protein level in whole tissue, as detected by 

western blots, was also increased by the irisin injections (Figure 7B). To test whether 

integrins mediate these effects, we injected the irisin peptide with control RGD peptide or 

cyclo RGDyK. As shown in Fig. 7C and D, cyclo RGDyK blocked the irisin-induced gene 

expression of Ucp1 and Dio2 as well as the induction of the protein level of Ucp1. We also 
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observed that recombinant irisin treatment increased the gene expression of Ucp1 in primary 

inguinal fat cells (Figure 7E). Proteomic data showed that in primary inguinal fat cells, 

integrin β1 is the most abundant followed by integrin β6, integrin α1, integrin β5, and 

integrin αV. Integrin β3 wasn’t detectable in these cells (Table S6). Cyclo RGDyK treatment 

prevented irisin-induced gene expression (Figure 7E), indicating that irisin also works on fat 

cells directly via integrin αV family. Thus, integrin αV complexes also appear to act as 

receptors for irisin in fat tissue, and mediate the irisin-induced thermogenic gene program.

Discussion

αV integrin complexes are irisin receptors.—Since its discovery in 2012, irisin has 

been reported to have various functions in many organs (Perakakis et al., 2017; Polyzos et 

al., 2018). These effects are related mainly to known benefits of exercise, such as 

strengthening bones, increasing energy expenditure and improving cognition (Bostrom et al., 

2012; Colaianni et al., 2015; Colaianni et al., 2017; Lee et al., 2014; Wrann et al., 2013; 

Zhang et al., 2017). However, the mechanisms underlying these benefits were unclear, in 

large measure because the irisin receptor(s) had not been identified. Here we describe the 

irisin receptor as a subset of integrin complexes. Importantly, this conclusion is drawn from 

several independent lines of evidence. First, our quantitative proteomic analysis showed that 

irisin binds to osteocyte cells in a way that allows chemical cross-linking to integrin β1. 

Second, protein-protein binding assay using purified irisin and integrin complexes showed 

that irisin binds to several integrin complexes, including integrin α1/β1; however, integrin 

αVβ5 has the highest apparent affinity in these experiments. Third, HDX/MS also 

demonstrated that irisin binds to integrin αV/β5 and this analysis allowed mapping of 

binding motifs on both irisin and the integrin complex. Fourth, irisin activates signaling 

characteristic of integrin receptors. One of the main features of integrin signaling is the 

Y397 phosphorylation of FAK upon ligand binding; irisin treatment of osteocytes raised the 

phosphorylation level of FAK within one minute. Irisin is also incredibly potent in that 

10pM irisin triggers this phosphorylation and other phosphorylation events known to occur 

with integrin signaling. Fifth, ectopic expression of integrin αV/β1 or integrin αV/β5 in 

cultured HEK293T cells showed that irisin can trigger elevated integrin signaling compared 

to cells transfected with empty vectors. Lastly, it is notable that well-characterized integrin 

inhibitors or an antagonistic antibody directed against integrin αV/β5 suppressed nearly all 

irisin-mediated signaling and its downstream gene expression. Taken together, these data 

prove that a subset of integrins, especially those involving αV integrin, are functional irisin 

receptors, at least in osteocytes and fat tissues.

Irisin binds to integrin αV/β5 in structural homology to other integrin ligands
—The αV family of integrins has previously been reported to contribute to bone remodeling 

(Duong et al., 2000; Duong and Rodan, 1998; Thi et al., 2013). Interactions of the αV 

family of integrins with extracellular matrix proteins such as osteopontin and vitronectin 

lead to adhesion of osteoclasts to the bone surface followed by bone resorption (Duong et 

al., 2000; Duong and Rodan, 1998; Flores et al., 1992; Horton et al., 1991). HDX/MS 

experiment determined here that regions proximal to the RGD-like loop of irisin is involved 

in the interaction with integrin αV/β5. Interestingly, this loop (amino acids 55 to 57), was 

predicted as a potential receptor binding loop based on the structural similarity with an 
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RGD-sequence containing loop in fibronectin (Schumacher et al., 2013). In addition, within 

integrin β5 subunit, the HDX/MS method identified putative binding motifs in the βA 

domain, which are also reported as the interaction site for RGD-containing ligands 

(Marinelli et al., 2004; Van Agthoven et al., 2014). Based on these data, the ability of RGD-

mimetics to block both irisin-induced signaling and irisin-induced gene expression (Figure 6 

and 7) is predictable from a mechanistic perspective.

Irisin regulates bone remodeling, targeting osteocytes.—Our studies reveal for the 

first time that osteocytes are direct targets of irisin, acting via the integrin αV family. 

Osteocytes use both mechanical and chemical sensation to maintain bone homeostasis 

(Bonewald, 2011) by directly controlling skeletal remodeling. With respect to the bone 

resorption component of skeletal remodeling, osteocytes regulate osteoclasts in two ways: 

First, by directly secreting RANKL, the most potent inducer of osteoclastogenesis, and 

second, by secreting sclerostin, an inhibitor of bone formation that also suppresses 

osteoprotogerin (OPG) a decoy receptor for RANKL. In the most common animal model of 

osteoporosis, OVX, the loss of estrogen triggers RANKL production and suppresses OPG, 

leading to greater RANKL bioactivity, increased bone resorption and ultimately bone loss, 

(Komori, 2015). Histologically this is manifested by greater numbers of osteoclasts on the 

bone surface and enhanced osteocytic osteolysis (Alameida, 2017). In our experiments, 

deletion of FDNC5 suppressed bone resorption, by blocking the increase in osteoclast 

number and eroded surfaces, thereby preventing bone loss after OVX. Furthermore, 

deficiency of FNDC5 inhibited OVX-induced perilacunar enlargement. a manifestation of 

osteocytic osteolysis, indicating that the phenotype is at least mediated partly through an 

inactivation of osteocyte function(s), as well as through inhibition of osteoclast number and 

function. In addition, we demonstrated that sclerostin was directly induced by irisin in vitro 
and in vivo. Of course, it is entirely possible that irisin has additional effects on other bone 

cells in the remodeling unit, as demonstrated by a previous literature (Colaianni et al., 2014).

These data and previous results from others (Colaianni et al., 2015; Colaianni et al., 2017) 

suggest that irisin could be a useful target for the treatment of osteoporosis. Although irisin 

targets bone resorption, intermittent treatment with irisin has been shown to improve bone 

density and strength (Colaianni et al., 2015; Colaianni et al., 2017). Considered within the 

light of our data, this may seem counter-intuitive. However, a comparable example of a 

peptide that both stimulates resorption and is anabolic when administered intermittently, is 

parathyroid hormone (i.e. PTH). Chronically high PTH levels drive bone resorption to 

maintain eucalcemia. Moreover, Kohrt et al recently demonstrated that during an acute bout 

of physical activity, serum calcium rapidly decreased and this drove a secondary increase in 

PTH. Yet it has been well established that intermittent PTH treatment is anabolic to the 

skeleton, at least over the first twelve months of therapy (Dempster et al., 2001; Lane et al., 

1998). Therefore, it seems likely that irisin could both target bone resorption but also act on 

remodeling in a favorable manner with intermittent pulse dosing. On the other hand, the 

striking data that OVX-induced osteoporosis is entirely prevented in the FNDC5 KO mice, 

suggests another more conventional therapeutic approach: inhibition/neutralization of irisin 

or its receptors, the αV integrins.
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Irisin induces a thermogenic program in fat through integrins.—Ucp1 and Dio2 

are key proteins contributing to mitochondrial proton leak and thermogenesis in adipose 

tissues. Here we show that treatment of mice with recombinant irisin protein raised the 

expression of Ucp1 and Dio2 in subcutaneous (inguinal) adipose tissues, despite the very 

short half-life of irisin in vivo. Importantly, irisin’s effects on these thermogenic genes are 

also sensitive to simultaneous administration of the αV integrin inhibitor. This suggests the 

generality of the integrins, especially the αV integrins, as irisin receptors.

