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ABSTRACT 

Diabetic Kidney Disease (DKD) is a major complication of diabetes. Incomplete understanding of 

its molecular mechanisms is highlighted by the limited treatments options. We hypothesized that 

inhibition of protective endogenous mechanisms plays major role in the pathogenesis of 

DKD.  While renoprotection is mediated by cyclic nucleotides (cAMP and cGMP), 

phosphodiesterases (PDEs) lead to cyclic nucleotide degradation. Our investigation focused on the 

role of calcium/calmodulin activated PDE1 in DKD. Three isoforms of PDE1 are differentially 

expressed in vascular smooth muscle cells, renal tubular epithelial cells, podocytes, and mesangial 

cells. We used highly potent and selective PDE1 inhibitor LY1 to explore systemic hemodynamic 

and local renal role of PDE1. LY1 reduced systolic and diastolic blood pressure in normotensive 

and spontaneously hypertensive rats.  Renal protection with PDE1 inhibition was tested in mouse 

model of DKD, featuring a combination of diabetes, nephron loss and arterial hypertension. In this 

model, a PDE1 inhibitor caused a significant improvement in renal function as evident by 

significant reduction of albuminuria, serum creatinine and several urine biomarkers of 

inflammation and injury. Histopathological analysis revealed substantial improvement in the 

pathology of DKD in the treated group that was associated with the reduction of gene expression 

related to inflammation and fibrosis. Thus, we revealed the role of calcium activated PDE1 in 

DKD. However, the source of calcium in this context remained obscure. Our bioinformatics 

analysis pointed out that calcium channel TRPC6 is likely to be involved. Further in vitro studies 

demonstrated that TRPC6 activation induced apoptosis in human mesangial cells and isolated rat 

glomeruli, which was attenuated by both TRPC6 and PDE1 inhibition, thereby suggesting a 

functional coupling between TRPC6 (as a source of calcium) and PDE1 activation. Moving 

upstream, we showed that several systemic risk factors of DKD (angiotensin II, endothelin 1 and 

glucose) activated TRPC6 in a different manner, through generation of either reactive oxygen 

species or diacylglycerol. The computational modeling to relate human transcriptomic and 

phenotype data demonstrated the pre-clinical findings of renal benefit upon PDE1 inhibition is 

translatable in human. Taken together, our results suggest mechanistic link among systemic risk 

factors, TRPC6, calcium flux and PDE1 activation in pathogenesis of DKD. As a corollary, PDE1 

inhibition leads to direct and indirect renoprotective effects. 
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 DIABETIC KIDNEY DISEASE: CHALLENGES AND 
POTENTIAL NOVEL MECHANISM 

1.1 Introduction 

Diabetic Kidney Disease (DKD) is a microvascular complication of both type I and type II diabetes 

mellitus which often results in end-stage renal disease (ESRD) requiring either dialysis or renal 

transplantation. [1]. Patients with DKD have a high rate of mortality, high financial burden, as well 

as a very poor quality of daily life. Prevalence rates of DKD are increasing in parallel with the 

incidence rates of diabetes mellitus. Currently in the United States (US) about two hundred 

thousand patients receive ESRD care due to DKD, with fifty thousands new patients starting 

dialysis each year [2] and it is estimated that by 2030 the number of DKD patients will increase 

significantly due to the projected 54% increase in the prevalence of diabetes [3]. Primarily the 

increased prevalence of obesity, metabolic syndrome, and westernization of lifestyle are the 

drivers of diabetes but to what extent these factors contribute to DKD remains unknown. Clinically, 

a diabetic patient with an estimated glomerular filtration rate (eGFR) of less than 60 mL/min/1.73 

m2 and/or albuminuria greater than 30 mg/g creatinine would be diagnosed with DKD [4]. In the 

clinic angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers (ARB), 

the widely used blood pressure lowering drugs, are the current standard of care for DKD. But 

unfortunately, they can achieve only 20% reduction in risk of future ESRD, rendering it semi-

effective option for the DKD patients [5]. Moreover, even with the best available clinical 

management, involving both glycemic and blood pressure control, it is only possible to achieve at 

most a 30% improvement in declining diabetic kidney [6-8]. In recent years the successful clinical 

trial of SGLT2 inhibitor and GLP agonist provided new therapeutic opportunity but still there is 

an urgent need for new interventions that will effectively delay or reverse CKD progression in 

patients with diabetic nephropathy (DN). To facilitate the discovery of new intervention 

understanding of the disease mechanism is crucial. The pathophysiology of DKD complex and 

multifactorial, that involves both genetic and environmental factors. The exact mechanism is not 

well understood. Although the initial trigger is hyperglycemia but in later stages several risk factors 

like obesity, hypertension, etc. contributes towards the progression of the disease. Although these 

risk factors are clearly important, the exact mechanism is still unknown. The mechanistic 
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understanding of how the systemic risk factors like high glucose, or other co-morbid factors 

translate into downstream intracellular signaling pathway and identifying the key players would 

provide new therapeutic opportunity for DKD. 

1.2 Risk factors for diabetic kidney disease 

Initially, hyperglycemia driven pathogenic pathways act as trigger but later the interaction of 

metabolic and hemodynamic factors plays a major role in the progression of the disease [2, 9]. 

These metabolic factors such as excess fatty acids, glucose etc resulted in enhanced oxidative stress, 

formation and buildup of advanced glycation end-products (AGEs) and renal polyol formation. 

The hemodynamic factors include both increased systemic and intraglomerular pressure, in 

addition to the activation of vasoactive hormone pathways including the renin angiotensin system 

and endothelin-1signaling pathways [10]. In the presence of chronic diabetes, both of these factors 

feed into and triggers common pathogenetic mechanisms that ultimately lead to increased renal 

albumin permeability resulting in proteinuria and extracellular matrix deposition resulting in 

glomerulosclerosis and ultimately tubulointerstitial fibrosis. 

1.2.1 Hemodynamic factors  

Hemodynamic factors like increased systemic blood pressure and intraglomerular pressure driven 

by the activation of several vasoactive hormone pathways like renin angiotensin system and 

endothelin-1 are major contributors to the disease [10].]. The role of hemodynamic factors in DN 

was emphasized first by Brenner et al, when they observed several intrarenal abnormalities 

including increased intraglomerular pressure, increased single nephron GFR and preferential 

vasodilation of the afferent, over the efferent, arteriole through micropuncture studies in diabetic 

rats. In the same study they also demonstrated that ACE inhibitor reduced intraglomerular pressure 

that is associated with reduced renal injury, thereby emphasizing the role of renin-angiotensin 

system (RAS) in DN. Moreover, in an in vitro system, glucose has been shown to upregulate 

angiotensinogen (converts renin to angiotensin II) in proximal tubular cell [10] and in mesangial 

cell stimulated angiotensin II production that is associated with increased TGFb accumulation [11]. 

However, the role of RAS in DN still remains somewhat controversial as plasma measurement of 

various components of RAS showed low to normal in diabetes, although the distribution of these 
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components in various compartments cannot be ruled out. Moreover data demonstrating renal 

benefit in both diabetic and non-diabetic model of renal injury by modulating TGFb expression 

and a range of intracellular mediators like PKC and NF-kB indicate some non-hemodynamic 

component of RAS system [10, 12]. In addition to angiotensin, several other vasoactive hormones 

like Endothelin-1, vasopressin has been attributed to the renal injury. These hormones have been 

shown to have differential effects on efferent and afferent arterioles thereby affecting the 

intraglomerular pressure. Recent success with Atrasentan, an endothelin-1 inhibitor, in DKD 

patients (SONAR trial), clearly emphasize the role of local hemodynamics in DKD [13]. Contrary 

to vasoconstrictors, a wide range of vasodilatory substances like bradykinin, atrial natriuretic 

peptide, certain prostaglandins, and nitric oxide have been shown to modulate glomerular vascular 

tone [10]. Neutral endopeptidase (NEP) is an enzyme that degrades natriuretic peptides as well as 

 

 

Figure 1.1. Schematic outlining interactions between hemodynamic and metabolic factors 
and how their interactions trigger the downstream signaling system in mediating diabetic 
kidney disease.                                                                                                                 Modified from Copper et al. 2001. 

 
 

bradykinin and endothelin converting enzymes. Combination of NEP inhibitor and ACE inhibitor  
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in the PARAGON trial demonstrated renal benefit in heart failure patients [14]. This further 

illustrated that approach to increase vasodilation that would lead to have a greater anti-

hypertensive effect is renoprotective in both diabetic and non-diabetic condition.  

1.2.2 Metabolic factors  

Brownlee in 2001 described how hyperglycemia leads to increased glycolysis generating excessive 

by-products that feed into four pathways; the polyol pathway, hexosamine pathway, production of 

AGEs, and activation of protein kinase C [15] . In the initial stage of glycolysis, glucose is broken 

down to 1,3 diphosphoglycerate by the enzyme glyceraldehyde-3-phosphate dehydrogenase 

(GADPH), which is a critical step as in the state of abundant glucose superoxide produced by 

electron transport chain that causes an upregulation of upstream components of glycolysis. The 

excess amount of glucose can be shunted through polyol pathway and reduced to fructose. This 

further cause decrease of glutathione resulting in increase of oxidative stress leading to increased 

cellular stress-mediated apoptosis. As the NADH:NAD+ ratio increases, it also increases the 

formation of methylglyoxalate and diacylglycerol, both of which are reported to be abundant in 

DKD patients ([16, 17]. It has been shown that in hyperglycemia, diacylglycerol (DAG) is 

chronically upregulated and contributes to sustained activation of protein kinase C (PKC), which 

contributes to DKD through several signaling pathways [18] . Activation of PKC can also 

contribute to the local hemodynamics by prostaglandin E2 and nitric oxide mediated vasodilation 

of afferent arterioles which then causes augmentation of angiotensin II-mediated vasoconstriction 

of efferent arterioles thereby contributing to glomerular hyperfiltration[19]. By products of 

increased activity of hexosamine pathway contribute to the increased renal cell hypertrophy and 

mesangial matrix accumulation that are the hallmark of DKD (34, 35 of Atta). Lastly irreversible 

glycation of proteins in presence of excessive glucose resulted in AGEs that is known to contribute 

to DKD in multiple ways. For example, AGEs have been shown to modify both laminin and type 

IV collagen thereby causing increased permeability of the glomerular basement membrane (GBM). 

In addition to that, increased concentrations of AGEs are known to dose-dependently increase 

density and expansion of the extracellular matrix activation by contributing to the increased 

expression of fibronectin and collagen types I and IV.   
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1.3 Structural changes in diabetic kidney disease 

One of the hallmarks of DKD is proteinuria, which occurs when the glomerular filtration barrier 

fails to retain the macromolecules, like albumin, within intravascular space. The glomerular 

filtration apparatus consists of three components-glomerular endothelial cells, visceral epithelial 

cells (podocytes), and glomerular basement membrane. It has been suggested that early changes 

in renal glomeruli are critical for the subsequent histopathological feature and nephron loss. 

Podocytes with their unique interdigitating foot processes are highly specialized terminally 

differentiated cells that sit on the glomerular basement membrane (GBM). In a normal healthy 

human the shape and integrity along with the charge barrier properties of the GBM is maintained 

by intricate network of glomerular endothelial cells and podocytes which are compromised in the 

diabetic glomerulus [1]. Chronic exposure to hyperglycemia induces ‘patho-adaptive’ progressive 

changes in podocytes, including cytoskeletal rearrangement, de‑differentiation, causing retraction 

and flattening (known as effacement) that ultimately detaches them from the slit diaphragm and 

eventually drop out [1]. Thickening of the GBM is regarded as one of the earliest and most 

characteristic of all glomerular changes in diabetes and can be seen via electron microscope within 

few years of diagnosis [20]. Under hyperglycemia, mesangial cells are also altered, undergoing 

proliferation and hypertophy thereby producing more matrix proteins leading to structural features 

of DKD. Diabetes-induced changes in the local environment resulted in recruitment of activated 

leukocytes, especially T cells and macrophages into the glomerulus and tubulointerstitium. 

Although this influx of inflammatory cells is due to tissue injury, the secreted cytokines, 

chemokines, activated complement and reactive oxygen species further mediate DKD [1]. In the 

early stage of diabetes, increased glucose load to the tubule induces maladaptive hypertrophy and 

hyperplasia that causes increased absorption of glucose and activation of the tubule-glomerular 

feedback that leads to increased hyperfiltration. The cumulative effect of the above changes is 

activated myofibroblasts, atypical collagen, inflammatory cells, and loss of capillary architecture 

that results in tubulointerstitial fibrosis [21]. These progressive changes in the different 

components of the kidney present a heterogeneous range of pathological features, that includes 

nodular or diffuse glomerulosclerosis, tubulointerstitial fibrosis, tubular atrophy and renal 

arteriolar hyalinosis, alone or in combination. 
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Figure 1.2. Pathological lesions of DKD. In normal human albumin is retained in the blood 
through an elaborate network of endothelial cells, basement membrane, podocytes, parietal 
epithelial cells that is called glomerular filtration barrier. In contrast, the diabetic glomerulus 
displays several histopathological features like arterial hyalinosis, mesangial expansion, 
collagen deposition, basement membrane thickening, podocyte loss and hypertrophy, that is 
clinically translated in high albuminuria, decreased glomerular filtration and ultimately lead to 
end stage renal failure.                                                                              Modified from Kimberly et 
al. 2014. 

1.4 Second messengers in chronic kidney disease 

Any systemic risk factors either hemodynamic or metabolic can act as ligands and bind to specific 

cellular receptors that alter protein confirmation to stimulate nearby effector proteins. These 

effectors can catalyze the production of molecules or in case of ions, increase the influx of ions 

that are called second messengers. They further diffuse rapidly to their targets elsewhere within 

the cell thus altering the activities as a response to the new information received by the receptors 

[22]. There are four classes of second messengers: cyclic nucleotides that signal within the cytosol; 

lipid messengers and ions like calcium that signal within and between cellular compartments and 
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gases and free radicals. Each of these second messengers can bind to specific protein targets, to 

modulate downstream signals by altering their activity. Given their importance in physiology, 

second messengers are tightly controlled to ensure precision in cellular signaling.  

1.4.1 Cyclic nucleotide signaling in kidney 

Cyclic nucleotides, cyclic adenosine monophosphate (cAMP) and cyclic guanosine 

monophosphate (cGMP) are important intracellular second messengers that are involved in the 

transduction of a diverse array of physiologic stimuli. They play prominent roles in the 

development and progression of renal disease, including mitogenesis, inflammation, and fibrosis. 