Irisin receptors, signaling and therapeutics—The identification of the irisin 

receptors as integrins in osteocytes and thermogenic fat suggests that the αV family of 

integrins complexes are likely to be the major irisin receptors in all tissues. However, it is 

important to note that nothing presented here rules out the possibility of other receptors for 

irisin within the integrin family or even outside of the integrins. Importantly, the 

identification of an irisin receptor and its signaling systems can be very useful as both a 

quality control for irisin preparations and for the development of irisin inhibitors. It is also 

likely that these data might allow for the development of irisin ligands that have altered 

activity, including proteins that can bind to different integrins among subsets of these 

receptors. Our findings should also contribute to the study of irisin in other organs where 

FNDC5 is also highly expressed, including brain, skeletal muscle itself and heart. Healthy 

humans have levels of circulating irisin in the 3–5ng/ml range and they are, on average, 

increased with exercise (Jedrychowski et al., 2015). As shown here, these are the levels of 

irisin that are quite sufficient to activate irisin receptors. Exercise brings well-known 

improvements in mood and cognition and there are already data suggesting that irisin might 

mediate some of these effects in the brain (Wrann et al., 2013). Data presented here should 

accelerate these and other studies of irisin.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be directed to and will be 

fulfilled by the Lead Contact, Bruce M. Spiegelman (bruce_spiegelman@dfci.harvard.edu)

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Animals—Animal experiments were performed per procedures approved by the 

Institutional Animal Care and Use Committee of the Beth Israel Deaconess Medical Center. 

All strains were on a C57BL/6J background. Unless otherwise stated, mice were housed in a 

temperature-controlled (20–22°C) room on a 12-hour light/dark cycle. Mice were fed with 

chow diet. Fndc5 floxed mice were developed with the Texas A&M Institute for Genomic 

Medicine and crossed with EIIa-cre mice to generate germline deletion of Fndc5 (Exon 2 

and 3). Experiments were performed with sex- and age-matched global FNDC5 knockout 

and littermate wild-type control mice. 9-month- old female mice were used for OVX 

experiment and analysis of vertebrae and femurs. 5-month- old female mice were used for 

µCT analysis of femurs and gene expression analysis of tibia. 8- week-old C57BL/6J wild-

type female mice were ovariectomized and sacrificed after 2 weeks of OVX to measure 
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irisin level in plasma. 8-week-old C57BL/6J wild-type male mice were used for irisin 

injection experiments.

Cell lines—MLO-Y4 cells were established from female mice and cultured as previously 

described (Kato et al., 1997). The cells were seeded on type I collagen-coated 6 well plates 

under MEMα medium (Thermo Fisher Scientific, 12571–063), 2.5% (v/v) Fetal Bovine 

Serum (Hyclone, SH30396.03,Lot AB217307), 2.5% (v/v) calf serum (Hyclone, 

SH30072.03, AAL11105), penicillin- streptomycin (P/S) 100 U/ml. Cells were treated with 

irisin or other reagents at 60% cell density. HEK293T cells were set up for experiments at 1 

× 105 cells per well in 6 well plate under DMEM (Thermo Fisher Scientific, MT10017CV), 

10% (v/v) Fetal Bovine Serum (Gemini BioProducts), penicillin-streptomycin (P/S) 100 

U/ml. All cell lines were maintained at 37°C in 5% CO2

Primary white adipocyte cultures—Inguinal fat tissues from 6-week-old wild-type 

C57BL/6J female mice were dissected and washed with PBS, minced and digested for 1 

hour at 37°C in PBS containing 10mM CaCl2, 2.4 U/ml dispase II (Roche) and 10 mg/ml 

collagenase D (Roche). After adding warm DMEM/F12 (1:1) with 10% FCS, digested tissue 

was filtered through a 70μm cell strainer and centrifuged at 600×g for 10 minutes. Pellet was 

resuspended by 40ml DMEM/F12 (1:1) with 10% FCS and filtered through a 40μm cell 

strainer followed by centrifugation at 600×g for 10 minutes. Pelleted inguinal stromal 

vascular cells were grown to confluence and split onto type I collagen-coated coated 12 well 

plates.

The cells were induced to differentiate by treatment with 1µ M rosiglitazone, 5µ M 

dexamethasone, 0.5µ M isobutyl methyl xanthine for 2 days. After that, cells were 

maintained in 1µM rosiglitazone for 4 days with medium change every other day. Cells were 

maintained at 37°C in 10% CO2

METHOD DETAILS

Expression and purification of human/mouse recombinant his-tag irisin—His-

tag recombinant irisin was generated by transfection of an irisin (human/mouse)-10 his tag 

DNA plasmid. This protein with a C-terminal his tag was produced and purified from 

mammalian HEK293 cells after transient DNA transfection. The protein was purified from 

250 ml conditioned media using IMAC column, followed by Superdex200 in 50mM HEPES 

pH7.2, 150mM NaCl. The protein was diluted in sterilized PBS to use in cell culture 

experiments and in vivo injection.

Cell culture experiments—MLO-Y4 cells were cultured as previously described (Kato 

et al., 1997). The cells were seeded on type I collagen-coated 6 well plates under MEMα 
medium (Thermo Fisher Scientific, 12571– 063), 2.5% Fetal Bovine Serum (Hyclone, 

SH30396.03, Lot AB217307), 2.5% calf serum (Hyclone, SH30072.03, AAL11105), 

penicillin-streptomycin (P/S) 100 U/ml. At 60% cell density, medium was switched to 

FreeStyle293 Expression medium after washing with warm PBS. After 4 hours incubation, 

the cells were treated with indicated doses of irisin for indicated times. For integrin inhibitor 

treatment, cells were treated with indicated concentration of the inhibitors for 10 minutes 
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before irisin treatment. For antagonistic antibody treatment, cells were treated with 0.9μg/ml 

antagonistic antibodies against integrin αV/β3 or integrin αV/β5 οr monoclonal mouse IgG 

as a negative control for 10 minutes before irisin treatment. After treatments, medium was 

aspirated on ice and cold PBS was added to the cells. RIPA buffer for lysis was added after 

aspiration of cold PBS for immunoblot analysis.

For primary inguinal fat cells, the cells were induced to differentiate by treatment with 1 µ M 

rosiglitazone, 5 µM dexamethasone, 0.5 µM isobutylmethyl xanthine in the presence of 0, 

0.5, 5 or 50ng/ml recombinant 10 his-tag irisin protein for 2 days. After that, cells were 

maintained in 1µM rosiglitazone in the presence of 0, 0.5, 5 or 50ng/ml recombinant 10 his-

tag irisin protein for 4 days with medium change every other day. mRNA levels were 

analyzed as described in gene expression analysis.

Transient transfection—On day 0, HEK293T cells were set up for experiments at 1 × 

105 cells per well in 6 well plate. On day 2, cells were transiently transfected with the 

indicated plasmids with FuGENE6 reagent (Roche Applied Science) according to the 

manufacturer’s protocol. After 24 hours of incubation, Freestyle 293 medium were added 

and the cells were incubated for 3 hours followed by treatment of indicated concentration of 

irisin for 5 minutes or by pre-treatment of 10μM cyclo RGDyK for 10 minutes and treatment 

of 0.3nM irisin for 5 minutes. After treatments, medium was aspirated on ice and cold PBS 

was added to the cells. RIPA buffer for lysis was added after aspiration of cold PBS for 

immunoblot analysis.

Animal studies—Animal experiments were performed per procedures approved by the 

Institutional Animal Care and Use Committee of the Beth Israel Deaconess Medical Center. 

Experiments were performed with sex- and age-matched global FNDC5 knockout and 

littermate wild-type control mice. Female mice were initially ovariectomized to deplete 

ovarian hormones and induce osteoporosis. Mice were sacrificed after 3 weeks of OVX at 

the age of 36~38 weeks. 8-week-old C57BL/6J wild type mice were ovariectomized and 

sacrificed after 2 weeks of OVX to measure irisin level in plasma. The remaining uterine 

fundus, cervical region and vaginal vault were removed as a whole from the mice and 

weighed to ensure shrinkage from the ovariectomy procedure.

C57BL/6J wild-type male mice for recombinant irisin injection were acquired from The 

Jackson Laboratory (000664). Mice were mock injected with sterilized PBS for at least three 

days. We excluded mice if the mice lost more than 5% body weight during mock or irisin 

injections. For bone studies, the mice were injected with 1mg/kg irisin by daily 

intraperitoneal (IP) injection for 6 days. Plasma was collected to analyze sclerostin protein 

level and tibia was collected to analyze mRNA level in osteocyte-enriched bones. To get 

osteocyte-enriched bones, the bones were flushed with HBSS and then cut longitudinally by 

surgical blade in α-MEM without phenol red (Gibco, 41061–029). The bones were 

incubated with α-MEM containing 250u/m collagenase (Sigma-Aldrich, C9891) for 30 

minutes followed by 30 minutes incubation with 5mM EDTA with 0.1% BSA, pH 7.4 after 

washing the bones with HBSS three times. The bones were incubated with α-MEM 

containing 250u/m collagenase (Sigma-Aldrich, C9891) for 30 minutes additionally after 

washing the bones with HBSS three times. After aspiration of the medium, the osteocyte-
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enriched bones were homogenized by a mechanical homogenizer in cold room (4°C) with 

metal beads and TRIzol for gene expression analysis.

For inguinal fat, the mice were injected IP with 1mg/kg irisin every other day for a week. 

Inguinal fats were homogenized by a mechanical homogenizer in cold room (4°C) with 

metal beads and TRIzol for gene expression analysis. For immunoblot analysis, the fats were 

homogenized with metal beads and 2% SDS, 150mM NaCl, 50mM HEPES pH 8.8, 5mM 

DTT.

To test the effect of cyclo RGDyK, the mice were co-injected with 1mg/kg cyclo RGDyK or 

same amount of control RGD peptide. For the injection of SB273005, the compound 

dissolved in 5% DMSO+2% Tween 80+30% PEG 300+ddH2O.

Bone histomorphometric analysis for trabecular bone—Mice were subcutaneously 

injected with 20mg/kg of calcein (Sigma Aldrich, St. Louis, MO, USA) and 40mg/kg of 

demeclocycline (Sigma Aldrich, St. Louis, MO, USA) 9 and 2 days prior to the sacrifice, 

respectively. Lumbar vertebrae (L3-L5) were harvested and immediately fixed in 70% 

ethanol for 3 days. The fixed bone samples were dehydrated and embedded in 

methylmethacrylate. Undecalcified 4-µm-thick sections were obtained using a motorized 

microtome (RM2255, Leica, Nussloch, Germany) and stained with Von Kossa method for 

showing the mineralized bone. Consecutive second section was left unstained for the 

analysis of fluorescence labeling and the third section was stained with 2% Toluidine Blue 

(pH 3.7) for the analysis of osteoblasts, osteoid, osteoclasts. The bone histomorphometric 

analysis was performed under 200× magnification in a 1.8mm high x 1.3mm wide region 

located 400µm away from the upper and lower growth plate using OsteoMeasure analyzing 

software (Osteometrics Inc., Decatur, GA, USA). The structural parameters [bone volume 

(BV/TV), trabecular thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation 

(Tb.Sp)] were obtained by taking an average from 2 different measurement of consecutive 

sections. The structural, dynamic and cellular parameters were calculated and expressed 

according to the standardized nomenclature (Dempster et al., 2013). The total bone area was 

subtracted by the blood vessel area to get the mineralized bone area.

Osteocyte analysis—The residual methylmethacrylate embedded tibia sample blocks 

from bone histomorphometry were used for the osteocyte analysis. Blocks were trimmed 

and the bone surface was sequentially ground with silicon carbide sandpaper of increasing 

grid number (Scientific Instrument Services Inc., NJ, USA). The sample surface was then 

carbon coated by vacuum evaporation (Auto 306 Vacuum Coater, Boc Edwards, UK) 

followed by fixation on the specimen mount with aluminum conductive tape (Ted Pella Inc., 

CA, USA). A digital scanning electron microscope (SEM, Supra 55 VP, Zeiss, Oberkochen, 

Germany, Center for Nanoscale Systems in Harvard University, Cambridge, MA) was 

employed with an accelerating voltage of 20kV, a working distance of 10mm and 500× 

magnification for taking backscattered electron images of a standardized tibial midshaft area 

located 4.5mm distal from the tibia-fibula junction. Images were analyzed with the Image J 

software (NIH, MD) for measuring osteocyte lacunae area and density (Qing et al., 2012). 

The total osteocyte lacunae area was measured in the number of pixels and then converted to 

the metric system. The total area was divided by the number of osteocytes to get the lacunae 
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area. The number of osteocyte was divided by mineralized bone area to get the lacunae 

density.

Analysis of femur using µCT—We used high-resolution desktop microcomputed 

tomography imaging (µCT40, Scanco Medical, Brüttisellen, Switzerland) for analysis as 

previously reported (Spatz et al., 2013). We assessed trabecular and cortical bone 

microstructure in the distal femur and femoral diaphysis, respectively. Scans were acquired 

using a 10 µ m3 isotropic voxel size, 70kVP peak x-ray tube potential, 114mAs tube current, 

200ms integration time, and were subjected to Gaussian filtration and segmentation. Image 

acquisition and analysis protocols adhered to the JBMR guidelines for the assessment of 

rodent bones by µCT (Bouxsein et al., 2010). In the distal femur, transverse µCT slices were 

evaluated in a region of interest beginning 200µm superior to the distal growth plate and 

extending proximally 1500 µm. The trabecular bone region was identified by semi-manually 

contouring the trabecular bone in the ROI with the assistance of an auto-thresholding 

software algorithm. Morphometric variables were computed from the binarized images 

using direct, 3D techniques we assessed the bone volume fraction (Tb.BV/TV, %), trabecular 

bone mineral density (Tb.BMD, mgHA/cm3), trabecular thickness (Tb.Th, µ m), trabecular 

number (Tb.N, mm−1), trabecular separation (Tb.Sp, µm), and connectivity density (mm−3). 