A wide variety of G-coupled receptor mediated activation of adenylyl cyclase is responsible for 

generation of cAMP, whereas both receptor-associated and soluble guanylyl cyclase 

(sGCs)generates cGMP [23, 24]. Once produced they engaged the effector molecules to activate 

the downstream signaling pathways. For cAMP the effector molecule is predominantly cAMP-

dependent protein kinase A (PKA) and for cGMP it is protein kinase G (PKG). I addition to that  

cAMP-regulated guanine nucleotide exchange factors (cAMP-GEF, or EPACs), and cyclic 

nucleotide gated channels (9, 10) also act as effector molecules. Catabolism of cyclic nucleotides 

is always directed by phosphodiesterases (PDEs). The balance between synthesis and catabolism 

of cyclic nucleotides basically plays a pivotal role in regulating the amplitude, duration, and 

localization of cyclic nucleotide signaling. Preservation of cGMP either by activating the enzymes 

involved in the synthesis or inhibition of the enzyme that degrades them have been shown to have 

therapeutic benefits in kidney disease. Several lines of evidence suggested that both sGC 

stimulators or sGC activators increase intracellular level of cGMP and reduce kidney fibrosis in 

several different model of kidney fibrosis by inhibiting the TGFb pathway. For example clinically 

approved drug Riociguat, a sGC stimulator alone or in combination with an inhibitor of the  

angiotensin-II type 1 receptor (AT1R) improved renal function in a diabetic model of kidney 

disease by attenuating progression of renal fibrosis [25]. Moreover, in another rodent model where 

the disease was driven by volume and pressure overload it improved renal function by renal fibrotic 

tissue remodeling and reduced expression of several profibrotic markers [26].Cinaciguat, a sGC 

activator improved renal function by targeting sGC and increasing intracellular cGMP in a nephron 

loss model of CKD in rats [27]. Similarly, PDE5 inhibitors that specifically hydrolyze cGMP has 



 
 

 

22 
 

been shown to have renoprotective effects in multiple studies via their antiapoptotic and 

antioxidant properties. The PDE5 inhibitor sildenafil has been tested in both fibrosis and nephron 

loss model of kidney disease and shown improved renal function by increasing cGMP level and 

decreasing several key mediators of fibrosis pathway [28, 29]. Tadalafil was shown to prevent 

kidney dysfunction by preserving the renal structure and reducing several injury markers like 

KIM1 and NGAL in an ischemia-reperfusion injury model [30, 31]. Preservation of cAMP has 

been shown to have anti-fibrotic effect by blocking TGFb mediated gene transcription. The 

therapeutic options for enhancing cAMP are adenylate cyclase stimulators, PDE inhibitors, 

cyclosporine, or adrenomodulin; however, most of the data showing effect on kidney exist with 

PDE inhibitors. Roflumilast, a selective PDE4 inhibitor has shown renoprotective effect in 

streptozotocin-induced diabetic model of kidney disease by reversing pathology and attenuating 

apoptosis [32]. Pentoxifylline, a non-specific PDE inhibitor, has demonstrated renal benefits in 

various rodent model of kidney disease as well in clinical trial with type 2 diabetics and chronic 

kidney disease (CKD) by lowering the decline of estimated glomerular filtration rate in addition 

to RAS blockade [33]. Besides their direct effect as anti-fibrotic and anti-apoptotic cyclic 

nucleotides has been shown to induce vasorelaxation in the vascular system, which also can 

contribute to beneficial effects in the kidney by modulating the local and systemic hemodynamics. 

All of this evidence suggests that preservation of cyclic nucleotide has potential renal benefits. 

1.4.2 Cyclic nucleotide phosphodiesterase (PDE) and chronic kidney disease 

1.4.2 PDE family 

PDEs are a large family of enzymes that can hydrolyse cAMP and/or cGMP to their inactivated 

noncyclic nucleotides 5’-AMP and 5’GMP. They are the only cellular mechanism for degrading 

cAMP and cGMP, there by playing a major role in regulating the intracellular levels of these 

second messengers and, subsequently, modulating cellular activities. Based on their structure, 

primary sequence, substrate specificity and their pharmacological properties, PDEs are currently 

classified into eleven families. Majority of PDE families comprise more than one gene (~20 PDE 

genes), generating multiple protein products (> 50 PDE proteins) by alternative 5’ mRNA splicing 

[34]. The international nomenclature of PDE designated the gene families (types) of PDE by a 

capital letter to designate the product of a single PDE isogene also called “PDE subtype” and the 
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isoforms or variants are expressed by a numerical number. For example, for PDE1A1: gene family 

1 (type), gene A (subtype), and variant 1 (isoform). PDE family members have unique substrate 

specificity with PDE4, PDE7 and PDE8 hydrolyzing only cAMP, PDE5, PDE6, and PDE9 

hydrolyzing cGMP and PDE1, PDE2, PDE3, PDE10 and PDE11 hydrolyzing both [35].  

Despite differences, the different PDE isoforms share similar structural features. The catalytic 

domain of all mammalian PDEs is highly conserved, containing consensus sequences and motifs 

along with two consensus Zn binding sites. In addition, it also contains sequences specific to the 

family, determine the substrate affinities, and sensitivity to inhibitors. On the contrary the 

‘regulatory domain’ located in NH2-terminal vary widely among PDEs in structure and contain 

sequences targeted for different regulatory components. These include phosphorylation sites for 

different protein kinases like PKA or PKG, non-catalytic sites for cGMP and binding site for 

Ca2+/calmodulin . The small C-terminal domain of PDEs has recently been reported to have some 

MAPK dependent regulatory functions [23]. PDE family members largely differ in tissue 

distribution, inhibitor specificity and in mode of regulation. Although intracellular cyclic 

nucleotide concentration are major regulator but their activities can depend on the binding of 

Ca2+/CaM, phosphorylation, interaction with regulatory proteins or subcellular 

compartmentalization [35]. PDEs plays a vital role in balancing the concentration of cyclic 

nucleotides thereby modulating multiple signal transduction pathways to fine tune the 

physiological and pathophysiological processes that is now widely demonstrated in the literature 

such as erectile dysfunction, asthma, pulmonary hypertension, atherosclerosis, heart failure, and 

diabetes. Here we will review the role of PDEs in the context of renal disease with special emphasis 

on PDE1 as a potential therapeutic target for DKD. 

1.4.2.1 Role of PDEs in vascular contraction 

In 1970 Kukovetz and Poch first described the role of PDE in vascular contraction when they 

observed the vasodilator papaverine inhibits cAMP-PDE in vessel [36]. Since then, using specific 

PDE inhibitors several studies have reported the vasodilatory role of PDE1, PDE4 and PDE5 in 

isolated aorta from several species including human [37]. Using precontracted rat aorta with or 

without endothelium and specific PDE inhibitors it has been demonstrated that vasorelaxation 

induced by PDE3 is endothelium independent but PDE4 requires endothelium [38]. PDE4 has 
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been reported to be abundant in renal vasculature and Ro 20-1724, a PDE4 inhibitor has been 

shown to prevent endotoxin induced renal vascular resistance [39]. Moreover chronic infusion of 

the PDE4 inhibitor in zymosan-induced model of multiple organ dysfunction syndrome , a chronic 

inflammation induced organ failure model in mice, has shown to decrease mesenteric vascular 

resistance as well as improve renal function by preserving glomerular filtration rate and preserving 

cAMP [40]. PDE5, which is mainly present in vascular smooth muscle also participates in vascular 

contraction. Specifically, the PDE5 inhibitor, Zaprinast, mediates relaxation in rat and rabbit aorta 

in an endothelium-dependent manner [38, 41]. In kidney, PDE5 has been reported to express in 

vessel walls, glomeruli, mesangial cells, cortical tubules, and inner medullary collecting duct cells 

of rat kidney [42]. Several PDE5 inhibitors, like sildenafil and tadalafil, demonstrated renal benefit 

that is attributed to the vasodilatory feature of PDE5 inhibition. Sildenafil has demonstrated renal 

benefit in both a diabetic and non-diabetic pre-clinical model of CKD. In both mouse and rat model 

of diabetic nephropathy PDE5 inhibition by sildenafil showed improvement in renal function by 

reducing glomerular hyperfiltration. It also demonstrated renal benefit in a rat 5/6 uninephrectomy 

model by preventing glomerular hypertension and hyperfiltration [43]. This evidence clearly 

demonstrates that PDEs play an important role in maintaining the local vascular tone and thus 

exert its influence in controlling either local or systemic hemodynamics.  

1.4.2.2 Role of PDEs in inflammation and fibrosis 

Preservation of cyclic nucleotides by inhibiting PDEs has been shown to reduce inflammation and 

fibrosis is several diseases including renal disease. In rat mesangial using isoform-specific 

inhibitors, Chini et al demonstrated functional compartmentalization of intracellular pools of 

cAMP that are differentially regulated by PDEs [44]. They found that cAMP regulated by PDE3 

suppressed cell proliferation by inhibiting Ras-Raf MEK-ERK pathway whereas a PDE4-regulated 

cAMP pool suppresses cell inflammation by inhibiting MCP-1. Using both specific and 

nonspecific inhibitors, the role of PDEs in inflammation and fibrosis has been demonstrated in 

non-hemodynamic dependent models of CKD in animals. Roflumilast, a selective PDE4 inhibitor 

has shown antifibrotic and antiapoptotic capability in streptozotocin induced type-1 diabetic 

nephropathy [45]. PDE5 inhibitors sildenafil and tadalafil showed renal benefit in several different 

acute kidney injury model through their antiapoptotic and anti-fibrotic properties.  After treatment 
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with sildenafil for 14 days in acute unilateral ureter obstruction model, it reduced renal 

TGFb1/smad signaling along with mRNA expression of a-SMA, collagen type 1 and type III [28]. 

In a 5/6 renal ablation model sildenafil also improved renal function by reducing renal cell 

inflammation and apoptosis [46]. In both studies the renal improvement was associated with the 

preservation of cGMP. In a renal ischemia-reperfusion model, tadalafil has been shown to prevent 

renal damage as evidenced by decreased kidney injury marker (KIM-1) and neutrophil gelatinase-

associated lipocalin (NGAL), well-known kidney injury markers [45]. Besides these, 

pentoxifylline, a non-specific PDE inhibitor has been reported to ameliorate proteinuria by 

reducing interstitial inflammation and fibrosis in rat nephron loss model [35]. These evidences 

showed that apart from their effect on vascular contraction, PDEs also have other mechanism to 

influence the pathophysiology of renal disease. 

1.4.2.3 PDE1 and its potential role in renal biology 

Among all 11 PDEs, PDE1 is the only phosphodiesterase that is activated by a Ca2+/CaM-binding 

domain and has affinity for both cAMP and cGMP. The PDE1 family members consists of three 

isoforms that are encoded by three distinct genes, PDE1A, 1B, and 1C. Although dual substrate 

specific, PDE1A and PDE1B have higher affinity for cGMP than cAMP, whereas, PDE1C 

hydrolyses cGMP and cAMP with equal efficiency [47]. For PDE1A, at least seven splice-variants 

have been reported, among which PDE1A1 and PDE1A2 have been isolated from bovine heart 

and brain. PDE1B is particularly high in the striatum and so far only one gene product has been 

identified whereas five splice variants of PDE1C has been reported that localized in brain 

cerebellum, olfactory neurons, heart and testis [48]. All three isoforms, PDE1A, B and C are found 

to be expressed in pulmonary vasculature and aorta and mesenteric arteries in rats [49-51]. In rat 

cardiomyocytes and vascular smooth muscle cells, PDE1A was found to primarily regulate cGMP 

where as PDE1C regulates cAMP in aortic and pulmonary smooth muscle cells. PDE1C has been 

reported to be upregulated in the vasculature of rats with pulmonary hypertension whereas 

increased activity of PDE1A was found in rats with angiotensin II-induced systemic hypertension 

[49, 52]. Moreover, PDE1A has been linked to the development of hypertrophy and fibrosis in the 

hypertrophic rat heart [53]. All these evidences indicate PDE1 being a major player in regulating 

systemic hemodynamics. Several studies with specific and non-specific PDE1 inhibitors have 
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clearly showed improvement in vascular resistance and blood pressure both in vivo and ex vivo. 

Selective PDE1 inhibitors demonstrated blood pressure lowering effect in normal rats [52]. The 

role of PDE1C has been well characterized in the pathological cardiac remodeling and dysfunction. 

Using genetic and pharmacological approaches, Knight et al, demonstrated that inhibition of PDE1 

attenuated cardiac remodeling and dysfunction by antagonizing cardiac myocyte hypertrophy and 

death [54]. The non-hemodynamic properties of PDE1 has also been described in other tissue type 

including vascular smooth muscle. For example in rat aortic smooth muscle cells and in patient 

derived pulmonary arterial smooth muscle cells, genetic knock down or inhibiting the activity 

using a small molecule resulted in inhibition of cell proliferation and induced apoptosis [55, 56]. 

Expression of PDE1 isoforms have been reported to alter time of activation and differentiation of 

inflammatory cells which indicates PDE1’s potential role in inflammatory response. Indeed ITI-

214, a very potent PDE1 inhibitor has been shown to reduce LPS-induced increases in TNF-, IL-

1 and MCP-1 in microglia [57]. This is not surprising as being dual substrate specific, suppression 

of PDE1 can preserve cAMP which is a negative modulator of inflammatory cell responses 

including cytokine secretion and leukocyte as well increase availability of cGMP to attenuate LPS 

induced responses.  

 

In the kidney, PDE1A is expressed in the tubules, PDE1C is expressed in the glomeruli and tubules, 

and PDE1B is not expressed in either location [58]. Both the vasodilatory mechanism and anti-

inflammatory feature of PDE1 inhibition as seen in other tissue could potentially result in renal 

benefit. To date, no functional role of PDE1 has been reported in the kidney. Moreover, in diabetic 

nephropathy several risk factors like AngII, ET-1, and high glucose can increase intracellular 

calcium that might drive the upregulation of PDE1, thus implicating it to the pathophysiology of 

DKD.  

1.4.3 Intracellular calcium and kidney disease 

Calcium is an important intracellular messenger that engages in a wide range of cellular functions 

by direct binding to target proteins or stimulation of calcium sensors that then activate different 

downstream responses [59]. Either imported from the extracellular milieu or mobilized from 

intracellular stores it not only bridges extracellular and intracellular signal transduction as a second 
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messenger but also can regulate enzyme activity as a cofactor and modulate action potential [60]. 

Being so versatile in nature, intracellular calcium concentration is tightly controlled by an 

assortment of channels, pumps, transporters, buffers and effector moieties. Entry of calcium from 

external milieu is controlled by Ca2+ permeable channels such as transient receptor potential (TRP) 

and voltage gated Ca2+ channels. Calcium is also stored internally in different organelles like 

endoplasmic reticulum, Golgi, sarcoplasmic reticulum and acidic organelles of the endo-lysosomal 

system. Calcium has always been thought to related with the bone health but lately calcium 

homeostasis has been shown to be important in the regulation of insulin secretion from beta cells 

in the pancreas [61]. Increased intracellular calcium is thought to contribute to reduced β-cells 

function thereby promoting altered glucose homeostasis. In adipocytes and skeletal muscle, high 

cytosolic calcium has been inked to insulin resistance [62]. Moreover at least three studies have 

demonstrated that serum calcium level is higher in diabetic patients than non-diabetes [63-65]. The 

kidney plays an important role in maintaining the total body Ca2+ balance by filtering and 

reabsorbing calcium. Disruption in calcium signaling has been reported to result in kidney disease. 

The most relevant example is the evidence of gain and/or loss-of-function mutations in transient 

receptor potential canonical (TRPC) 6 (TRPC6) causing focal segmental glomerulosclerosis, 

which is manifested by severe albuminuria. Also mutation in polycistin 1/polycystin 2 genes has 

been linked to polycystic kidney disease and mutation is TRPM6 channels are found to be 

associated with hypomagnesemia, a condition that has been correlated with cardiovascular disease 

and all-causes of mortality in end-stage renal disease patients [66]. The discovery of these genetic 

mutations in calcium channels associated with hereditary kidney diseases signifies the importance 

of calcium signaling in the kidney disease although their role in DKD is not clear yet.  

1.4.3.1 Role of TRPC channel in kidney disease 

Podocyte health is crucial in maintaining the filtration capability of the kidney as it is key in 

regulating glomerular permeability. Elevation of intracellular calcium is regarded as one of the 

main pathological factors that drive the pathological changes in glomerular morphology and 

permeability. The transient receptor potential canonical (TRPC) channel belong to a superfamily 

called TRP channels that are non-selective cation channel with high Ca2+ permeability. They exist 

as tetramer with each subunit containing intracellular NH2 and COOH termini, six transmembrane 
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domains (S1–S6), and a pore loop between the S5 and S6 segments[67]. To date it is widely known 

TRPC channels are one of the major ion channel classes that regulate calcium influx inside the 

cell. Among seven structurally related family members, the importance of TRPC6 has been 

emphasized by the discovery of genetic mutation associated with focal segmental 

glomerulosclerosis (FSGS) which displays similar renal injury like loss of the glomerular filtration 

barrier cells and progressive albuminuria seen in DKD [68]. Studies have shown that 

overexpression of either wild type or any of the reported mutant version of TRPC6 in mice resulted 

in FSGS like disease [69]. Moreover, several studies have suggested that TRPC6 can be activated 

by molecules that are reported to be increased in disease conditions, especially in diabetes, and 

could potentially enhance calcium influx and trigger proteinuria. For example, one of the key 

mechanisms of TRPC6 activation involves DAG, that is generated by GPCR mediated stimulation 

of PLC [70]. Besides Gq mediated production, increased levels of glycolytic intermediates can 

also stimulate de novo synthesis of DAG. Many studies have shown that DAG levels are high in 

various tissues including glomeruli. Serum level of DAG has been reported to be elevated in 

diabetic patients [71]. Moreover, Gq receptors can be activated by multiple ligands: angiotensin 

II, Endothelin-1, thromboxane, prostaglandin E2 which are also reported to be elevated in diabetic 

condition [72-74]. Reactive oxygen species that is highly produced in diabetic conditions due to 

metabolic abnormality is another factor that has been reported to activate TRPC6. It has been 

demonstrated that ROS in particular hydrogen peroxide generated from NADPH oxidase is 

required for TRPC6 activation. In both podocyte and mesangial cells multiple studies have shown 

ROS mediated activation of TRPC6 resulted in injury of the cells [75]. In addition, TRPC6 

expression has been found to be elevated in various animal models of DKD. In streptozotocin 

induced rat model of diabetes in the background of both normal and hypertension, upregulation of 

TRPC6 was associated with high proteinuria and renal histopathology that is similar to human 

DKD [75, 76]. Wang et al using genetic approaches recently showed that TRPC6 KO resulted in 

attenuated tubule injury and reduced proteinuria until the later stages of the disease process in type 

1 Akita mice [77]. Although these data implicate TRPC6 as a major player in type-1 diabetic 

nephropathy, no data exist related to type-2 nephropathy.  