Cortical bone was analyzed in 50 transverse µCT slices (ROI length = 500µm) at the femoral 

mid-diaphysis. The region of interest included the entire outer most edge of the cortex. 

Images were subjected to Gaussian filtration and segmented using a fixed threshold of 

700mgHA/cm3 to measure the following variables total cross-sectional area (Tt.Ar, mm2), 

cortical bone area (Ct.Ar, mm2), medullary area (Ma.Ar, mm2), bone area fraction (Ct.Ar/

Tt.Ar, %), cortical tissue mineral density (Ct.TMD, mgHA/cm3), cortical thickness (Ct.Th, 

mm), cortical porosity (%), and the polar moment of inertia (pMOI, mm4).

Gene expression analysis—RNA was extracted from cultured cells or frozen tissues 

using TRIzol (Thermo Fischer Scientific) and purified with RNeasy mini kit (QIAGEN 

74106). RNA was extracted from osteocyte-enriched tibia as described above (Qing et al., 

2012). To perform qRT-PCR analysis, normalized RNA was reverse transcribed using a 

high-capacity cDNA reverse-transcription kit (Applied Biosystems). cDNA was analyzed by 

qRT-PCR with indicated primers. Relative mRNA levels were calculated using the 

comparative CT method and normalized to cyclophilin mRNA. Primer sequences used are 

listed in Table S7.

Immunoblot analysis—Cells were harvested in RIPA buffer containing protease-inhibitor 

cocktail and phosphatase- inhibitor cocktail. Whole-cell lysates were homogenized by 10 

times passages through a 22G needle fitted to a 1ml syringe. Homogenized samples were 

rotated gently in cold room for 20 minutes followed by 15,000×g centrifugation for 10 

minutes. 10µ l supernatant were used for normalization using BCA assay and remaining 

supernatants were mixed with 4×NuPAGE LDS sample buffer and 2.5% β-mercaptoethanol. 

The samples were incubated at 98°C for 5 minutes. The samples were separated by SDS-

PAGE, and transferred to ImmobilonP membranes (Millipore). Protein levels were analyzed 

via western blot using indicated antibody. Inguinal fat pads were homogenized by a 

mechanical homogenizer in cold room (4°C) with 800µl of 2% SDS, 150mM NaCl, 50mM 
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HEPES pH 8.8, 5mM DTT containing protease- inhibitor cocktail and phosphatase-inhibitor 

cocktail in cold room followed by incubation at 60°C for 30 minutes. 100µl of the 

homogenized samples were mixed with 300µ l methanol, 200µl chloroform and 250µl 

sterilized H2O. After centrifugation at 4000×g for 10 minutes at room temperature, upper 

and lower phases were removed by aspiration and interphase were washed with 1ml cold 

methanol three times. After drying at 37°C, the interphase was solubilized by 8M Urea and 

50mM HEPES pH 8.5. After normalization of the protein using BCA assay, the samples 

were separated by SDS-PAGE, and transferred to ImmobilonP membranes (Millipore). 

Protein levels were analyzed using western blot against indicated antibody.

Protein-protein binding assays—100nM flag-tagged mammalian irisin was incubated 

with 5nM of the indicated his-tag integrins in a final volume of 600µ l in 1.5ml Protein 

LoBind Tubes (Eppendorf, 022431081) for 5 minutes at room temperature under rotation. 

After rotation, 60µl Ni-NTA agarose (ThermoFisher Scientific, R901–01) was applied to 

immunoprecipitated integrins. Precipitated integrins were detected by immunoblot analysis 

against his tag. Co-precipitated irisin was detected by immunoblot analysis against flag-tag.

Anti-apoptosis assay—MLO-Y4 cells were seeded in type-I collagen coated 96 well 

plate (3000 cells/well) in 1% FBS, 1% CS, α-MEM without phenol red (Gibco, 41061–029) 

on day 0. The medium was aspirated and 1% FBS, 1% CS, α-MEM without phenol red 

containing the indicated concentration of irisin was added to the wells. After 24 hours 

incubation, 0.5% FBS, 0.5% CS, α-MEM without phenol red containing the indicated 

concentration of irisin and 0.3mM H2O2 were added and the cells were incubated for 4 

hours. The cells were stained with 2μM ethidium Homodimer-1 (ThermoFisher Scientific, 

E1169) to detect dead cells. The cell images were taken using Nikon Eclipse TE300 inverted 

fluorescence microscope with a Photometrics Coolsnap EZ cooled CCD camera and 

analyzed using ImageJ. Percentage of cell death was calculated as EthD-1 positive cells 

divided by the total number of cells stained with 5µg/mL Hoechst 33342 (ThermoFisher 

Scientific, H3570) as a nuclear counterstain (Kitase et al., 2018).

Identification of irisin receptor using quantitative proteomics Co-
immunoprecipitation of candidates of irisin receptors—MLO-Y4 cells were 

seeded on 30×150mm type-I collagen coated dishes as described in cell culture experiment. 

At 60% cell density, medium was switched to FreeStyle293 Expression medium. After 4 

hours incubation, the cells were chilled on ice for 10 minutes, followed by treatment of 

10nM his-tag irisin or his-tag adipsin for 20 minutes. The cells were then incubated with 

1.5mM DTSSP for 30 minutes on ice to do cross-linking, after washing with 15ml cold PBS 

twice. The cross-linking was quenched by addition of a final concentration of 20mM Tris-

pH 7.5. The cells were then harvested and homogenized in 1ml RIPA buffer containing 

protease- inhibitor cocktail and phosphatase-inhibitor cocktail. Whole-cell lysates were 

homogenized by 10 times passages through a 22G needle fitted to a 3ml syringe. 

Homogenized samples were rotated gently in cold room for 20 minutes followed by 

15,000×g centrifugation for 10 minutes. After addition of a final concentration of 10mM 

imidazole, supernatants were incubated with 100µl Ni-NTA agarose for 1 hour. After 

centrifugation at 500×g for 1 minute, the supernatants were aspirated and 1ml cold RIPA 
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buffer containing 10mM imidazole were added to the agarose. After 10 minutes rotation in 

cold room, the supernatants were aspirated and 1ml cold RIPA buffer containing 30mM 

imidazole were added to the agarose. After repeating the washing 3 times, 0.8ml RIPA 

buffer containing 250mM imidazole was added and the agarose were gently rotated in a cold 

room for 20 minutes. After centrifugation at 1000×g for 2 minutes, the supernatants were 

transferred to 1.5ml tubes and incubated with 100µ l 0.2% sodium deoxycholate and 100µl 

10% trichloroacetic acid in ice for 1 hour. After centrifugation at 12,000×g for 10 minutes at 

4°C, the supernatants were removed and 1ml cold acetone were added to pellet followed by 

vortexing for 10 seconds. After 1 more wash with cold acetone, the pellets were dried at 

37°C and 39µ l PBS and 13µl 4×NuPAGE LDS were added to pellet with a final 

concentration of 5mM DTT. Solubilized proteins were incubated at 65°C for 20 minutes 

followed by incubation with a final concentration of 14mM iodoacetamide for 45 minutes in 

the dark. 38µ l samples were loaded to 4–12% gradient SDS-PAGE for separation followed 

by Coomassie Blue staining. The gels were submitted to quantitative proteomics.

Protein digestion and isobaric tag peptide labeling—For in-gel digestions, gels 

were stained with Coomassie Blue and were excised into 8 equal segments for control and 

irisin lanes. Gel pieces were destained and dehydrated with 100% acetonitrile, vacuumed 

dried, and digested in 25mM HEPES (pH 8.5) with 500ng sequencing grade trypsin 

(Promega) for an overnight incubation at 37°C (Shevchenko et al., 1996). Digests were with 

1% formic acid and purified using C18 Stage-Tips as previously described (Rappsilber et al., 

2007). Peptides were eluted with 70% acetonitrile and 1% formic acid, then dried using a 

speedvac.

Isobaric labeling of digested peptides was accomplished using 6-plex tandem mass tag 

(TMT) reagents (Thermo Fisher Scientific, Rockford, IL). The reagents, 5.0mg, were 

dissolved in 252µl acetonitrile (ACN) and 5µl of the solution were added to the digested 

peptides dissolved in 25µl of 200mM HEPES, pH 8.5. After 1 hour at room temperature, the 

reaction was quenched by adding 1µl of 5% hydroxylamine. Labeled peptides were 

combined and acidified prior to C18 Stage-Tips desalting.

Liquid chromatography separation and tandem mass spectrometry (LC-
MS/MS)—All LC-MS/MS experiments were performed on an Orbitrap Fusion Lumos mass 

spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) coupled with a Proxeon 

EASY-nLC 1200 LC pump (Thermo Fisher Scientific). Peptides were separated on a 100µm 

inner diameter microcapillary column packed with 35cm of Accucore C18 resin (1.8µm, 

100Å, Thermo Fisher Scientific). Peptides were separated using a 2 hour gradient of 6–33% 

acetonitrile in 0.125% formic acid with a flow rate of ~400nL/min. Each analysis used an 

MS3-based TMT method as described previously29. MS1 data was acquired at a mass range 

of m/z 350 – 1350, resolution 120,000, AGC target 5 × 105, maximum injection time 

150ms, and with a dynamic exclusion of 120 seconds for the peptide measurements in the 

Orbitrap.

Data dependent MS2 spectra were acquired in the ion trap with a normalized collision 

energy (NCE) set at 35%, AGC target set to 2.2 × 104 and a maximum injection time of 

120ms. MS3 scans were acquired in the Orbitrap with a HCD collision energy set to 55%, 
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AGC target set to 5.5 × 105, maximum injection time of 200ms, resolution at 15,000 and 

with a maximum synchronous precursor selection (SPS) precursors set to 10.

Data processing and spectra assignment—In-house developed software was used to 

convert mass spectrometric data (.raw files) to an mzXML format, as well as to correct 

monoisotopic m/z measurements. All experiments used the Mouse UniProt database 

(downloaded 10 April 2017) where reversed protein sequences and known contaminants 

such as human keratins and albumin were appended. SEQUEST searches were performed 

using a 20ppm precursor ion tolerance, while requiring each peptide’s amino/carboxy 

terminus to have trypsin protease specificity and allowing up to two missed cleavages. Six-

plex TMT tags on peptide N termini and lysine residues (+ 229.162932Da) and 

carbamidomethylation of cysteine residues (+57.02146Da) were set as static modifications 

while methionine oxidation (+ 15.99492Da) was set as variable modification. A MS2 spectra 

assignment false discovery rate (FDR) of less than 1% was achieved by applying the target- 

decoy database search strategy (Elias and Gygi, 2007) Filtering was performed using an in-

house linear discrimination analysis method to create one combined filter parameter from 

the following peptide ion and MS2 spectra metrics: Sequest parameters XCorr and ∆Cn, 

peptide ion mass accuracy and charge state, peptide length and mis-cleavages. Linear 

discrimination scores were used to assign probabilities to each MS2 spectrum for being 

assigned correctly and these probabilities were further used to filter the dataset with an MS2 

spectra assignment FDR of smaller than a 1% at the protein level (Huttlin et al., 2010).

Determination of TMT reporter ion intensities and quantitative data analysis—
For quantification, a 0.03m/z window centered on the theoretical m/z value of each the two 

reporter ions and the intensity of the signal closest to the theoretical m/z value was recorded. 

Reporter ion intensities were further de-normalized based on their ion accumulation time for 

each MS2 or MS3 spectrum and adjusted based on the overlap of isotopic envelopes of all 

reporter ions (as per manufacturer specifications). The total signal intensity across all 

peptides quantified was summed for each TMT channel, and all intensity values were 

adjusted to account for potentially sample handling variance.

Quantification of irisin in plasma and integrins in cells using quantitative 
proteomics In-gel digestion and TMT labeling—Blood was collected 2 weeks after 

OVX and plasma was separated by centrifugation. Plasma specimens (35µl) were depleted 

of albumin and IgG using the ProteoExtract kit and subsequently concentrated using 3kDa 

molecular weight cut-off spin-filter columns (Millipore). Deglycosylation of plasma was 

performed using Protein Deglycosylation Mix (NEB) as per the manufacturer’s denaturing 

protocol. Deglycosylated murine plasma samples were reduced with 5 mM DTT and 

alkylated with 75 mM iodoacetamide prior to being resolved by SDS-PAGE using 4–12% 

Bis-Tris precast gels (Life Technologies). Gels were coomassie stained and fragments were 

excised and cut into smaller fragments from the 10–15 kDa region. Gel pieces were 

destained and dehydrated with 100% acetonitrile, vacuumed dried, and 25mM HEPES (pH 

8.5) with 500 ng sequencing grade trypsin (Promega) was added for an overnight incubation 

at 37°. Digests were quenched after 12hr with 70% acetonitrile/1% formic acid, dried and 

desalted using in-house stage tips as previously described (Rappsilber et al., 2007). Peptides 
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were eluted with 70% acetonitrile/1% formic acid, dried using a speedvac, and resuspended 

in 12µl of 5% formic acid and 5% acetonitrile containing the heavy valine synthesized irisin 

peptides (Table S8, 1 femtomole). Aqua peptides of FNDC5 amino acid 32–43 

(DSPSAPVNVTVR, underline is heavy amino acid, light mass (Da) is 1240.631 and heavy 

mass (Da) is 1246.655) and FNDC5 amino acid 79–88 (FIQEVNTTTR, underline is heavy 

amino acid, light mass (Da) is 1207.609 and heavy mass (Da) is 1213.634) were used.

Isobaric labeling of the digested peptides for receptor quantitative proteomics from MLO-

Y4 cells or primary inguinal fat cells was accomplished using 6-plex tandem mass tag 

(TMT) reagents (Thermo Fisher Scientific, Rockford, IL). Reagents (5.0 mg) were dissolved 

in 252µl acetonitrile (ACN) and 1/4 of the solution were added to digested peptides 

dissolved in 100µl of 200mM HEPES, pH 8.5. After 1hr at room temperature, the reaction 

was quenched by adding 3µl of 5% hydroxylamine. Labeled peptides were combined and 

acidified prior to desalting.