 

The downstream signaling pathway for TRPC6 has been extensively studied in podocyte and 

several signaling pathways has been linked to the phenotype related to glomerular disease. Several 
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authors have already demonstrated that activation of TRPC6 results in the apoptosis of podocyte 

via calcineurin-NFAT mediated signaling pathway [78, 79] without explaining the mechanism. It 

is well known that TRPC6 mediated calcium influx activate calcineurin-NFAT pathway whereby 

upon dephosphorylation NFAT goes into nucleus and activate a plethora of genes whose products 

can be other transcription factors, signaling proteins, secretory proteins, cell surface receptors, and 

other effector proteins any of which can be attributed to apoptosis. Multiple reports have indicated 

that NFAT mediated apoptosis might involve activation of intracellular signaling pathways or 

production of secreted proteins. The role of intracellular molecules in podocyte apoptosis as a 

result of calcineurin NFAT activation has been demonstrated by several authors [80, 81]. In those 

studies, they have identified NFAT dependent COX2 mediated ROS generation and an enhanced 

calcineurin/NFAT/Bax2 signaling pathway as one of the downstream effectors for podocyte 

apoptosis. It is fairly established that intracellular activation of COX2 or Bax/Bak signaling 

pathway leads to apoptosis but if TRPC6-mediated cell death involves either of these pathways is 

still unknown. In addition, activation of TRPC6 was shown to activate RhoA-Ras pathway and 

leads to cytoskeleton remodeling [66]. Given the number of calcium responsive proteins these 

mechanisms do not exclude the possibilities of other pathways that might be linked to similar 

disease phenotype.  

1.5 Use of computational biology in deciphering DKD 

Over the past several years tremendous progress has been made in understanding the 

pathophysiology of DKD, yet a clear mechanistic understanding is still lacking. The use of gene 

expression profiling has become a popular tool due to the availability of large amount of molecular, 

clinical and histopathological data from DKD patients. This created a new approach called system 

biology approach to understand DKD. In this approach using a set of experimental and 

computational tools, molecular changes are first identified in the whole kidney or more precisely 

in different interrelated kidney cells. Then these changes in cellular networks are then used to 

identify associations among the many molecular changes that might predict, enhance, or 

ameliorate disease progression in DKD patients. For the past several years, several authors 

reported either a new and novel mechanism or validated previously known mechanism using this 

approach. For example, Woroniecka et al. in their transcriptome analysis of human DKD, reported 
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vascular endothelial growth factor (VEGF) implicated in DKD, confirming the known biology, at 

the same time they also reported integrin pathway involved in the DKD pathogenesis [82]. They 

found that in both glomeruli and tubulointerstitium from DKD patients there is an increase in 

inflammation and fibrosis related gene expression. Data from other studies suggested that there is 

a cascade of activation of inflammatory genes with the progression of disease. For example in one 

study pathway mapping suggested that out of 138 known NF-kB responsive genes only one gene 

is enhanced in early disease where 54 are upregulated in progressive disease, thus emphasizing the 

progressive activation of inflammatory pathways in DKD [83]. Transcriptome analysis at tissue 

compartment level also helped deciphering mechanisms at tissue level. Transcriptomic analysis 

using glomeruli and tubulointerstitial tissues from patients with both early DKD and progressive 

DKD demonstrated differential activation of the JAK-STAT signaling pathway in glomeruli versus 

tubule. They reported that at early stage most of the JAK-STAT genes were expressed at 

substantially higher levels in the glomeruli; whereas, tubulointerstitial JAK-STAT gene expression 

was not elevated in early DKD but was higher in the patients with more progressive DKD [84]. 

One of the key limitations of all these studies is that they don’t point to a specific cellular 

phenotype. Moreover, with the availability of additional datasets, it would be interesting to 

delineate how much overlap exists in all of the data set to give a consensus sets of genes that are 

common is all DKD patients. Finding such consensus sets of genes and understanding their 

collective role in DKD pathogenesis might help to find a common mechanism.   

 

Although transcriptome analysis alone can help to have mechanistic understanding of the disease, 

sometimes alterations in a gene do not necessarily lead to proportionate changes in protein 

expression. In that case it becomes harder to link the molecular changes to a phenotype. Another 

approach of system biology might be to associate the molecular changes to cellular morphology 

or clinical phenotype. DKD is still confirmed by histopathological evaluation, thus emphasizing 

the role of structural changes as the hallmark of disease progression. The overarching goal of such 

approach would be to define the correlation of molecular changes to early-stage structural damage 

in DKD and their association with long-term outcomes. Using cortical interstitial fractional volume 

(VvInt), an index of tubule-interstitial damage and compartment-specific gene expression profiling 

from CKD patients Nair et al demonstrated the early molecular signature can be linked to the long-

term disease progression [85]. In a separate study, Beckerman et al. in an effort to identify key 



 
 

 

31 
 

driver modules in kidney expression data and correlate this with phenotypic outcomes found that 

molecular signature correlates well with structural changes rather than GFR [86]. These data 

demonstrate that relating transcriptomic data with histological features by corelating genotype to 

phenotype would provide better understanding of DKD pathogenesis rather than relying on only 

molecular data alone.  

1.6 Conclusion 

Despite the advancement of our understanding the mechanism of DKD, the available option for 

treating DKD is still to use an antagonist against ACE or ARB. Although with recent success of 

SGLT2 inhibitor and the observation of renal benefit of Glucagon like peptide 1 (GLP1) agonist 

and ET-1 antagonist might open up new therapeutic intervention; however, with ever increasing 

numbers of diabetic patients there is an urgent need for new therapeutic interventions. Preservation 

of cyclic nucleotides has been shown to be beneficial in renal disease [23, 43, 87]. Using multiple 

different preclinical renal disease models, several investigators have shown the beneficial role of 

cyclic nucleotides in the context of PDE4, that uses cAMP as substrate, and PDE5, that uses cGMP 

as substrate, by using class-specific inhibitors. In this context the question becomes, is preservation 

of both nucleotides beneficial for kidney? Moreover, the complex nature of DKD indicates that 

addressing multiple pathological changes such as alterations in hemodynamics or inflammation, 

concurrently, might offer greater benefits than focusing on a single pathology. From these 

perspectives PDE1 hypothetically fits nicely as its hemodynamics and anti-inflammatory features 

were shown by several investigators [39, 51, 52]. Moreover, according to the human protein atlas, 

PDE5 is not well expressed in glomeruli or tubule whereas PDE1 is highly expressed in both 

glomeruli and tubule thereby indicating its potential greater role in renal biology. Yet no single 

data exist exploring PDE1s role in renal biology. Among the 11 mammalian PDEs, PDE1 is the 

only PDE activated by calcium which is critical due to the calcium dysregulation observed in DKD 

patients. This fact also provide a strong rational to investigate the role of PDE1 in the context of 

diabetic renal disease as several of the risk factors in the diabetic milieu are known to activate ion 

channels, especially calcium channels. Yet no data exist about the relative abundance of calcium 

transporters in DKD patients. In cardiomyocytes it has been reported that TRPC3 associated 

calcium activates PDE1 and cause apoptosis. Similar mechanism has not been demonstrated in 
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any renal cell type [88]. The role of TRPC6 in FSGS has been clearly demonstrated and it is known 

to be present in all major type of renal cells. So, it would be interesting to see if TRPC6 is a major 

calcium channel associated with PDE1 activation. Finally, a severe limitation in finding a 

therapeutic intervention is a lack of animal models that recapitulate human CKD or DKD. Not 

only that animal models do not reflect the heterogeneity of human DKD but also often times the 

outcome measured in two species do not match. For example, in the search for agents to reduce 

fibrosis and progression of CKD, the efficacy readouts in animal would be multiple histological, 

histochemical and biochemical parameters, whereas in man the more restrictive end points would 

be mortality, glomerular filtration or proteinuria. One of the major reasons for failure in clinical 

trials is such kind of cross-species differences in translational research. Therefore, there is an 

urgent need to develop methodologies for reducing the gap between cross-species translational 

research. 
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 ROLE OF PHOSPHODIESTERASE 1 IN SYSTEMIC 
HEMODYNAMICS AND POTENTIAL IN DIABETIC KIDNEY DISEASE 

2.1 Introduction 

DKD is a major microvascular complication of diabetes that often results in either dialysis or 

kidney transplantation and poses a major global burden to healthcare. Approximately half of type-

2 and one-third of type-1 diabetic patients will develop DKD, which is clinically defined by the 

presence of impaired renal function as indicated by declining glomerular filtration or elevated 

urinary albumin excretion, or both [1]. Although the pathophysiology of DKD is multifactorial, 

the link with hemodynamic and metabolic factors is well established [10]. The initial driver for 

DKD is associated with a dysregulated metabolic milieu such as hyperglycemia, hyperlipidemia 

and insulin resistance. However, several clinical trials achieving metabolic benefits still failed to 

demonstrate improvement in renal disease, thus indicating involvement of other factors [2]. 

Hemodynamic factors like increased systemic blood pressure and intraglomerular pressure driven 

by the activation of several vasoactive hormone pathways like renin angiotensin system and 

endothelin-1 are also major contributors to the disease [89]. The current standard of care, ACE or 

ARB inhibitor and the recent successful SONAR trial [13] emphasized the role of hemodynamics 

in the pathophysiology of DKD. Moreover, the positive renal outcome seen in the CRDENCE trial 

with SGLT2 inhibition indicated that the renal benefit extends beyond the glycemic control and 

could be due to its effect in renal hemodynamic [90]. Despite the recent therapeutic advances there 

remains an unmet need for innovative treatment strategies to prevent, arrest, treat, and reverse 

DKD. Chronic metabolic and hemodynamic disturbances lead to the activation of several autocrine 

and paracrine factors that further cause structural changes in the kidney. Decades of research 

towards the understanding of the molecular mechanisms of DKD pathogenesis has made it possible 

to identify numerous new targets that open up opportunities for new therapeutic intervention.  

 

A major factor underlying kidney dysfunction involves defects of second messenger signaling, 

including cyclic nucleotides. Many renal functions, like solute transport and regulation of vascular 

tone has been shown to be modulated by cyclic nucleotides. Arginine-vasopressin mediates 

increases in cyclic adenosine monophosphate (cAMP) and atrial natriuretic factor induced cyclic 
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guanin monophosphate (cGMP) have been shown to be critical in the regulation of sodium and 

water retention [23]. The regulation of cyclic nucleotides in the cell is a balance between the 

synthesis of these molecules by adenylate cyclase and guanylate cyclase and catabolizing enzymes 

the cyclic 3´, 5´-nucleotide phosphodiesterases (PDEs) that play a pivotal role in regulating the 

amplitude, duration, and localization of cyclic nucleotide signaling.  In kidney, unique cellular and 

tissue distribution of PDEs contribute to cyclic nucleotide compartmentalization. Using PDE 

isoform specific inhibitors, several investigators have shown that PDEs exert different downstream 

effects by regulating the compartmentalization of cyclic nucleotides. For example, in mesangial 

cells, it has been demonstrated that although cAMP hydrolysis is directed by PDE3 and PDE4 but 

they play different function in terms of cellular physiology. Using using spatially restricted probes 

for cAMP, they have shown that the PDE3-regulated cAMP pool inhibits mitogenesis, whereas 

the PDE4-regulated cAMP pool regulates reactive oxygen species generation and monocyte 

chemoattractant protein-1 expression [91, 92]. Pharmacological intervention studies in pre-clinical 

models of both DKD and CKD have further demonstrated the functional role of several PDE 

isoforms in renal biology. Roflumilast, a selective PDE4 inhibitor, demonstrated renal benefits in 

streptozotocin induced type1 diabetic nephropathy.  Specifically, Roflumilast reduced oxidative 

stress, deposition of extracellular matrix proteins such as fibronectin and collagen, and inhibited 

apoptosis. PDE5 has been reported to be expressed in different parts of the kidney. In addition to 

tubule and glomeruli they also have been reported in inner medullary collecting duct cells, and 

mesangial cells. PDE5 inhibitors, including sildenafil and tadalafil, were renoprotective in pre-

clinical models of CKD and DKD through its vasodilatory, antiapoptotic and antioxidant 

properties [46]. This also translated in humans as PF-00489791, a long acting PDE5 inhibitor, 

reduced albuminuria in DKD patients [93]. In a small clinical trial of 90 type-2 diabetic patients,  

a selective inhibitor of PDE3, has proven to be effective in improving albuminuria and the 

expression of adhesion and pro-inflammatory molecules [94]. Although all isoforms of PDEs have 

been reported to be expressed in kidney [58] the functional role of other PDEs (beyond PDE 3, 4 

and 5) is still largely unknown. 

 

Among all 11 PDEs, PDE1 is the only phosphodiesterase that is activated by a Ca2+/calmodulin-

binding domain and has affinity for both cAMP and cGMP. All three isoforms, PDE1A, B and C 

are found to be expressed in pulmonary vasculature, aorta and mesenteric arteries in rats [49-51]. 
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PDE1A regulates cGMP in rat cardiomyocytes and vascular smooth muscle cells, whereas PDE1C 

regulates cAMP in aortic and pulmonary smooth muscle cells [52]. In vitro and ex vivo 

experiments have demonstrated the role of PDE1 in vasodilation. A selective pan-PDE1 inhibitor 

demonstrated blood pressure lowering effect in normal rats [52]. The role of PDE1C has been well 

characterized in pathological cardiac remodeling and dysfunction. Using genetic and 

pharmacological approaches, Knight et al, demonstrated that inhibition of PDE1 attenuated cardiac 

remodeling and dysfunction by antagonizing cardiac myocyte hypertrophy and death [54]. In the 

kidney, PDE1A is expressed in the tubules, PDE1C is expressed in the glomeruli and tubules, and 

PDE1B is not expressed in either location [58]. Both the vasodilatory mechanism and anti-

apoptotic feature of PDE1 inhibition could potentially confer renal benefit. As of yet, the 

functional role of PDE1 in the kidney has not been defined. Moreover, in diabetic nephropathy 

several risk factors like AngII, ET-1, high glucose can increase intracellular calcium that might 

drive the upregulation of PDE1. In mouse cardiomyocytes, calcium channel TRPC3 drove PDE1 

upregulation that lead to apoptosis of cardiomyocytes [95]. No such studies are known to exist in 

the context of renal biology. Therefore, we were prompted to investigate the role of PDE1 in 

kidney, especially in the context of diabetes. Herein, we describe a potent pan-PDE1 inhibitor and 

show in vivo its vasodilatory function using a novel method. Using the same pharmacological tool, 

we also demonstrate its beneficial role in diabetic kidney disease using a DKD model driven by 

diabetes, hypertension, and nephron loss. We demonstrate that the functional beneficial effect of 

PDE1 inhibition was associated with reduction of inflammation and fibrosis. We also demonstrate 

that PDE1 inhibition lead to lowering of blood pressure in both normal and hypertensive animals. 