Mass spectrometry and liquid chromatography—Mass spectrometry data was 

collected using an Orbitrap Fusion Lumos mass spectrometer (Thermo Scientific) coupled 

with µHPLC (EASY-nLC™ 1200 system, Thermo Scientific). Peptides were separated onto 

a 75µm inner diameter microcapillary column packed with ∼40cm of Accucore C18 resin 

(2.6µm, 150 Å, Thermo Fisher Scientific). For each analysis, we loaded ~4µl onto the 

column. Peptides were separated using a 60-minute gradient of 8 to 30% acetonitrile in 

0.125% formic acid with a flow rate of ∼400nL/min.

Parallel reaction monitoring acquisition—Parallel reaction monitoring (PRM) 

analyses were performed using an Orbitrap Lumos mass spectrometer (Thermo Fisher 

Scientific). A full MS scan from 575–700m/z at an Orbitrap resolution of 120,000 (at m/z 
200), AGC target 1 × 106 and a 1000ms maximum injection time. Full MS scans were 

followed by 25–50 PRM scans at 30,000 resolution (AGC target 1 × 106, 2000ms maximum 

injection time) as triggered by a scheduled inclusion list (see above). The PRM method 

employed an isolation of target ions by a 1.6 Th isolation window, fragmented with 

normalized collision energy (NCE) of 35, MS/MS scans were acquired with a starting mass 

range of 110m/z and acquired as a profile spectrum data type. Fragment ions for all peptides 

were quantified using Skyline version 3.5 (MacLean et al., 2010).

Peptide and protein identification

Liquid chromatography separation and tandem mass spectrometry (LC-MS/MS): All 

LC-MS/MS receptor proteomic experimental data was collected using an Orbitrap Fusion 

Lumos mass spectrometer (Thermo Fisher Scientific, San Jose, CA, USA) coupled with a 

Proxeon EASY-nLC 1200 LC pump (Thermo Fisher Scientific). Peptides were separated on 

a 75µm inner diameter microcapillary column packed with 35 cm of Accucore C18 resin 

(2.6µm, 100Å, ThermoFisher Scientific). Peptides were separated using a 3hr gradient of 6–

27% acetonitrile in 0.125% formic acid with a flow rate of 400nL/min. Each analysis used 

an MS3- based TMT method as described previously (McAlister et al., 2014). The data were 

acquired using a mass range of m/z 350 – 1350, resolution 120,000, AGC target 1 × 106, 
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maximum injection time 100 ms, dynamic exclusion of 120 seconds for the peptide 

measurements in the Orbitrap.

Data dependent MS2 spectra were acquired in the ion trap with a normalized collision 

energy (NCE) set at 35%, AGC target set to 1.8 × 104 and a maximum injection time of 

120ms. MS3 scans were acquired in the Orbitrap with a HCD collision energy set to 55%, 

AGC target set to 1.5 × 105, maximum injection time of 150ms, resolution at 15,000 and 

with a maximum synchronous precursor selection (SPS) precursors set to 10.

Data processing and spectra assignment—A compendium of in-house developed 

software was used to convert mass spectrometric data (Raw file) to the mzXML format, as 

well as to correct monoisotopic m/z measurements and erroneous assignments of peptide 

charge state (Elias and Gygi, 2007). All experiments used the Mouse UniProt database 

(downloaded 10 April 2014) where reversed protein sequences and known contaminants 

such as human keratins were appended. SEQUEST searches were performed using a 20ppm 

precursor ion tolerance, while requiring each peptide’s amino/carboxy (N/C) terminus to 

have trypsin protease specificity and allowing up to two missed cleavages. Six-plex TMT 

tags on peptide N termini and lysine residues (+ 229.162932 Da) and carbamidomethylation 

of cysteine residues (+57.02146 Da) were set as static modifications while methionine 

oxidation (+ 15.99492 Da) was set as variable modification. A MS2 spectra assignment false 

discovery rate (FDR) of less than 1% was achieved by applying the target- decoy database 

search strategy (Elias and Gygi, 2007). Filtering was performed using a in-house linear 

discrimination analysis method to create one combined filter parameter from the following 

peptide ion and MS2 spectra metrics: Sequest parameters XCorr and ∆Cn, peptide ion mass 

accuracy and charge state, in-solution charge of peptide, peptide length and mis-cleavages. 

Linear discrimination scores were used to assign probabilities to each MS2 spectrum for 

being assigned correctly and these probabilities were further used to filter the dataset with an 

MS2spectra assignment FDR of smaller than a 1% at the protein level (Huttlin et al., 2010).

Determination of TMT reporter ion intensities and quantitative data analysis—
For quantification, a 0.03 m/z window centered on the theoretical m/z value of each the six 

reporter ions and the intensity of the signal closest to the theoretical m/z value was recorded. 

Reporter ion intensities were further denormalized based on their ion accumulation time for 

each MS2 or MS3 spectrum and adjusted based on the overlap of isotopic envelopes of all 

reporter ions (as determined by the manufacturer). The total signal intensity across all 

peptides quantified was summed for each TMT channel, and all intensity values were 

adjusted to account for potentially uneven TMT labeling and/or sample handling variance.

HDX/MS

Differential HDX-MS experiments were conducted as previously described with a few 

modifications (Chalmers et al., 2006).

Peptide Identification: Protein samples were injected for inline pepsin digestion and the 

resulting peptides were identified using tandem MS (MS/MS) with an Orbitrap mass 

spectrometer (Fusion Lumos, ThermoFisher). Following digestion, peptides were desalted 
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on a C8 trap column and separated on a 1 hour linear gradient of 5–40% B (A is 0.3% 

formic acid and B is 0.3% formic acid 95% CH3CN). Product ion spectra were acquired in 

data-dependent mode with a one second duty cycle such that the most abundant ions selected 

for the product ion analysis by higher-energy collisional dissociation between survey scan 

events occurring once per second. Following MS2 acquisition, the precursor ion was 

excluded for 16 seconds. The resulting MS/MS data files were submitted to Mascot (Matrix 

Science) for peptide identification. Peptides included in the HDX analysis peptide set had a 

MASCOT score greater than 20 and the MS/MS spectra were verified by manual inspection. 

The MASCOT search was repeated against a decoy (reverse) sequence and ambiguous 

identifications were ruled out and not included in the HDX peptide set.

HDX-MS analysis:  Apo proteins (irisin and integrin αV/β5) were analyzed at 10µ M each. 