Taken together, these observations strongly suggest potential therapeutic application of PDE1 

inhibition in DKD. 

2.2 Methods and materials 

2.2.1 Animals  

The animal care and experimental protocols in this study were conducted under the supervision of 

a veterinarian and in accordance with the Eli Lilly and Company’s Animal Care and Use 
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Committee. Whenever possible, procedures in this study are designed to avoid or minimize 

discomfort, distress, and pain to animals. Animals were purchased from the following vendors:  

Harlan (db/db KS with or without vendor-performed surgical removal of one kidney at 4–5 weeks 

of age), or Taconic (SD rats and SHR rats). Mice were fed ad libitum a standard 5008 diet (Lab 

Diets). Rats were fed with standard 2014 dies (Lab diets). Females were used in the obese type 2 

models to prevent risk of pyelonephritis. 

2.2.2 Generation of PDE proteins  

The nucleotide sequences encoding full-length human PDE1A (NP_001003683.1), PDE1C 

(NP_005011.1), PDE5A (NP_001074.2), PDE7B (NP_061818.1) and PDE9A (NP_002597.1) 

were inserted into pFastBac1 (Invitrogen) vector with an N-terminal HIS tag. The nucleotide 

sequences encoding full-length human PDE4D (NP_006194.2) and the catalytic domain (residue 

641-1141) of PDE3A (NP_000912.3) were inserted into pFastBac1 (Invitrogen) vector with a C-

terminal HIS tag. The nucleotide sequences encoding full-length human PDE8A (NP_002596.1) 

and PDE11A (AAI12394.1) were inserted into commercially available pFastBac1 (Invitrogen) 

vector with a Flag tag at N-terminal. The nucleotide sequences encoding full-length human 

PDE10A (AAD32595.1) were inserted into pFastBac1 (Invitrogen) vector with a C-terminal Flag-

His tag. The nucleotide sequences encoding full-length human PDE6A (NP_000431.2) and 

PDE6B (AAH00249.1) were inserted into pFastBacDua1 (Invitrogen) vector with an N-terminal 

HIS tag and N-terminal Flag tag, respectively, for production of PDE6A/6B dimer. Baculovirus 

generation and protein expression in Sf9 cells were carried out according to the protocol of Bac-

to-Bac Baculovirus Expression system (Invitrogen). The nucleotide sequences encoding full-

length human PDE1B (NP_000915.1) and PDE2A (NP_002590.1) were inserted into pIEX4 

(Novagen) with a C-terminal HIS tag, and both protein productions were carried out in Sf9 cells 

according to the vendor's protocol (Novagen). The HIS tagged PDE proteins were purified using 

Ni-NTA agarose (Qiagen) followed by size exclusion chromatography on a SUPERDEX® 200 

column (GE Healthcare) in storage buffer (20 mM Tris-HCl, pH7.5, 150 mM NaCl, 10% Glycerol). 

The Flag tagged PDE proteins including PDE6A/6B were purified using anti-Flag M2-agarose 

(Sigma), after purification through NiNTA column chromatography and eluted in storage buffer 
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(50 mM Tris-HCl, pH7.5, 150 mM NaCl, 10% Glycerol, 0.1 mg/ml Flag peptide). All purified 

proteins were stored at −80° C. in small aliquots. 

2.2.3 Phosphodiesterase enzyme assays  

All 3′, 5′ cyclic nucleotide phosphodiesterase (PDE) enzyme activities are measured with a 

radiometric enzyme assay based on SPA detection system (scintillation proximity assay). 

Compounds to be tested were diluted in pure dimethyl sulfoxide (DMSO) using ten-point 

concentration response curves. Maximal compound concentration in the reaction mixture was 

either 10 or 100 μM. Compounds at the appropriate concentration were pre-incubated with either 

of the PDE enzymes for 30 minutes before the reaction is started by the addition of substrate. 

Reactions are allowed to proceed for 60 minutes at room temperature. Next, reactions were stopped 

by addition of SPA beads. Samples were read 12 hours later in a MICROBETA™ TRILUX® 

Counter. “IC50” refers to the concentration of the compound that produces 50% of the maximal 

inhibitory response possible for that compound. IC50 values are calculated by plotting the 

normalized data vs. log [compound] and fitting the data using a four-parameter logistic equation. 

2.2.4 IC50 calculation 

For each test compound, % Inhibition is calculated using the equation below: 

% Inhibition= 100 - [((Test Compound – Median Min)/(Median Max - Median Min)) x 100] 

where the signals are defined as: 

Test Compound = signal for test compound 

Min = signal in the absence of agonist 

Max = signal in the presence of agonist  

% Inhibition (Y-axis) is plotted against log concentration of test compound (X-axis) and analyzed 

using a 4-parameter nonlinear logistic equation (ABase Equation 205) as shown below: 

y = (A+((B-A)/(1+((C/x)^D)))) where, y = % specific inhibition A = Bottom of the curve, B = Top 

of the curve, C = Relative IC50 = concentration causing 50% inhibition based on the range of the 

data from top to bottom and D = Hill Slope = slope of the curve. 
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2.2.5  Calcium-calmodulin dependent PDE enzyme assays  

PDE1A, PDE1B, and PDE1C were cloned and purified in house following standard protein 

generation procedures. The assay buffer is prepared to give a final concentration of 50 mM Tris-

HCl, 50 mM MgCl2, 4 mM CaCl2, 0.1% Bovine serum albumin and 6 U/ml Calmodulin in water, 

at pH 7.5. The final enzyme concentration is 0.25, 0.074 and 0.0012 nM, for PDE1A, PDE1B, and 

PDE1C, respectively. The reactions were started by addition of the substrate, [3H]cAMP, at a final 

concentration of 47 nM. 

2.2.6 PDE enzyme assays using [3H]cAMP as substrate 

The following phosphodiesterase activities were measured using [3H]cAMP as reaction substrate: 

PDE3A (catalytic domain), PDE4D, PDE7B and PDE8A. All these enzymes were cloned and 

purified in house following standard procedures. The assay buffer is prepared to give a final 

concentration in the assay of 50 mM Tris-HCl, 8.3 mM MgCl2, 1.7 mM 

ethylenediaminetetraacetic acid (EDTA) and 0.1% Bovine serum albumin at pH 7.5. Final enzyme 

concentrations are 0.008, 0.021, 0.5 and 0.06 nM for PDE3A, PDE4D, PDE7B and PDE8A 

respectively. Reactions are also started by addition of the substrate, [3H]cAMP, to give a final 

concentration of 47 nM. 

2.2.7 PDE enzyme assays using [3H]cGMP as substrate 

The following phosphodiesterase activities are measured using [3H]cGMP as reaction substrate: 

PDE2A, PDE5A, PDE6A/6B, PDE9A, PDE10A and PDE11A. The catalytic active form of PDE6 

is a dimer composed of a (PDE6A) and b subunits (PDE6B). The dimer of PDE6A/6B is produced 

by the expression and purification strategy, using two purification steps, i.e., NiNTA and anti-

FLAG Sepharose chromatography. The rest of the enzymes are cloned and purified in house 

following standard procedures. The assay buffer is prepared to give a final concentration in the 

assay of 50 mM Tris-HCl, 8.3 mM MgCl2, 1.7 mM EDTA and 0.1% Bovine serum albumin at pH 

7.5. Final enzyme concentrations are 0.2, 0.002, 5, 1, 0.03 and 0.03 nM for PDE2A, PDE5A, 

PDE6AB, PDE9A, PDEI0A and PDE11A, respectively. The reactions are started by addition of 
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the substrate, [3H]cGMP, to give a final concentration of 80 nM in the case of PDE2A, PDE10A, 

PDE5A, PDE6AB and PDE11A assays, whereas for PDE9A 20 nM of [3 H]cGMP is used. 

2.2.8 ReninAAV db/db uNx model for renal failure 

In vivo assessment of  DKD Progression in ReninAAV and corresponding control LacZAAV were  

obtained as previously described [96]. In brief, Mice received a single retro-orbital injection of 

ReninAAV (5 X 1010 GC per animal) or LacZAAV at approximately 12 weeks of age. Body 

weight, blood glucose levels, and proteinuria were measured after 4wks to evaluate the disease 

progression. Once the disease establishment was confirmed by their albuminuria mice were 

randomized based on the above parameters. Mice were treated with either vehicle or PDE1 

inhibitor for 6wks. Urine was collected bi-weekly. At the end of the study mice were euthanized, 

and the half of the remaining kidney was collected and fixed in 10% neutral buffered formalin for 

histologic processing and the remaining half was snap frozen for RNA processing. Serum and 

plasma were collected at necropsy for measurement of serum creatinine (enzymatic creatinine 

using a protocol validated by HPLC).  

2.2.9 Rat telemetry studies 

Male Sprague Dawley rats, Spontaneous Hypertensive rats (Charles River Laboratories, USA), 

implanted with Data Science International transmitters (HD S10) for collection of blood pressure 

(BP) and heart rate (HR) data in aseptic conditions. The transmitters that was implanted in animals 

by the vendor, are capable of transmitting a signal via a pressure catheter inserted into the 

abdominal aorta. Baseline was established and recorded. After they were randomized based on 

their baseline hemodynamic parameters each rat was then removed from its recording cage and 

was dosed twice a day by p.o. gavage with vehicle or compound, and the animals were then 

returned to the recording cage. Data sampling for blood pressure and heart rate was carried out in 

intervals at selected time points for 24hours. 
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2.2.10 Rat Ear temperature 

Male Sprague Dawley rats were purchased from Taconic Biosciences at 6 to 7 weeks of age. They 

were dosed orally by p.o. gavage with different doses of LY1, the pan PDE1 inhibitor was 

formulated in 1% hydroxyethlycellulose (Dow Corning, Midland, MI) (w/v), 0.25%  

Table 1: Body weight, proteinuria and blood glucose level of the dbdb renin AAV mice 

Group 

 

Proteinuria 

(mg/g) 

 Body 

weight 

(g) 

Blood 

glucose 

(mg/dl) 

DbDb Renin AAV-Vehicle 10716.25 39.2 253.5 

DbDb Renin AAV-Vehicle 32678.57 44 247 

DbDb Renin AAV-Vehicle 32821.92 52.9 358 

DbDb Renin AAV-Vehicle 33757.01 51.8 447.5 

DbDb Renin AAV-Vehicle 42547.17 53.02 510 

DbDb Renin AAV-Vehicle 43229.17 41.6 253 

DbDb Renin AAV-Vehicle 45375 50.1 255.5 

DbDb Renin AAV-Vehicle 50075.95 44.8 202 

DbDb Renin AAV-Vehicle 53720.93 50.4 311 

DbDb Renin AAV-Vehicle 66126.44 57.2 313.5 

DbDb Renin AAV-LY1-0.3mg/kg 10071.43 58.3 273 

DbDb Renin AAV-LY1-0.3mg/kg 17784.72 43.3 449 

DbDb Renin AAV-LY1-0.3mg/kg 27176.8 43.3 231.5 

DbDb Renin AAV-LY1-0.3mg/kg 28806.72 50.2 274 

DbDb Renin AAV-LY1-0.3mg/kg 35355.56 49.7 425 

DbDb Renin AAV-LY1-0.3mg/kg 43985.4 46.5 287.5 

DbDb Renin AAV-LY1-0.3mg/kg 48818.79 49.1 172 

DbDb Renin AAV-LY1-0.3mg/kg 49508.77 54.6 505 

DbDb Renin AAV-LY1-0.3mg/kg 54395.06 42.4 271.5 

DbDb Renin AAV-LY1-0.3mg/kg 61094.49 49.2 183.5 

DbDb Renin AAV-LY1-1 mg/kg 12891.72 44 127.5 

DbDb Renin AAV-LY1-1 mg/kg 15862.07 46.7 281 

DbDb Renin AAV-LY1-1 mg/kg 26285.71 56.3 239.5 
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Group 

 

Proteinuria 

(mg/g) 

 Body 

weight 

(g) 

Blood 

glucose 

(mg/dl) 

DbDb Renin AAV-LY1-1 mg/kg 34142.86 49.9 294.5 

DbDb Renin AAV-LY1-1 mg/kg 41811.76 54.5 260 

DbDb Renin AAV-LY1-1 mg/kg 43359.55 42.4 489.5 

DbDb Renin AAV-LY1-1 mg/kg 45276.6 49.8 207.5 

DbDb Renin AAV-LY1-1 mg/kg 54216.56 45.6 531.5 

DbDb Renin AAV-LY1-1 mg/kg 68552.63 43.1 480.5 

DbDb Renin AAV-LY1-1 mg/kg 71627.27 48.4 272.5 

DbDb LacZ 1464.84 48.9 246 

DbDb LacZ 3136.45 48.6 316 

DbDb LacZ 2071.25 59.6 585 

DbDb LacZ 3734.26 58.3 295.5 

DbDb LacZ 883.95 52 120 

DbDb LacZ 2234.18 47.6 261.5 

 

polysorbate 80 (Sigma-Aldrich, St. Louis, MO) (v/v), and 0.05% antifoam (v/v; Dow Corning, 

Midland, MI) in purified water. Following dosing, ear temperature was measured by using a k-

type thermocouple probe digital thermometer every hour for 6 hrs and then at 24 hrs. Blood 

samples for plasma exposure measurement were obtained at the same time. Blood was collected 

via a tail snip directly into a 20-μL EDTA-coated capillary and immediately spotted onto a 

Whatman DMPK-C DBS card (GE Healthcare Bio-Sciences, Piscataway, NJ). Tail snips were 

performed by removing approximately 1 mm of the tail by using a scalpel. Blood flow was initiated 

by gentle squeezing of the tail. No analgesia or anesthesia was used during blood collections. A 

single sample and spot were collected per time point. The DBS cards were allowed to dry for 

approximately 2 h at room temperature, after which the cards were placed in a zip-top bag, stored, 

and shipped at ambient temperature. 
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2.2.11 Histopathologic Evaluation 

The histopathological evaluation of the kidneys were done as described previously [97]. Kidneys 

fixed in 10% formalin were transversely trimmed, processed, paraffin embedded, microtome 

sectioned at a thickness of 5mm. They were then stained with either hematoxylin and eosin, or 

Masson trichrome, or periodic acid–Schiff. After required incubation and washing steps as per the 

protocol tissue sections were examined by light microscopy. A board certified veterinary 

pathologist assigned scores for several histopathological parameters like tubular regeneration, 

tubular protein, tubular dilation, and interstitial inflammation. Glomerular injury, expansion of the 

mesangium, and integrity of tubular basement membranes were evaluated based on the Periodic 

acid–Schiff-stain in similar manner. Masson trichrome–stained slides were evaluated for 

interstitial and glomerular fibrosis. A score from zero to five (normal to severe, respectively) was 

used to describe the histological changes in compound treated group compared with controls. 

Following are the description of the individual scores: 

no changes or changes consistent with spontaneous background finding in the age, sex,      

and/or strain; minimal (score one) 

0%–10% affected; slight (score two):  

10%–25% affected; moderate (score three):  

25%–50% affected; marked (score four):  

50%–75% affected; and severe (score five) 

2.2.12 Isolation of rat glomeruli 

Before the experiment, a fresh solution of RPMI1640 with 5% bovine serum albumin (BSA) was 

made and referred to as solution A. SD rat was euthanized using CO2 followed by a secondary 

method of killing. After perfusion using a needle through the ventricle, the kidneys were removed 

and de-capsulated. Pelvis and medulla were removed as much as possible along with the perirenal 

adipose tissue . Kidney was cut in half sagittal with a single edged razor and place it in a petri plate 

on ice. The cortex was isolated using a curved scissor. It was finely minced with razor blade in a 

small amount of PBS in the petri plate and rinse pieces onto #140 sieves presoaked in solution A 

(only the area to be used was soaked to minimize the use of solution A) resting on a collection pan 

using the PBS from the wash bottle. The pieces were gently pushed through sieve mesh using 
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circular motion with the spatula. The underside of #140 sieve was rinsed with the wash bottle and 

allowed to drain briefly into a pan. A #80 sieve was placed on top of #200 sieve in sink, holding 

both at a 450 angle. The suspension was poured over sieves, using only the lower 1/3 of the total 

area. The collecting pans were rinsed with 100 ml aliquots of PBS 2-3 times, pouring over sieves. 

Finally, the glomeruli were collected with the BSA coated pipette tip and transferred to a 50 ml 

conical flask. They were centrifuged at 600-100RPM for 5 minutes, and PBS was carefully 

aspirated off. The glomeruli were re-suspended in appropriate volume of PBS and used for 

subsequent experiments.  

2.2.13 Enzyme-Linked Immunosorbent Assay (ELISA) 

Direct ELISA was performed to detect urinary NGAL, Kim-1, MCP-1 and GDF-15 using 

commercial kits and following their direction. Briefly, urine samples were thawed approximately 

1 h before the assays were performed. For all measurements, 100 μL of diluted urine sample was 

analyzed in duplicate. For quantification, an 8-point standard curve was prepared by a 1:3 dilution 

of a premixed standard containing all analytes of a specific panel. The recommended dilution of 

500-fold was optimal for the detection of NGAL and KIM-1, whereas no dilution was required for 

the detection of Kim-1 and GDF-15. Urinary antigens were bound to the wells of microtiter plates 

by incubation of 100 μL urine samples for 1 h at 37°C. Wells were blocked with buffer containing 

5% BSA. The primary antibody was mouse monoclonal against mouse NGAL (MLCN20; 

Quantikine ELISA, R&D Systems), mouse Kim-1 (MKM100; Quantikine ELISA, R&S Systems), 

mouse MCP-1 (MJE00; Quantikine ELISA, R&S Systems) and mouse GDF 15 (MGD150; 

Quantikine ELISA, R&S Systems). Incubation was followed by treatment with horseradish 

peroxidase-conjugate was added for color development. 30 minutes later the reaction was stopped 

by adding 100ul of HCl. The plate was then read at 450 nm with a Benchmark Plus microplate 

reader (Bio-Rad, CA, USA). The urinary creatinine (Cr) concentration was used to normalize all 

analyte measurements to account for the influence of urinary dilution on its concentration. Urinary 

levels of biomarkers were expressed as analytes/Cr ratio in ng/mg creatinine.  
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2.2.14 Urinary cAMP and cGMP measurement in rats 

To evaluate the acute effect of PDE1 inhibition on urinary cyclic nucleotides male Sprague Dawley 

rats were dosed with either vehicle or PDE1 inhibitor and a 24-hr urine was collected by placing 

them in metabolic cage. Urinary cAMP and cGMP were measured using the respective ELISA kit 

(for cAMP kit cat#501040, for cGMP cat# 501040) from Caymen chemicals following their 

instruction. Briefly urine samples were thawed approximately 1 h before the assays were 

performed. For all measurements, 100 μL of diluted (1:500) urine sample was analyzed in 

duplicate. For quantification, an 8-point standard curve was prepared by a 1:2 dilution of a 

premixed standard. The urinary Cr concentration was used to normalize all analyte measurements 

to account for the influence of urinary dilution on its concentration.  

2.2.15 Measurement of apoptosis using Caspase-3/7 Green Detection Reagent 

Cellular apoptosis was detected by using CellEvent™ Caspase-3/7 Green ReadyProbes™ Reagent 

from Thermo-Fisher Scientific (cat# R37111). For the human mesangial cells about 20K cells per 

well were plated in 96-well black walled plate. The next day, cells were treated with hyperforin 9 

at different doses along with DMSO and incubated for 4 hrs at 370C. A solution of CellEvent™ 

3/7 caspase dye was made by adding 2 drops/ml of PBS. Hoechst stain solution was made by 

adding 2.5ul of 2mg/ml solution in 10ml PBS. Thirty minutes before the 4-hr incubation period 

ended, both dyes were added in total of 200 ul volume. After 30 minutes of incubation, cells were 

fixed with 4% paraformaldehyde. For rat glomeruli isolation, about 80 glomeruli per well were 

plated in 96 well black walled plate. They were incubated in RPMI 16 medium with 10% fetal 

bovine serum (FBS) overnight. Next they were treated with hyperforin 9 and incubated for 24 hrs. 

In case of compound treatment, isolated glomeruli were pre-incubated for 1 hr. Before measuring 

the signal, the glomeruli were incubated with both caspase and nuclear dye for 30 minutes. Images 

were captured using a high throughput imaging Arrayscan VTI and analyzed with the Target 

Activation BioApplication using two channels at a magnification of ×10. An algorithm was used 

to identify objects by nuclear staining with Hoescht dye at 365nm, and caspase signal was captured 

at 475 nm wavelength. All fluorescent intensities are displayed as relative fluorescent units. 

 

 



 
 

 

45 
 

2.3 Results 

2.3.1 Effect of LY1 on PDE1 activity 

Using a radiometric enzyme assay based on scintillation proximity assay (SPA) detection system 

LY1 was tested against all recombinant PDE enzymes. LY1 inhibited all three isoforms of PDE1 

with very comparable half maximal inhibitory concentrations (IC50) (1.74nm, 2.44nm and 1.20nm 

for PDE1A, PDE1B and PDE1C, respectively) (Fig. 2.1), while other PDEs were only affected at 

μM concentrations (Table 2).  

2.3.2 Development of rat model of vasodilation   

We used ear temperature measurement to examine if PDE1 inhibition would cause vasodilation in 

the rats’ ear. The hypothesis behind the ear temperature method was the assumption that PDE1 

inhibition-induced vasodilation would increase the blood flow in the rat ear that would 

subsequently increase the surface temperature. Sprague Dawley rats were administered orally a 

single dose of LY1 at 0.03, 0.1, 0.3, 1 or 3 mg/kg and ear temperature was measured every hour 

for up to 6 hrs and then finally at 24 hrs. Indeed, there was a significant rapid increase of ear 

temperature, 14% at the highest dose of 3 mg/kg within 1 hr of dosing compare to the vehicle 

control as shown in figure 2.2A. Also, a significant dose-dependent increase in ear temperature 

was observed at 0.1, 0.3 and 1 mg/kg.  The calculated ED50 was 0.14 mg/kg (Fig. 2.2B). The 

response in ear temperature sustained for almost 3 hrs in all groups except the lower dose groups 

and returned to baseline by 6 hrs. The pharmacokinetic analysis of LY1 correlated with the 

observed change in ear temperature and calculated the half-life as 4 hrs (Fig. 2.2D). The calculated 

percent target engagement based on the unbound drug concentration demonstrated about 65% 

target engagement (TE) at the lowest dose at 1hr and saturated after 0.3mg/kg (Table 2).  

2.3.3 LY1 lowered blood pressure in normal and spontaneously hypertensive rats 

Vasodilation is an integral part of the regulation of systemic hemodynamics. In general, any 

dilation of arteries and arterioles leads to an prompt decrease in arterial blood pressure. To evaluate 
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Figure 2.1. Inhibition of PDE1 enzyme activity by LY1. LY1 was pre-incubated with 
different recombinant PDE1 isoforms for 30 minutes before the addition of the substrate. After 
incubating at room temperature for 60 minutes reactions were stopped by addition of SPA beads. 
cAMP levels were measured after 12 hrs. “IC50” refers to the concentration of the compound 
that produces 50% of the maximal inhibitory response possible for that compound. IC50 values 
of A) PDE1A, B) PDE1B and C) PDE1C were calculated by plotting the normalized data vs. 
log [compound] and fitting the data using a four-parameter logistic equation. 

 
. 

 

 

 

 

 

 

 

Table 2: Inhibition of PDE enzyme activity by LY1 
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Figure 2.2. Effect of LY1 on ear temperature in rats. Sprague Dawley rats were orally dosed 
with 0.03, 0.1, 0.3, 1 or 3mg/kg of LY1 and the temperature of the pinnae measured with a K-
probe thermometer at every hour for up to 6 hrs and then at 24 hrs after dosing. A) Ear 
temperature was plotted against time, B) an ED50 of 0.14 was calculated at the 1hr time point. 
Data are given as mean ± SEM (N=5). C) One-way ANOVA analysis demonstrating significant 
change in ear temperature in rats with PDE inhibition. Data represents mean of group average 
with N=5 and the p-value calculated compared to the vehicle group. D. Pharmacokinetic profile 
of LY1. Plasma concentrations of LY1 were determined after a single oral administration of 
0.03, 0.1,0.3, 1 and 3 mg/kg of the compound to male Sprague Dawley rats. Data are given as 
mean ± SEM (N=5).  

 

the blood pressure lowering effect of PDE1 inhibition in normotensive animals, LY1 was 

administered in freely moving telemetered Sprague Dawley (SD) rats. Rats were dosed at 1 and 3 

mg/kg twice daily via oral gavage, and data were captured every hour for 24 hrs. Figure 2.3 

demonstrates a rapid reduction in blood pressure that was sustained for several hours. A decrease 
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Figure 2.3. Effect of LY1 on the hemodynamics of SD rats. Telemeterized SD rats were 
dosed twice daily and A) diastolic blood pressure, B) mean arterial pressure, C) systolic blood 
pressure and D) heart rate were recorded for 24 hrs. Dotted line represents the timing of doses. 
All the data represented here as SEM.  
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Figure 2.4. Effect of LY1 on the hemodynamics of SHR rats. Telemeterized SHR rats were 
dosed twice daily and A) diastolic blood pressure, B) mean arterial pressure, C) systolic blood 
pressure and D) heart rate were recorded for 24hrs. Dotted line represents the timing of doses. 
All the data represented here as SEM.  
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of about 5 mm Hg was observed in both groups within 1hr of the first dose compared to the vehicle. 

In general, the blood pressure lowering effect was sustained for longer in high dose group and 

returned to baseline 7hrs after the second dose. A dose-dependent increase in heart rate was also 

observed that returned to baseline towards the end of the time of recording. The blood pressure 

lowering effect of PDE1 inhibition as observed in normal rats suggested that this might be 

beneficial in the context of hypertension. In order to test this, telemetered genetically spontaneous 

hypertensive rats (SHR) that exhibit spontaneous hypertension were dosed twice orally with either 

LY1 at 0.03, 0.1, 0.3, 1 and 3 mg/kg or a vehicle, and cardiovascular parameters were recorded for 

24 hrs. As shown in Figure 2.4, a dose-dependent decrease in blood pressure was observed along 

with increase in heart rate. Within the first hour of dosing, an acute decrease of about 30 mmHg 

was observed in 1 and 3mg/kg dose groups compared to only 5 mmHg drop in normal SD rats at 

the same dose level. A dose dependent increase in heart rate was also evident in SHRs with 

relatively greater magnitude compare to SD rats at the same dose level. The lowest dose of 

0.03mg/kg did not show any effect in both BP and heart rate.  

 

The magnitude of blood pressure lowering effect was much greater in SHRs than in normal rats 

when compared at the same dose level. ACE inhibitors are used as standard of care for the clinical 

management of hypertensive patients. In order to evaluate the additive effect of PDE1 inhibitor 

with ACE inhibitor, SHRs were orally dosed twice a day with either 3 mg/kg enalapril alone or in 

combination with 0.3 mg/kg of PDE1 inhibitor, and cardiovascular parameters were recorded for 

24 hrs. As expected, enalapril lowered the mean arterial pressure by 15% without affecting the 

heart rate (Fig. 2.5). The co-administration of LY1 with enalapril, an ACE inhibitor lowered mean 

arterial pressure by almost 20% with significant increase in heart rate which sustained for almost 

5hrs but came down to baseline.   

2.3.4 LY1 attenuated disease progression in the mouse model of DKD 

To determine the role of PDE1 in the pathogenesis of DKD we used a mouse model of severe 

diabetic nephropathy. Following unilateral nephrectomy at 4-5 weeks old, dbdb mice were injected 

with AAV virus carrying a renin gene at 12-13 weeks of age. The combination of unilateral 
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Figure 2.5. Effect of LY1 on the hemodynamics of SHR rats on top of enalapril. 
Telemeterized SHR rats were dosed twice daily and A) diastolic blood pressure, B) mean arterial 
pressure, C) systolic blood pressure and D) heart rate were recorded for 24hrs. All the data 
represented here as SEM. 
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nephrectomy and induction of renin-mediated hypertension resulted in about 18-fold increase in 

albuminuria compare to the AAV-lacZ control animals. Following randomization based on 

albuminuria, body weight and blood glucose level, the animals were administered either LY1 twice 

a day orally at 0.3 or 1 mg/kg for 6 wks or vehicle. Dosing with the PDE1 inhibitor led to 

significant dose dependent decrease of albuminuria that was evident as early as 14 days and 

sustained for 6 weeks of treatment (Fig 2.6A). LY1 treated group showed a reduction in urine ACR 

of about 51% and 69% at 0.3mg/kg and 1mg/kg group, respectively, compared to vehicle after 6 

weeks of treatment. Interestingly, in the 1 mg/kg dose group LY1 not only attenuated disease 

progression but also significantly reduced albuminuria (by 45%) when compared to the pre-dose 

albuminuria which suggests a possible restoration of kidney function beyond the baseline. The 

reduction of albuminuria was significant at each time point collected for both doses except in low 

dose group at the 6-week time point. We also measured serum creatinine to evaluate kidney 

function. As expected, the AAV renin mice demonstrated an almost two-fold increase in serum 

creatinine compare to the AAV-lacZ treated animals. Treatment with LY1 for 6 weeks reduced 

serum creatinine significantly compares to the vehicle treated group (Fig 2.6B). The lower dose 

group did not show any change in serum creatinine. Administration of AAV renin increased heart 

weight significantly compared to the lacZ group which was dose dependently decreased with LY1 

treatment which indicates a potential cardiovascular benefit. There was no significant change in 

kidney weight in observed across all groups. (Fig. 2.6C). 

2.3.5 LY1 improved histopathology in DKD mouse model 

Renal histopathology was evaluated in db/db UNIX-AAV-Renin mice treated with 0, 0.3, and 1 

mg/kg of LY1. As reported earlier [97], overexpression of renin in uninephrectomized  db/db 

induced severe pathological changes compared to the AAV-lacZ mice. The vehicle-treated group 

demonstrated significantly increased deposition of mesangial matrix, intraglomerular fibrosis, 

periglomerular fibrosis/inflammation, and dilated kidney tubules. Though renal morphologic 

variability existed within and between treatment groups, mice treated with 1 mg/kg of LY1had 

less severe kidney changes when compared to untreated AAV-Renin mice. The changes observed 

included significantly fewer dilated tubules with proteinaceous filtrate, less glomerular matrix, 
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decreased glomerular and peri-glomerular fibrosis and sclerosis, and less renal inflammation (Fig 

2.7).   

 

 

Figure 2.6. Effect of PDE1 inhibition in DKD. Four weeks after the induction of renin-
dependent hypertension in the unilateral nephrectomy model in db/db mice, they were treated 
twice with either vehicle or two different doses of LY1 for 6 weeks. Treatment with the PDE1 
inhibitor markedly decreased A) albuminuria and B) serum creatinine compare to the vehicle 
group. Mice treated with the PDE1 inhibitor showed reduced C) heart weight and D) kidney 
weight after normalized with brain weight. All the data represented here as mean±SD, with 
N=10 in each group. 
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2.3.6 LY1 reduced fibrotic and inflammatory gene expression 

Histopathological evaluation of the study indicated increased fibrosis and inflammation in the 

dbdb AAV renin model which improved upon PDE1 inhibition. To further identify relevant gene 

expression profile associated with the improvement in histopathology, microarray analysis of gene 

expression was performed using the mRNA isolated from the kidney. The preliminary gene chip 

data demonstrated a change in the set of genes involved in inflammation, fibrosis and innate 

immunity signaling pathways in LY1 treated animals compared to control but did not reach 

significance. The list of genes modulated were further followed up with RT PCR using low density 

gene expression array card. Several fold increase in some key inflammatory genes were seen in 

the vehicle control group compare to LacZ group, thereby confirming increased inflammatory 

response in the disease model (Fig 2.8A). PDE1 inhibition significantly attenuated the 

inflammatory response (almost to the baseline) at 1mg/kg dose. Similarly, there was a several fold 

increase in fibrotic gene expression in the control group which were attenuated by PDE1 inhibition. 