For differential HDX, integrin αV/β5 (10µ M) was concentrated 3X using an Amicon Ultra 

Centrifugal Filter Unit with a 50K membrane (Part #: UFC505008) and the protein complex 

was formed by incubating irisin (10μM) with integrin αV/β5 (30uM) for 1 hour at room 

temperature. Next, 5μl of sample was diluted into 20μl D2O buffer (20mM Tris-HCl, pH 7.4, 

150mM NaCl, 2mM DTT) and incubated for various time points (0, 10, 60, 300, 900 and 

3600 s) at 4°C. The deuterium exchange was then slowed by mixing with 25μl of cold (4°C) 

3M urea and 1% trifluoroacetic acid. Quenched samples were immediately injected into the 

HDX platform. Upon injection, samples were passed through an immobilized pepsin column 

(2mm × 2cm) at 200μl min−1 and the digested peptides were captured on a 2mm × 1cm C8 

trap column (Agilent) and desalted. Peptides were separated across a 2.1mm × 5cm C18 

column (1.9μl Hypersil Gold, ThermoFisher) with a linear gradient of 4% - 40% CH3CN 

and 0.3% formic acid, over 5 minutes. Sample handling, protein digestion and peptide 

separation were conducted at 4°C. Mass spectrometric data were acquired using an Orbitrap 

mass spectrometer (Q Exactive, ThermoFisher). HDX analyses were performed in triplicate, 

with single preparations of each protein ligand complex. The intensity weighted mean m/z 

centroid value of each peptide envelope was calculated and subsequently converted into a 

percentage of deuterium incorporation. This is accomplished determining the observed 

averages of the undeuterated and fully deuterated spectra and using the conventional formula 

described elsewhere (Zhang and Smith, 1993). Statistical significance for the differential 

HDX data is determined by an unpaired t-test for each time point, a procedure that is 

integrated into the HDX Workbench software (Pascal et al., 2012).

Corrections for back-exchange were made on the basis of an estimated 70% deuterium 

recovery, and accounting for the known 80% deuterium content of the deuterium exchange 

buffer.

Data Rendering: The HDX data from all overlapping peptides were consolidated to 

individual amino acid values using a residue averaging approach. Briefly, for each residue, 

the deuterium incorporation values and peptide lengths from all overlapping peptides were 

assembled. A weighting function was applied in which shorter peptides were weighted more 

heavily and longer peptides were weighted less. Each of the weighted deuterium 

incorporation values were then averaged to produce a single value for each amino acid. The 

initial two residues of each peptide, as well as prolines, were omitted from the calculations. 
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This approach is similar to that previously described (Keppel and Weis, 2015). HDX 

analyses were performed in triplicate, with single preparations of each purified protein/

complex. Statistical significance for the differential HDX data is determined by t-test for 

each time point, and is integrated into the HDX Workbench software (Pascal et al., 2012).

Generation of docking model with ZDOCK—A model for irisin-integrin αV/β5 was 

generated using homology modeling. The models for integrin β5 and irisin were generated 

using Modeller (Sali and Blundell, 1993) based on a model of Fibronectin-αV/β3 (PDB 

4MMX). Irisin was docked to integrin β5 using the ZDOCK server (http://

zdock.umassmed.edu/) according to the guide line (Pierce et al., 2014). The resulting model 

that agreed with the observed HDX-MS data was used to generate the Irisin-integrin αV/β5 

model.

QUANTIFICATION AND STATISTICAL ANALYSIS

All values in graphs are presented as mean +/− S.E.M. Two-way ANOVA for multiple 

comparison were used to analyze the data. Significant differences between two groups were 

evaluated using a two-tailed, unpaired Student’s t-test as the samples groups displayed a 

normal distribution and comparable variance (* p < 0.05, ** p < 0.01, *** p < 0.001). For 

analysis of histomorphometry, the structural parameters [bone volume (BV/TV), trabecular 

thickness (Tb.Th), trabecular number (Tb.N) and trabecular separation (Tb.Sp)] were 

obtained by taking an average from 2 different measurement of consecutive sections. The 

structural, dynamic and cellular parameters were calculated and expressed according to the 

standardized nomenclature (Dempster et al., 2013).

For osteocyte analysis, the total bone area was subtracted by the blood vessel area to get the 

mineralized bone area. Images were analyzed with the Image J software (NIH, MD) for 

measuring osteocyte lacunae area and density (Qing et al., 2012). The total osteocyte 

lacunae area was measured in the number of pixels and then converted to the metric system. 

The total area was divided by the number of osteocytes to get the lacunae area. The number 

of osteocyte was divided by mineralized bone area to get the lacunae density.

For analysis of femur using µ CT, morphometric variables were computed from the 

binarized images using direct, 3D techniques we assessed the bone volume fraction 

(Tb.BV/TV, %), trabecular bone mineral density (Tb.BMD, mgHA/cm3), trabecular 

thickness (Tb.Th, µm), trabecular number (Tb.N, mm−1), trabecular separation (Tb.Sp, µm), 

and connectivity density (mm−3). Cortical bone was analyzed in 50 transverse µCT slices 

(ROI length = 500µm) at the femoral mid-diaphysis. The region of interest included the 

entire outer most edge of the cortex. Images were subjected to Gaussian filtration and 

segmented using a fixed threshold of 700mgHA/cm3 to measure the following variables total 

cross-sectional area (Tt.Ar, mm2), cortical bone area (Ct.Ar, mm2), medullary area (Ma.Ar, 

mm2), bone area fraction (Ct.Ar/Tt.Ar, %), cortical tissue mineral density (Ct.TMD, 

mgHA/cm3), cortical thickness (Ct.Th, mm), cortical porosity (%), and the polar moment of 

inertia (pMOI, mm4).

Kim et al. Page 22

Cell. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://zdock.umassmed.edu/
http://zdock.umassmed.edu/


For anti-apoptosis assay, Percentage of cell death was calculated as EthD-1 positive cells 

divided by the total number of cells stained with 5µg/mL Hoechst 33342 (ThermoFisher 

Scientific, H3570) as a nuclear counterstain (Kitase et al., 2018).

For identification of irisin receptor using quantitative proteomics, a 0.03m/z window 

centered on the theoretical m/z value of each the two reporter ions and the intensity of the 

signal closest to the theoretical m/z value was recorded. Reporter ion intensities were further 

de-normalized based on their ion accumulation time for each MS2 or MS3 spectrum and 

adjusted based on the overlap of isotopic envelopes of all reporter ions (as per manufacturer 

specifications). The total signal intensity across all peptides quantified was summed for each 

TMT channel, and all intensity values were adjusted to account for potentially sample 

handling variance. For quantification of irisin in plasma and integrins in cells using 

quantitative proteomics, a 0.03 m/z window centered on the theoretical m/z value of each the 

six reporter ions and the intensity of the signal closest to the theoretical m/z value was 

recorded. Reporter ion intensities were further denormalized based on their ion 

accumulation time for each MS2 or MS3 spectrum and adjusted based on the overlap of 

isotopic envelopes of all reporter ions (as determined by the manufacturer). The total signal 

intensity across all peptides quantified was summed for each TMT channel, and all intensity 

values were adjusted to account for potentially uneven TMT labeling and/or sample 

handling variance.

For data rendering of HDX/MS, the HDX data from all overlapping peptides were 

consolidated to individual amino acid values using a residue averaging approach. Briefly, for 

each residue, the deuterium incorporation values and peptide lengths from all overlapping 

peptides were assembled. A weighting function was applied in which shorter peptides were 

weighted more heavily and longer peptides were weighted less. Each of the weighted 

deuterium incorporation values were then averaged to produce a single value for each amino 

acid. The initial two residues of each peptide, as well as prolines, were omitted from the 

calculations. This approach is similar to that previously described (Keppel and Weis, 2015). 