Ingenuity pathway analysis (IPA) revealed that the top three canonical pathways associated with 

the total number of genes downregulated upon PDE1 inhibition. As expected, one of the pathways 

was associated with acute phase response. Interestingly a number of affected genes was associated 

with Liver X receptor/Farnesoid X receptor activation and prothrombin activation pathway. A 

number of genes that were downregulated by PDE1 inhibition are reported to be associated with 

renal inflammation, renal tubule injury and kidney failure (Fig 2.8B). 

2.3.7 LY1 reduced urinary bio markers of kidney injury 

Having seen such a significant improvement in the renal pathology and corroborating changes in 

the gene signature in the LY1 treated animals, we explored several non-invasive biomarkers 

indicative of kidney injury. Several urinary biomarkers like NGAL, KIM1, MCP1 and GDF15 

were measured via ELISA to evaluate the effect of PDE1 inhibition in this preclinical model of 

DKD. The urinary neutrophil gelatinase-associated lipocalin (NGAL), which is widely regarded 

as a marker for renal tubular damage progressively increased in the AAV renin treated animals 

compare to the lacz control. Urine collected at a 2 week time point demonstrated a 5-fold increase 

in urinary NGAL in the AAV renin treated animals compare to lacz animals, which progressively 
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Figure 2.7. Histopathological changes in renin AAV db.db AAV uNx mice upon 
inhibition of PDE1. A) Representative images of kidney sections stained with H&E , Masson 
Trichrome (MTS) and periodic acid-Schiff (PAS) from mice treated with either vehicle or 
LY1 for 6wks. Renin AAV db/db uNx mice treated with LY1 showed reduction in glomerular 
matrix, decreased glomerular and peri-glomerular fibrosis and sclerosis, and less renal 
inflammation compared to vehicle treated group. B) Quantification of pathological changes. 
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Figure 2.8. Gene expression analysis of fibrotic and inflammatory markers. Taqman 
analysis using Gene expression array card showing changes in the inflammatory and fibrotic 
genes in AAVrenin db/db mice compare to lacZ and LY1 treatment reduced the expression of 
those gene. A) volcano plot B) List of genes that are changed in inflammation and fibrosis 
pathway.  
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increased and showed a 17-fold increase at 6 weeks. PDE1 inhibition by LY1 significantly 

attenuated the elevation of urinary NGAL as early as within 2 weeks and maintained it for 4 weeks 

in dose-independent manner (Fig 2.9).  

 

Kidney Injury Marker (KIM-1) is a well validated marker for acute kidney injury. Urinary KIM-1 

was highly elevated in a 2-week urine sample in the AAV renin treated group compare to the lacz 

animals which demonstrated significant kidney injury in this model. The elevation in KIM1 was 

progressive and reached as high as 18-fold elevation in the diseased animal in 6 weeks. PDE1 

inhibition by LY1 significantly attenuated the progressive elevation of urinary KIM1 as early as 2 

weeks and maintained it for 2 weeks. At 6 weeks, the high dose group still showed significant 

reduction in KIM-1 although the low dose group lost the significance. Reduction of urinary KIM-

1 was significantly associated with albuminuria (R2= 0.78, p val <0.0001) after 6wks of treatment 

with PDE1 inhibitor (Fig 2.10).  

 

Monocyte chemoattractant protein 1 (MCP-1) belongs to a group of inflammatory chemokines 

which is reported to be elevated in DKD. In the vehicle treated AAV renin mice, there was a 

massive increase (about 64-fold) in urinary MCP-1 compare to the lacz control as early as 2 weeks. 

MCP-1 progressively increased during the study. Inhibition of PDE1 by LY1 attenuated the 

increase of MCP-1 as early as within 2 weeks after dosing, and that was maintained during the 

study. At 6wks, reduction of MCP-1 was found to be associated with ACR (R2=0.78, p val <0.0001) 

(Fig 2.11). Interestingly, neither KIM-1 nor MCP-1 showed any significant change in the blood, 

although KIM-1 showed a trend in treated animals compare to the vehicle group (fig 10 and 11). 

Urinary growth differentiating factor 15 (GDF-15) has been found to be increased about 4-fold 

within 2weeks and progressively increased up to 7-fold in 6wks in diseased animals compare to 

the lacZ. Inhibition of PDE1 significantly reduced the level of GDF15 within 4-6 weeks (Fig 2.12) 

which also correlates with albuminuria.  

2.3.8 Acute effect of LY1 on cyclic nucleotides in the rat urine 

In order to explore the effect of PDE1 inhibition on the urinary cyclic nucleotides, normal SD rats 
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Figure 2.9. Urinary level of NGAL is decreased in AV renin db/db uNx mice following 
PDE1 inhibition. Mice were treated with 0 (vehicle), 0.3 or 1mg/kg of LY1 for 6wks. Biweekly 
urine was collected and urinary NGAL was measured using commercially available ELISA kit. 
Vehicle treated AAVrenin db/db mice showed significant increase in uNGAL which is reduced 
significantly upon treatment with LY1. 
 
 

Figure 2.10. Urinary level of KIM-1 is decreased in AAV renin db/db uNx mice following 
PDE1 inhibition. Mice were treated with 0 (vehicle), 0.3 or 1mg/kg of LSN3191567 for 6wks. 
Biweekly urine was collected and urinary KIM-1 was measured using commercially available 
ELISA kit. Blood was collected at the end of the study and KIM-1 was measured in the serum 
using ELISA. A) Vehicle treated AAVrenin db/db mice showed significant increase in KIM-1 
which is reduced significantly upon treatment with LSN3191567. B) Serum KIM-1 showed a 
trend but did not rech significane. C) Scatter plot showing correlation between urinary KIM-1 
and proteinuria (r2=0.77, p<0.001) at 6wks. 
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were orally dosed twice daily with LY1 either at 0.3 or 3mg/kg and urine was collected for 24 hrs 

using metabolic cage. A significant increase in the urine volume was observed in both dose groups 

that corroborated reduction in urinary creatinine (fig 13). This increase in urine volume 

demonstrates a potential diuretic effect of PDE1 inhibition. For the cyclic nucleotide levels, a trend 

of increasing cAMP level in the urine has been observed which did not reach significance. 

However, a significant increase in cGMP has been observed in LY1 treated rats compare to the 

vehicle group (Fig 2.13). 

2.3.9 Expression analysis of major calcium channels in patients with CKD 

Thus, we have demonstrated that PDE1 inhibition provided significant therapeutic benefits in the 

animal model of DKD. On the flipside, it means that PDE1 activity is critical for disease 

pathogenesis. PDE1 is activated by calcium-calmodulin. However, the source of calcium for PDE1 

activation in this context is unknown. To narrow down the list of calcium channels that are 

important in kidney disease we first did a literature search and found about 11 channels so far 

reported to contribute in calcium signaling in the kidney. Majority of the channels falls into the 

category of transient receptor potential canonical channel (TRPC) and voltage-gated channels. The 

channels that are found to play a role in several cellular function in kidney by modulating calcium 

signaling are TRPC1, TRPC3, TRPC5 TRPC6, TRPV4, TRPV5, PKD1/PKD2, Voltage gated 

channels Cav3.1, v3.2, v1.2 and v2.1. To further rank them based on their differential expression 

in different compartments of the kidney, we analyzed their gene expression in CKD patients 

database. Differential expression analysis of these 11 genes were done using the ERCB patient 

dataset which contained microarray data of micro dissected kidney biopsy samples from 199 CKD 

patients. In the tubular compartment, we found no change in the expression of the 11 channels (Fig 

2.14). On the other hand, the glomerular gene expression data revealed that TRPC6 is the most 

upregulated gene among 11 channels in all five different CKD types including DKD (Fig 2.14). 

This data signifies the importance of TRPC6 as major channel that is involved in the kidney disease 

pathophysiology. 

2.3.10 LY1 attenuated renal cell apoptosis induced by in vitro activation of TRPC6 

To investigate whether TRPC6 mediated activation of PDE1 plays a direct role in renal cell 
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Figure 2.11. Urinary level of MCP-1 is decreased in AAV renin db/db uNx mice following 
PDE1 inhibition. Mice were treated with 0 (vehicle), 0.3 0r 1mg/kg of LY1 for 6wks. Biweekly 
urine was collected and urinary KIM-1 was measured using commercially available ELISA kit. 
Blood was collected at the end of the study and KIM-1 was measured in the serum using ELISA. 
A) Vehicle treated AAVrenin db/db mice showed significant increase in KIM-1 which is 
reduced significantly upon treatment with LY1. B) Serum KIM-1 showed a trend but did not 
rech significance. C) Scatter plot showing correlation between uKIM-1 and proteinuria 
(r2=0.78, p<0.001) at 6wks. 
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Figure 2.12. Urinary level of GDF15 is decreased in AAV renin db/db uNx mice following 
PDE1 inhibition. Mice were treated with 0 (vehicle), 0.3 0r 1mg/kg of LY1 for 6wks. Biweekly 
urine was collected and urinary GDF15 was measured using commercially available ELISA kit. 
A) Vehicle treated AAV renin db/db mice showed significant increase in GDF15 which was 
reduced significantly upon treatment with LY1. B) Scatter plot showing correlation between 
GDF15 and proteinuria (r2=0.66, p<0.001) at 6wks. 
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Figure 2.13. Effect of PDE1 inhibition on urinary cyclic nucleotide in normal rats. Sprague 
Dawley rats were dosed with either 0.3 or 3 mg/kg of LY1. Rats were kept in metabolic cage 
following first dose and urine were collected for 24hrs. Urinary cyclic nucleotides were 
measured using ELISA. A) LSN3191567 treated animals showed a significant increase in cGMP 
but a trend in increase in cAMP. B) Dose dependent increase in urine volume upon LY1 with 
concomitant decrease in urinary creatinine. 
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Figure 2.14. Gene expression analysis of the calcium channels in the microdissected kidney 
samples of CKD patients in ERCB cohort. Bar chart showing the A) glomerular and B) tubular 
gene expression of calcium channels in CKD patients. 

 
apoptosis, we used TRPC6-specific activator in primary human mesangial cell and measured 

cleaved caspase 3/7 activity as a marker of apoptosis. Primary human mesangial cells were treated 

with different doses of hyperforin 9 or in some cases they were pre-treated with small molecule of 

TRPC6 or PDE1 inhibitor for 1hr and then treated with hyperforin 9 for 6hrs. Cellular apoptosis 
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Figure 2.15. Effect of PDE1 inhibition on TRPC6 mediated apoptosis in human mesangial 
cell. Primary human mesangial cells were treated with different doses of hyperforin 9 for 24hrs. 
In other experiments hMS cells were pre-incubated with either small molecule of TRPC or PDE1 
inhibitor for 1hr and then treated with 25uM hyperforin 9 for 6hrs. A) Confocal microscopic 
imaging of caspase 3/7 activity in cells at 10X magnification. B) Quantitative representation of 
the caspase activity. All data was represented as standard error of mean. 

 

was measured by caspase 3/7 activity as detected using high throughput imaging platform using 

caspase 3/7 specific dye.  

 

Hyperforin 9 treatment induced significant apoptosis in dose-dependent manner in mesangial cell, 

which can be blocked by TRPC6 inhibitor (Fig 2.15). In addition, PDE1 inhibition also attenuated 

hyperforin 9 induced apoptosis thereby positioning PDE1 as a downstream mediator of TRPC6 

induced apoptosis.  
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Next, we wanted to investigate this phenomenon in more complex cellular system using isolated 

rat glomeruli. Our preliminary data demonstrated that the level of apoptosis could depend on the 

number of glomeruli per well. Therefore, first, we decided to optimize the glomeruli number that 

is enough for our study without any spontaneous apoptosis. After isolating the rat glomeruli using 

the method described in the material and methods section, different numbers of rat isolated 

glomeruli were plated on a 96-well plate. They were incubated for 24 hrs, and the next day caspase 

activity was measured using the same technique. We found that a high number of glomeruli was 

Figure 2.16. Effect of glomerular number on apoptosis. 96 well plate was seeded with 
different number of glomeruli and incubated in the media for 24hrs. Following 24hrs incubation 
caspase activity was measured using Cell Evet caspase 3/7 green dye. Confocal microscopic 
images taken at 4X showing the optimum number of glomeruli that did not induce any apoptosis. 
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indeed associated with spontaneous apoptosis, and a count of 94 glomeruli per well is the optimum 

number for plating (Fig 2.16).  

 

As described earlier, 96-well plate was plated with the optimum number of isolated rat glomeruli 

and treated with different dose of hyperforin 9 or in some cases they were pre-treated with either 

PDE1 or TRPC6 inhibitor for 1 hr and then treated with 100 µM of hyperforin 9 for 24hrs. Cellular 

apoptosis was measured by caspase 3/7 activity. Hyperforin 9 dose dependently significantly 

induced caspase activity which can be attenuated by TRPC6 inhibitor or PDE1 inhibitor in dose 

dependent manner (Fig 2.17). 

 

Figure 2.17. Effect of PDE1 inhibition on TRPC6 mediated apoptosis in isolated rat 
glomeruli. Rat isolated glomeruli were treated with different doses of hyperforin 9 for 24hrs. In 
other experiments rat glomeruli were pre-incubated with either small molecule of TRPC or 
PDE1 inhibitor for 1hr and then treated with 100uM hyperforin 9 for 24hrs. A) Confocal 
microscopic imaging of cleaved caspase 3/7 activity in rat glomeruli at 4X . B) Quantitative 
representation of the caspase activity. All data was represented as standard error of mean. 
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2.4 Discussion 

In this chapter, using a novel technique, for the first time we demonstrated evidence of PDE1 

dependent vasodilation in vivo using a small molecule inhibitor. We also have demonstrated its 

blood pressure lowering effect in both normal and spontaneously hypertensive rats and 

demonstrated additive effect to the standard of care treatment. We also used the same 

pharmacological approaches in vivo to explore the role of PDE1 in DKD and shown that inhibition 

of PDE1 improved renal function in an animal model of DKD that closely resembles human DKD. 

The renal benefit was manifested by significant reduction in proteinuria, improved glomerular 

filtration rate along with improved histopathological features compare to the vehicle treated 

animals. Molecular and urinary biomarker analysis revealed the renal benefit might be exerted by 

inhibition of inflammation and fibrosis. To the best of our knowledge, this is the first time 

demonstration of the role of PDE1 in DKD. Using both in vitro and ex vivo technique, we further 

demonstrated that calcium channel is the likely source of calcium responsible for activation of 

renal PDE1. TRPC6 mediated activation of PDE1 caused renal cell apoptosis. Overall, these data 

indicate that PDE1 may be a potential player in the progression of diabetic kidney disease, and 

inhibition of this phosphodiesterase presents a potential therapeutic opportunity. 

2.4.1 Hemodynamic effects of PDE1 inhibition 

PDE1 attracted interest in the context of arterial hypertension when, in human genetics study, an 

association of PDE1A single nucleotide polymorphism with diastolic and mean blood pressure 

was described [98]. At a fundamental level, the study of hemodynamics is concerned with the 

distribution of pressures and flows in the circulatory system. In its simplest form, the flow of blood 

through the blood vessel depends on the pressure exerted by heart and the peripheral resistance. In 

other words, to increase blood flow, one could either increase the cardiac force or decrease the 

systemic vascular resistance [99, 100]. The vascular resistance largely depends on the size and the 

shape of the blood vessels which is maintained by the contraction of the vascular wall mediated 

by the contraction of smooth muscle cell. 

 

Cyclic nucleotides are ubiquitous second messengers that are known to play an important role in 

regulating vascular tone. PDE1 is expressed in smooth muscle cell (SMC) and can lead to 
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degradation of both cAMP and cGMP [47]. All three isoforms, PDE1A, B and C are found to be 

expressed in pulmonary vasculature, aorta and mesenteric arteries in rats [49, 56, 101]. PDE1A 

has been shown to regulate cGMP in rat cardiomyocytes and vascular smooth muscle cells [102], 

whereas PDE1C was shown to regulate cAMP in aortic [103] and pulmonary smooth muscle cells 

[56]. Lately Khammy et al. using in situ hybridization demonstrated that relative expression of 

PDE1A in VSMC of the vascular wall of rat mesenteric arteries is higher than the other two 

isoforms [51]. Giachini et al, showed that arteries from Ang II-infused hypertensive rats, display 

increased PDE1 expression and activation compared to control rats, and pharmacological 

inhibition of PDE1 abolished differences in the contractile responsiveness between the groups [49]. 