HDX analyses were performed in triplicate, with single preparations of each purified 

protein/complex. Statistical significance for the differential HDX data is determined by t-test 

for each time point, and is integrated into the HDX Workbench software (Pascal et al., 

2012).

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Highlights

The αV class of integrins are irisin receptors in osteocytes and adipose tissues.

Irisin increases sclerostin expression in osteocytes to induce bone resorption.

Genetic deletion of FNDC5/Irisin completely blocks OVX-induced trabecular bone loss.
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Figure 1. Irisin blocks osteocyte cell death and stimulates sclerostin expression at the mRNA and 
protein levels.
(A) MLO-Y4 cells were treated with indicated concentrations of irisin and hydrogen 

peroxide followed by analysis of the percentage of cell death. (B) MLO-Y4 cells were 

seeded and incubated until 60% cell density. The cells were incubated with Freestyle293 

medium for 4 hours and were treated with indicated concentrations of irisin for 16 hours. 

Sclerostin mRNA level was analyzed by qRT-PCR. Cyclophilin was used as a control house-

keeping gene. (C-D) 8-week-old wild-type C57BL/6J mice were daily injected with 

indicated dose of irisin for 6 days. Sclerostin mRNA level from osteocyte-enriched tibia was 

analyzed by qRT-PCR (C). Cyclophilin was used as a house-keeping gene. Plasma was 

collected to analyze the sclerostin protein level by ELISA kit (D). Data are represented as 

mean ± SEM. For C and D, n = 5 animals/group. *; p<0.05, ***; p<0.001
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Figure 2. Irisin/FNDC5 global knockout mice are resistant to OVX-induced trabecular bone loss 
at 9 months age.
Ovariectomy (OVX) was performed on 9-month-old global FNDC5/irisin knockout mice 

(FNDC KO) and wild-type littermate mice (WT). (A-D) Representative figures of Von 

Kossa stained lumbar vertebra from wild-type mice or FNDC5/irisin knockout mice after 

OVX. Mineralized bone was stained black. Arrow indicates mineralized bone. (E-J) The 

bone histomorphometric analysis was performed in the lumbar vertebra. Data are 

represented as mean ± SEM. n = 4–7 animals/group. See also Figure S2–3 and Table S2. *; 

p<0.05

Kim et al. Page 32

Cell. Author manuscript; available in PMC 2019 December 13.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. Deletion of Irisin/FNDC5 prevented OVX-induced osteocytic osteolysis at 9 months of 
age.
Tibia samples from the OVX experiment in Fig. 2 were analyzed to measure lacunae area 

using backscatter scanning electron microscopy. (A-D) Representative figures. Arrow 

indicates lacunae. (E) Analyzed lacunae area. Data are represented as mean ± SEM. n = 4–7 

animals/group. See also Table S3. *; p<0.05.
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Figure 4. Irisin stimulates a very potent pathway of “integrin-like” signaling including pFAK, 
pZyxin and pCREB.
(A) Scheme of crosslinking/co-immunoprecipitation/mass spectrometry experiments to 

identify irisin receptors. (B) Top 5 enriched proteins with irisin versus adipsin. See also 

Table S4 for full list. (C) Model of canonical integrin signaling. Integrin heterodimer binds 

to its ligand. The interaction results in phosphorylation of FAK and Zyxin, followed by 

phosphorylation of AKT (at T308) and CREB. PM is plasma membrane. (D-E) MLO-Y4 

cells were seeded and incubated until 60% cell density. The cells were incubated with 

FreeStyle293 medium for 4 hours and were treated for indicated time with 10nM 

norepinephrine or irisin (D) or indicated concentrations of irisin for 10 minutes (E). Cells 

were lysed to detect the indicated protein level using immunoblot analysis.
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Figure 5. Irisin directly interacts with integrin complexes and mapping of binding motifs.
(A) 100nM irisin was incubated with 5nM indicated his-tag integrins followed by 

immunoprecipitation using Ni-NTA agaroses. Precipitated integrins and co-precipitated 

irisin were analyzed by immunoblot analysis. (B) HEK293T cells were seeded and 

incubated until 50% cell density. The cells were transfected with 0.1µ g plasmids of 

indicated integrins. After 48 hours, the cells were incubated with Freestyle293 medium for 3 

hours and were treated with indicated concentration of irisin for 5 minutes. Cells were lysed 

to detect the indicated protein level using immunoblot analysis. (C) MLO-Y4 cells were 
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treated as described in Fig. 4E with addition of pretreatment of indicated antagonistic 

antibodies for 10 minutes. Cells were lysed to detect the indicated protein level using 

immunoblot analysis. (D) MLO-Y4 cells were treated as described in Fig. 1B except with 

addition of the pretreatment of indicated antagonistic antibodies for 10 minutes. Sclerostin 

mRNA level was analyzed by qRT-PCR. Cyclophilin was used for house-keeping gene. (E) 

Docking model of interaction between irisin and integrin αV/β5 (see Methods). The ribbon 

diagram is colored by HDX stabilization/destabilization. Percentages of deuterium 

differences are color-coded according to the smooth color gradient key at the bottom of Fig. 

5. Crystal structure of irisin dimer is from Protein Data Bank (PDB) (4lsd) and a homology 

model of integrin β5 was built based on integrin β3 structure from PDB (4MMX).
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Figure 6. Integrin inhibitors such as RGD peptide and echistatin block irisin-induced signaling 
and gene expression.
(A-B) MLO-Y4 cells were treated as described in Fig. 4E with addition of pretreatment of 

integrin inhibitors, RGDS peptide or echistatin. Cells were lysed to detect the indicated 

protein level using immunoblot analysis. (C) MLO-Y4 cells were treated as described in Fig. 

1B except with addition of the pretreatment of integrin inhibitors for 10 minutes. (D-E) 8-

week-old wild- type C57BL/6J mice were treated as described in Fig. 1C-D except co-

injection of 1mg/kg cyclo RGDyK (cRGDyK). Data are represented as mean ± SEM. For C 

and D, n = 9–12 animals/group. *; p<0.05.
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Figure 7. Integrin mediates irisin-induced thermogenesis.
(A-B) 1mg/kg irisin was injected to 8-week-old wild-type C57BL/6J mice every other day 

for a week. mRNA levels of indicated genes in inguinal fat were analyzed by qRT-PCR. 

Cyclophilin was used for house-keeping gene (A). Inguinal fats were also lysed to detect the 

indicated protein level using immunoblot analysis (B). (C-D) Mice were treated and 

analyzed as (A-B) with addition of co-injection of 1m/kg control RGD peptide or cyclo 

RGDyK (cRGDyK). mRNA levels of indicated genes in inguinal fat were analyzed by qRT-

PCR. Cyclophilin was used for house-keeping gene (C). Inguinal fats were also lysed to 

detect the indicated protein level using immunoblot analysis (D). (E) Primary inguinal fat 

cells were treated with indicated concentration of irisin with 10µM control peptide or cyclo 

RGDyK (cRGDyK) every other day during 6 days differentiation. Ucp1 mRNA level was 

analyzed by qRT-PCR. Cyclophilin was used as a control house-keeping gene. Data are 

represented as mean ± SEM. For A and B, n = 12–13 animals/group. For C and D, n = 11–

13 animals/group. *; p<0.05, **; p<0.01.
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