Recently Laursen et al showed selective inhibition of PDE1 induced relaxation in mesenteric as 

well as in femoral arteries from rats [52]. 

 

Although these ex-vivo studies demonstrated vasodilatory role of PDE1, in vivo demonstration of 

vasodilation relies on invasive techniques or sophisticated methods using ultrasound or imaging 

under anesthesia. For example, Cheng et. Al. has shown the niacin induced vasodilation in mouse 

using a laser doppler imaging technique [104]. Regardless, no such data exist showing in vivo 

vasodilation for PDE1. Here, for the first time, we demonstrated in vivo vasodilatory effects of a 

novel selective PDE1 inhibitor using very simple and reproducible method. The idea of using ear 

temperature as a surrogate for vasodilation came from the observation during dosing of LY1 in 

rats for an unrelated study. We observed the rapid reddening of the rat ear followed by concurrent 

warming of the rat ear after the dosing of the compound. As we measured the temperature using a 

thermometer equipped with k-probe thermocouple, indeed we saw about 12% increase in rat pinna 

temperature in the highest dose of LY1 treated animals compare to vehicle group. We also have 

demonstrated a dose dependent increase in ear temperature and the phenomenon repeated in other 

active compounds (data not shown). The pharmacokinetic analysis demonstrated sufficient 

exposure of the compound with a projected half-life of about 4hrs. It also revealed that we obtained 

about 64% target engagement with the minimum dose of 0.03mpk and saturated the target at 

0.3mpk. The PK/PD analysis shown that the linear relationship between change in ear temperature 

and corresponding target engagement ratio remained linear for one hour.  
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The phenomenon of cutaneous relaxation or hot flushing is associated with many drugs, like PDE5 

inhibitor [105], niacin [106], selective serotonin reuptake inhibitors (SSRIs), and few others [107]. 

In all cases patients have demonstrated redness or warmth of the face, neck or chest area. Although 

differ in initial stimulus, in general all these treatments lead to the same phenotypic response, i.e. 

‘hot flushing’ associated with vasodilation. Intuitively, we associated the increase in temperature 

with this phenotypic response and went ahead to measure the temperature of rat pinna as the hot 

flush was remarkably evident in that area. Thus, the ear temperature has been used as surrogate 

marker of vasodilation. However, relationships between compound exposure and ear temperature 

are more complex. While at the early time points after the dosing ear temperature directly 

correlated with compound plasma concentration, the effect on ear temperature started to disappear 

at 3hr whereas the half-life of the compound is almost 4hrs. One explanation could be the 

homeostatic mechanism involved in the control of body temperature. LY1 at high dose 

demonstrated about 12-14% increase in ear temperature. In case of such increase in body 

temperature some negative feedback mechanism, independent of vasodilatory effect of PDE1 

inhibition, might play a role in bringing down the temperature. It is well recognized that changes 

in skin blood flow played an important role in maintaining core body temperature within a very 

narrow range [108]. One such mechanism involves arterio-venous anastomoses (AVA) [109] 

which in human are abundant in finger and toes. Hoyer et al suggested its importance in 

temperature regulation in mammals.  It has been shown that with the rise in body temperature 

induced AVA dilation to distribute the heat throughout the body [110]. Usually, this regulatory 

feedback acts instantly but the fact that rat ear don’t have AVA but tail does might explain the 

delay in response [111]. Due to this reason and the fact that the linear relationship between change 

in temperature and target engagement ratio (TER) stayed only for an hour, the ear temperature 

might be a useful surrogate for vasodilation within that time frame. Taken together, LY1, a potent 

and selective PDE1 inhibitor with appropriate pharmacokinetic properties demonstrated 

vasodilation using a novel noninvasive method.  

 

When blood vessels dilates, decrease in vascular resistance results in increase of blood flow  [112]. 

Therefore, dilation of small arteries and arterioles leads to an instantaneous decrease in arterial 

blood pressure [113]. Several non-selective PDE1 inhibitors like IBMX, SCH51866, zaprinast or 

vinpocetine have shown blood pressure lowering effect in both normal or AngII infused rats [102, 
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114, 115]. The lack of specificity in those molecules makes it harder to implicate PDE1s role in 

hemodynamics. For example, vinpocetine has also been shown to inhibit PDE7B in micro molar 

range [116]. Furthermore, vinpocetine directly inhibits BKCa channels [117], and recently 

vinpocetine was found to have a PDE independent mechanism to inhibit NF-kB dependent 

inflammation [118]. However, very recently selective PDE1 inhibitor has been shown to reduce 

blood pressure in rats [52]. In our study we also have seen a dose dependent decrease in mean 

arterial pressure in normal rats that coincides with an increase in heart rate. We also demonstrated 

similar phenomenon in spontaneously hypertensive rats, a genetic model of hypertension. The 

magnitude of blood pressure lowering effect is higher in SHR rats and can be achieved with much 

lower dose compare to normal animals. ACE inhibitors are regarded as standard of care in the 

clinic for hypertensive patients. Our data clearly demonstrated a significant synergistic effect in 

lowering blood pressure when combined with LY1. Interestingly while enalapril did not increase 

the heart rate, the combination raised the heart rate to an extent that is higher than seen with 

compound alone in SHR animal.  

 

PDE1 is likely to be involved in multiple mechanisms regulating blood pressure. Our data strongly 

suggest that peripheral vasodilation could play critical role. Literature data suggested relaxation of 

pre-constricted aortic rings with both specific and non-specific PDE1 inhibitors [52, 119].  Our in 

vivo findings complement these in vitro observations. We  have shown that LY1 increased rat ear 

temperature in a dose-dependent manner. This change is temperature is likely a result of increased 

local blood flow driven by vasodilation. Importantly, plasma levels of the compound and, hence, 

tissue exposure, were comparable with compound concentrations in vitro that induced vasodilation 

and exceeded IC50 for PDE1A. Given that diameter of small arteries and arterioles is directly 

related to peripheral vascular resistance, and the latter, together with the pumping capacity of the 

heart and blood volume, ultimately defines blood pressure, we surmise that vasodilation could be 

the main mechanism of antihypertensive effects of PDE1 inhibitors.  

 

Since PDE1A is the major isoform expressed in arterial smooth muscle cells [49, 51], it is highly 

likely that blood pressure lowering activity of LY1 is primarily driven by its inhibition of PDE1A. 

Preferred substrate of PDE1A is cGMP that is produced in vascular smooth muscle cells (SMC) 

by nitric oxide-induced soluble guanylate cyclase or natriuretic peptide-activated particulate 
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guanylate cyclase [34]. Downstream, cGMP signaling is associated with activation of protein 

kinase G, ultimately leading to smooth muscle cell relaxation. When PDE1 is activated, it degrades 

cGMP and hence impedes vasorelaxation. PDE1 is the only phosphodiesterase activated by 

calcium [120]. Calcium signaling is enhanced in arterial hypertension [121]. Therefore, it is 

reasonable to suggest that PDE1A activation serves as one of the major mechanisms associated 

with increased peripheral vascular resistance, and its inhibition would have significant therapeutic 

benefit. 

 

PDE1 inhibition, however, could also be responsible for an observed increase in heart rate. 

Tachycardia is not unique to LY1. It is likely to be the class effect since structurally unrelated 

PDE1 inhibitors increased heart rate in different species of experimental animals [122]. Precise 

mechanism of PDE1-induced tachycardia needs to be further investigated. However, it likely has 

both extracardiac and intracardiac components. The former could be a result of baroreflex, an 

activation of sympathetic signaling induced by blood pressure lowering [123] that, to some degree, 

is germane to any peripheral vasodilator [124]. The latter is likely to be specifically associated 

with inhibition of PDE1A. Lukyanenko et al. reported that PDE1 is expressed in the rabbit 

sinoatrial node. While cGMP is a preferred substrate of this enzyme, PDE1 is also capable of 

binding to (albeit with lower affinity) and degrading cAMP. cAMP, in turn, can stimulate calcium 

signaling resulting in increased pacemaker activity [119]. It is still unknown whether this 

mechanism is involved in tachycardia in the rat, and, most critically, is translatable to the human. 

ITI-214, a PDE1 inhibitor with similar potency and selectivity, has finished Phase II clinical trial 

for Parkinson’s disease (ClinicalTrials.gov Identifier: NCT03257046). Although no data related 

to heart rate were published, the very fact that this compound is moved to Phase II is indicative of 

an overall beneficial safety profile. Thus, tachycardia could remain primarily pre-clinical finding. 

However, more detailed translational studies are needed. 

 

In general, cross-species translation remains an issue given significant difference in the patterns of 

PDE1 expression in the heart. Recent paper by Hashimoto et al [122] demonstrated that PDE1 

inhibition in the dog was simultaneously associated with positive inotropic effects (most likely 

driven by inhibition of PDE1C in cardiomyocytes) and peripheral vasodilation (most likely driven 

by inhibition of PDE1A in vascular SMCs). This “ino-dilation” provides intriguing prospects for 
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PDE1 inhibitors which could pave the way for new therapeutic approach in hypertension or related 

disease like chronic kidney disease.  

 

Association of vascular resistance with CKD is well established. In participants of the US National 

Health and Nutrient examination Suvery (NHANES), hypertension in women was strikingly 

associated with decline of kidney function [125]. Later  Varaniemi K et al demonstrated that there 

is an independent association between systemic vascular resistance induced hypertension and 

lower eGFR [126]. Having seen the vasodilatory effect in both ex vivo and in vivo along with 

lowering of blood pressure we wanted to investigate the role of PDE1 in the context of CKD. 

Among different types of CKD, the prevalence of DKD constitutes about more than 50% and in 

both type 1 and 2 diabetic patients intracellular calcium has been reported to be higher than 

normal[127]. 

2.4.2 Renal benefits of PDE1 inhibition in diabetic nephropathy 

To recapitulate human diabetic nephropathy and explore the role of PDE1 we used an animal 

model that has combination of hypertension and nephron loss on the background of type 2 diabetes. 

In this severe mouse model of diabetic nephropathy, we demonstrated that small molecule PDE1 

inhibitor attenuates the progression of diabetic nephropathy as indicated by reduction in 

albuminuria, serum creatinine, and several urinary biomarkers like NGAL, KIM1, MCP-1 and 

GDF-15. We also demonstrated marked reduction in glomerular sclerosis, interstitial fibrosis, and 

mesangial matrix accumulation in the PDE1 inhibitor treated group compare to the vehicle. Gene 

expression analysis demonstrated that PDE1 inhibition also attenuated the upregulation of several 

genes related to inflammation and fibrosis. Taken together, these data provide first pre-clinical 

demonstration of renal benefit of PDE1 inhibitor in the context of diabetic kidney disease.  

The biology of PDE1 has been investigated in heart and brain extensively but, to the best of our 

knowledge, no data exist describing its role in diabetic kidney disease.  According to human 

protein atlas data, PDE1A is largely expressed in tubules, and PDE1C is expressed in both tubules 

and glomeruli, while PDE1B is not expressed in the kidney. Although nothing is known about the 

primary role of PDE1 in the context of DKD, it certainly can influence several components of the 

disease pathophysiology. For example, the course of disease in DKD can be influenced by local 
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hemodynamics. One major factor regulating hemodynamics is over activation of renin angiotensin 

system (RAS). Activation of the RAS leads to increased angiotensin II levels which subsequently 

cause efferent arteriolar vasoconstriction thus increasing intra glomerular pressure[18]. Increased 

levels of angiotensin II are associated with high albuminuria and nephropathy in both humans and 

mice [128, 129]. This is further validated by a long track record of ACEIs and ARBs in reducing 

the doubling rate of creatinine, albuminuria, and progression to nephropathy, ESRD, and death 

both in human and animal [130-133]. The vasodilatory and blood pressure lowering effect of PDE1 

inhibition led us to explore the role of PDE1 in the context of diabetic nephropathy. 

 

The animal model used in this study is characterized by severe albuminuria, increased serum 

creatinine and histopathological changes that are very similar to human DKD[97]. In this model, 

hypertension is induced by the AAV mediated overexpression of renin, and renal insufficiency is 

induced by unilateral nephrectomy on the background of type 2 diabetes. We demonstrated that 

treatment with PDE1 inhibitor significantly and dose dependently decreased albuminuria within 

two weeks of dosing, and this beneficial effect persisted for 6 wks. This was accompanied by the 

significant reduction in serum creatinine in the high dose group after chronic treatment. The 

improvement in albuminuria in the early phase of the treatment might be due to the modulation of 

glomerular hemodynamics exerted by the vasodilatory mechanism of PDE1 inhibition.  

 

Persistent albuminuria is one of the salient features of DKD and is clinically recognized as a marker 

of the severity of chronic kidney disease. Recent study showed that patients with higher 

albuminuria are prone to cardiovascular death even in some cases where they were in range that 

was otherwise known as at ’normal’ albumin excretion range [134]. Reduction in albuminuria in 

both diabetic and non-diabetic patients with renal disease translates into a protection from renal 

function decline [135, 136] Like albuminuria, serum creatinine is also a well-established 

biomarker of any renal disease. Traditionally, eGFR is used to characterize kidney function and to 

determine the stage of kidney disease.  

 

Chronic exposure to hyperglycemia and hemodynamic changes that modulates various 

intracellular pathways can induce structural abnormalities in the glomerular and tubular 

compartments of the kidney which were reported in the model used in our studies. 
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Histopathological analysis demonstrated severe pathological changes that include mesangial 

expansion, interstitial fibrosis, glomerulosclerosis and increased tubular protein in the vehicle 

group which were significantly improved upon PDE1 inhibition. Shannon et al. showed that the 

histopathological changes in this model were associated with the upregulation of genes involved 

in inflammation and fibrosis [97]. In order to further understand the improvement in pathology 

upon PDE1 inhibition, we performed microarray analysis which demonstrated a reduction in 

expression of genes related to inflammation and fibrosis. However, while directionally consistent, 

these changes did not reach significance. To follow up in a more quantitative fashion, we designed 

a custom gene array focusing on the genes that were up-regulated in the disease state and down-

regulated by the compound treatment. Using RT PCR with pre-configured Taqman array card, we 

demonstrated significant changes in the expression of several genes related to inflammation 

pathway like CCL2, LCN2, SAA1 and VCAM1. They were highly upregulated in the vehicle 

group but were significantly down-regulated upon PDE1 inhibition. Genes related to fibrotic 

pathway like COL1A1 and COL1A2, COL3A1, and FN1 were significantly downregulated in 

PDE1 inhibitor treated group compare to vehicle. These data suggest potential role of PDE1 in 

inflammation and fibrosis apart from its vasodilatory function that might have contributed to the 

renal benefit. 

 

The role of PDE1 in inflammation and fibrosis has been reported in several other organ system. 

Initial evidence of potential role of PDE1 in inflammation came from the investigation of  a non-

selective PDE1 inhibitor vinpocetine. Recently, a highly selective PDE1 inhibitor ITI-124 

demonstrated a regulatory role of PDE1 in inflammatory response in microglia [57]. The authors 

demonstrated that inhibition of PDE1 resulted in >50% reduction in LPS induced increase of TNFa, 

IL-1b, and CCL2 mRNA expression both in BV2 microglial cell and also in mice specially in brain 

regions with high PDE1 expression (striatum, cortex and hippocampus). Our data extended the 

scope of anti-inflammatory effects of PDE1 inhibition to the realm of diabetic kidney disease.  

Although albuminuria and serum creatinine are widely used as primary endpoints for DKD, these 

markers are lacking direct association with the severity of morphological changes in kidneys and 

cannot be considered ideal prognostic markers [5]. The ACCORD study demonstrated that 

intensive pharmacological glycemic control can reduce the incidence of albuminuria but did not 

prevent development of CKD or progression of CKD to end-stage renal disease. Furthermore both 



 
 

 

75 
 

VADT or ADVANCE, which evaluated the benefits of heart disease upon intensive glycemic 

control, failed to show a statistically significant benefit for reducing HbA1c to less than 7% in 

T2DM patients. These findings underscore the necessity to predict incident and progressive CKD 

in type 2 diabetes (ACCORD trial). Faced this discrepancy, several potential prognostic and 

surrogate endpoint biomarkers for advanced DKD has received major interest. Although DKD has 

been regarded primarily a glomerular disease, recent data suggested that tubulointerstitial injury 

may have an important role in pathogenesis and progression of the disease. On that basis, KIM1 

and NGAL [137-139] have been proposed as potential candidates for tubular damage markers and 

shown to be associated with faster decline in eGFR [140]. In CKD, including DKD, NGAL is 

considered a diagnostic and prognostic marker. Bolignano et al. observed that uNGAL increased 

and correlated with the advancement of kidney disease in patients with DKD both with and without 

albuminuria [141]. Both type 1 and 2 diabetic patients showed not only higher level of urinary 

NGAL but also showed a positive correlation with albumin/creatinine ratio [142, 143]. In the post-

hoc analysis of dapagliflozin clinical trial, reduction of KIM1 has been associated with the 

renoprotective effect [144]. In our study, we found that both urinary KIM1 and NGAL were 

elevated in the AAV/Renin model and were significantly reduced (almost to the basal level) with 

PDE1 inhibitor. Interestingly, ACE inhibitor, the current standard of care for DKD, did not show 

any reduction in tubular injury markers in diabetic nephropathy patients [137]. These findings not 

only suggested that PDE1 inhibition mediated improvement of renal function, likely associated 

with direct protection of the renal tubules, but also offer either better or additive benefit with the 

standard of care. 

 

Monocyte chemoattractant protein-1 (MCP-1) and growth differentiation factor-15 (GDF-15) are 

well known cytokines that are increased in tissue injury and inflammatory states and have been 

associated in both cardiac and renal disease [145-147]. It has been shown in animal studies that in 

diabetic renal injury, increases in urinary GDF-15 were associated with proximal tubule injury 

[148]. Urinary MCP-1 levels have been reported to be significantly higher in diabetic patients.  

They correlated with albuminuria and with increased severity of tubulointerstitial lesions along 

with urinary NGAL which might suggest that MCP-1 may reflect advanced tubulointerstitial 

lesions in diabetic patients [149]. In our study, we have seen a significant progressive increase in 

both urinary MCP-1 and GDF-15 in vehicle control group which significantly reduced in the PDE1 
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treated group. Interestingly, reduction in urinary MCP-1 was observed as early as in 2wks, whereas 

it took 4wks to see an effect on GDF-15. We did not see any change in serum MCP-1 in our mouse 

study that corroborates others findings [149]. Both markers demonstrated good correlation with 

albuminuria which corroborates previous findings [148]. These data provide another confirmation 

that renal benefits as seen in this model with PDE1 inhibition might be due to the protection of 

renal proximal tubule cells. 

 

While the above urine markers provide useful prognostic information, molecular readout more 

proximal to the molecular target (PDE1) would be very useful as pharmacodynamic marker at the 

clinical drug development stage. In this context, it is reasonable to focus on cyclic nucleotides 

since they serve as direct substrates of PDE1 enzymatic activity. However, primary intracellular 

localization of cyclic nucleotides makes this task extremely challenging. cAMP and cGMP can 

exit the cell and thus can be detected in plasma or urine but regulation of these processes is poorly 

understood. Therefore, we have attempted quantification of cyclic nucleotides in urine and 

explored potential correlation of their levels with plasma concentration of PDE1 inhibitor. While 

in the relatively simple experimental system (acute effects on cyclic nucleotide levels in the urine 

of normal rat), we have found increased concentration of urine cyclic nucleotides as a result of 

treatment with PDE1 inhibitor, these relationships were not evident in the far more complex 

experimental system (chronic compound administration in the mouse model of DKD). Molecular 

mechanisms of this phenomenon are unclear. It is possible though that urine cAMP and cGMP 

concentration could be mechanistically associated with modification of secretion or reabsorption 

in the tubular cells and, therefore, with diuretic effects of PDE1 inhibitors. Indeed, we have found 

that PDE1 inhibition induced acute increase of urine volume in the normal rats. In the model of 

DKD, though, profound polyuria, typical for diabetes, has likely masked this physiological 

response. Thus, clinically important relationships between pharmacokinetic and 

pharmacodynamic parameters need further investigation. 

 

In summary, we have shown for the first time in a very severe preclinical model of diabetic 

nephropathy that inhibition of PDE1 provides renal protection associated with lowering 

albuminuria, reduction in serum creatinine levels and marked improvement in renal histopathology 

likely driven by suppression of inflammation and fibrosis as evident by gene expression analysis. 
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The urinary biomarker panel demonstrated that the improvement in renal function is primarily due 

to the protection of renal proximal tubule. While we clearly demonstrated therapeutic benefits of 

PDE1 inhibition, it is still unclear how renal PDE1 is activated in the context of DKD and what 

are the downstream mechanisms of these benefits. We addressed these two questions by adopting 

some bioinformatics tools and through in vitro experimentation. 

2.4.3 Mechanism of PDE1 activation and reno-protective effects of PDE1 inhibition 

In this section we demonstrated that TRPC6 mediated calcium influx is responsible for PDE1 

activation, and inhibition of PDE1 prevented renal cell apoptosis induced by TRPC6 activation. 

By using bioinformatics tools and publicly available CKD patients’ database we demonstrated that 

TRPC6 is upregulated in the glomerular compartment of several types of CKD including DKD. 

Using a TRPC6-overexpressing cell line, we demonstrated that activation of TRPC6 resulted in 

PDE1 activation as evident by decrease in cAMP. By using a TRPC6 small molecule inhibitor we 

demonstrated that hyperforin 9, a widely used activator is specific to TRPC6. We also 

demonstrated that TRPC6 mediated increase in calcium influx resulted in apoptosis in both human 

mesangial cell and rat isolated glomeruli which can be attenuated by both TRPC6 and PDE1 

inhibitor. This suggest that in the context of elevated intracellular calcium, inhibition of PDE1 

rendered renal benefit by attenuating apoptosis.  

 

Out of 11 family of phosphodiesterases, PDE1 is the only one that is activated by calcium.  

However, several Ca2+ entry pathways exist in cell and the specific source of calcium used for 

activation of PDE1 in the kidney is unknown. So far one report suggested that in cardiomyocyte 

PDE1 gets activated by TRPC3 mediated calcium influx[95] but no such data exist in kidney cell. 

Recently, studies have shown that disruption of calcium signaling in the kidney leads to kidney 

disease and using genetic or biochemical tools identified several channels that are important in 

renal disease [54]. Our analysis of gene expressions of the transcriptional dataset from European 

Renal cDNA Bank (ERCB) revealed TRPC6 as the most upregulated calcium channel in 

glomerular compartment of patients with different kinds of CKD, including DKD [150] . 

Interestingly, we did not see any change in the expression of major calcium channels in the tubular 

compartment. Dysregulation of calcium signaling has been implicated in the kidney disease and 
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evidence of several gain-of-function mutation in human TRPC6 channels has been implicated in 

FSGS, predominantly a glomerular disease that is characterized by massive proteinuria. The 

expression of TRPC6 in podocytes and as a component of the glomerular slit diaphragm has been 

confirmed by several studies [68, 151]. We also have found increased TRPC6 expression in the 

glomerular compartment of FSGS patients included in the ERCB dataset. Like FSGS, diabetic 

nephropathy is also characterized by loss of podocyte and proteinuria. TRPC6 has been shown to 

be increased in cultured podocyte in response to high glucose and in STZ-induced diabetic rats 

[76]. In our differential gene expression ( DEG) analysis we also have found several fold increases 

of TRPC6 expression in DKD patients from ERCB cohort. Thus, our data also support that 

increased expression of TRPC6 may be involved in number of glomerular kidney diseases. 

Admittedly, one of the limitations of the study is based on the fact that we only focused on the 

channels that has been reported in literature to be involved in kidney diseases. 

 

Based on gene expression data in CKD patients we postulated that TRPC6 is the major driver of 

calcium influx that is involved in PDE1 activation in the context of kidney disease. TRPC6 

mediated increase in intracellular calcium have been shown to induce apoptosis in multiple cell 

type through different mechanism. Soni et al. have shown in neonatal pig glomerular mesangial 

cell that hyperforin, a selective TRPC6 activator, induced cellular apoptosis via calcineurin/NFAT 

and FasL/Fas signaling pathway [152]. Inhibition of TRPC6 has been reported to protect renal 

proximal tubule cell from oxidative stress mediated cellular apoptosis [95]. Here we have 

demonstrated for the first time that in primary human mesangial cell and in rat isolated glomeruli 

activation of TRPC6 induced apoptosis in PDE1-dependent manner. By using selective inhibitor 

of both TRPC6 and PDE1 we demonstrated the crosstalk of two major signaling pathway and its 

importance in maintaining cell viability. Our data corroborates similar findings in mouse 

cardiomyocytes where it has been shown that TRPC3 is involved in PDE1C-mediated 

cardiomyocyte death [95].  

 

In summary, in this section we have demonstrated vasodilatory function upon PDE1 inhibition in 

vivo by adopting a novel technique using ear temperature as surrogate marker.  Peripheral 

vasodilation resulted in lowering of blood pressure in both normotensive and hypertensive rats. 

We also demonstrated for the first time that PDE1 inhibition leads to the renal benefit using a 
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rodent model of DKD as evident by lowering of ACR, serum creatinine and several urinary 

biomarkers. The histopathological improvement due to PDE1 inhibition were associated with and 

likely driven by inhibition of inflammation and fibrosis pathways. Using gene expression analysis 

of CKD patients, we identified TRPC6 as major channel that is upregulated in the glomeruli and, 

using human primary mesangial cell and rat isolated glomeruli, we have shown that induction of 

TRPC6 leads to apoptosis in PDE1 dependent manner. In subsequent section we asked the question 

of how TRPC6 gets activated in the diabetic environment. 
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 ROLE OF TRPC6 AND PDE1 IN THE CROSSTALK OF 
CALCIUM AND CYCLIC NUCLEOTIDE SIGNALING 

3.1 Introduction 

In the previous chapter, we have demonstrated the role of PDE1 in DKD. That, on its own, laid 

out new ideas about pathogenesis of the disease and may provide novel approaches to its 

pharmaceutical treatment. However, both from the basic science and drug discovery perspectives, 

it is important to understand how PDE1 is activated. Therefore, the current chapter is focused on 

the upstream pathways that link extracellular risk factors of DKD and PDE1. Since PDE1 is 

activated by calcium, the first obvious question relates to the source of calcium leading to PDE1 

activation. We have previously identified TRPC6 as a likely candidate. Here, going further 

upstream, we set out to link extracellular molecules/risk factors with TRPC6 and identify 

molecular mechanisms involved in opening/activation of this calcium channel. 

 

Canonical transient receptor potential channel (TRPC) is one of the major ion channels that 

regulate calcium influx into the cell from the extracellular space. Among seven structurally related 

family members, the importance of TRPC6 has been emphasized by the discovery of gain of 

function mutation in FSGS clinically manifested by massive proteinuria [68]. Proteinuria is a 

clinical feature shared by FSGS and DKD. However, while a subset of FSGS patients exhibit a 

gain-of-function mutation of TRPC6, it is likely that in DKD, certain extracellular molecules 

associated with diabetes and serving as risk factors of DKD, directly activate TRPC6. 

Comprehensive review of these risk factors is beyond the scope of this study. Major risks of DKD 

stem from the hemodynamic and metabolic directions. Thus, we decided to focus on main 

representatives of these two groups, specifically, angiotensin II and endothelin 1 on the 

hemodynamic side, and glucose and insulin on the metabolic side. Any extracellular molecule can 

activate TRPC6 via generation of diacylglycerol (DAG) or reactive oxygen species (ROS). In this 

chapter, we developed or applied novel molecular tools to address two questions: (1) What 

hemodynamic and metabolic risk factors of DKD activated TRPC6 and (2) What was the 

molecular mechanism mediating this activation. 
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Intracellular DAG can be formed either via G-protein coupled (GPCR) receptor mediated 

hydrolysis of membrane phospholipids [153] or de novo synthesis using glycolytic intermediates 

as precursors or hydrolysis of triglycerides [70, 154]. In the extremely complex diabetic milieu, 

DAG is likely to be generated by all three sources [155]. Moreover, Gq receptors can be activated 

by multiple ligands: angiotensin II (Ang II), Endothelin-1(Et-1), thromboxane, prostaglandin E2 

etc which are also abundant in diabetic milieu [72, 156, 157]. It is unknown if various Gq agonists 

lead to uniform generation of DAG and TRPC6 activation. Majority of publications used Ang II 

or a membrane-permeable DAG analog, 1-oleyl-2-acetyl-sn-glycerol (OAG) [153, 158]. While 

this generalized approach was fruitful in elucidating common signaling mechanisms, it is 

conceivable that individual Gq agonists may affect different facets of the pathway. Current 

literature strongly suggests differential pattern of activation of TRPC3, a close relative of TRPC6 

[154]. Similar studies regarding TRPC6 are needed. 

 

Reactive oxygen species (ROS) which are also abundant in diabetic milieu has also been 

implicated in the activation of TRPC6. Both angiotensin II and high glucose have been shown to 

activate TRPC6 via ROS generation [159, 160]. Kim et al, has demonstrated that ROS mobilized 

the TRPC6 channel in cultured podocytes [161, 162] and later on using pharmacological and 

genetic tools other investigators have shown that ROS dependent TRPC6 activation is the primary 

source of calcium influx in isolated glomeruli [159]. Later it was shown that the downstream 

signaling pathway involved Rac/Rho pathway and caused podocyte cytoskeleton derangement 

[163, 164]. Furthermore, in podocytes, Ang II induced apoptosis is associated with alteration of 

TRPC6 expression and Ca2+ influx [165].  

 

Similarly, in monocytes it has been shown that high glucose induced ROS activates TRPC6 and 

increase calcium influx [160]. In cultured podocytes, it has also been demonstrated that glucose 

upregulated TRPC6 and increased calcium influx [165]. These indirectly suggest that high glucose 

might be activating TRPC6 via ROS generation. However, the possibility that high glucose can 

activate TRPC6 by generating DAG through de novo synthesis pathway has been overlooked. 

Once activated TRPC6 allows influx of calcium ions into the cell which effects several 

downstream signaling pathways. For example, stimulation of TRPC6 channels has been shown to 

activate stimulus-responsive transcription factor activator protein-1 (AP-1) [166] which is at a 
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convergence point for multiple intracellular signaling pathways that operates in tissue-specific 

regulation of many biological functions [167]. TRPC6 mediated rise in calcium concentration has 

also been shown to activate calcium-dependent protein phosphatase calcineurin which 

dephosphorylates the cytoplasmic subunits of NFATc transcription factors resulting its nuclear 

translocation and upregulating many genes that are associated with neonatal glomerular mesangial 

cell apoptosis in kidney, whereas in cardiovascular biology it has been associated with  myoblast 

transformation, and pathologic cardiac modeling [152, 168]. Moreover, overexpression of either 

wild type or of gain-of-function mutations of TRPC6 that is reported in human, triggered a 

constitutive activation of NFAT-regulated gene transcription involved with focal segmental 

glomerulosclerosis [78]. TRPC6 mediated intracellular increase in calcium also has been shown 

to activate Ca2+2/calmodulin-dependent protein kinase CaMKIV along with the MAP kinase 

extracellular signal-regulated protein kinase (ERK) [169]. 

 

Our data places PDE1 into the list of downstream mechanisms that link TRPC6 and DKD. In 

previous chapters we have demonstrated that TRPC6 might be another potential channel that might 

influence the intracellular calcium required to activate PDE1. Here using heterologous expression 

model, we showed how systemic risk factors in diabetic milieu activates TRPC6. We identified 

multiple clones that have several fold higher expressions of TRPC6 and selected one clone, C11 

as functional clone based on the change in membrane potential in response to several known 

TRPC6 activator. Using small molecule, we demonstrated that this increase in membrane potential 

and corresponding calcium influx is TRPC6 specific. We also have demonstrated that several risk 

factors in diabetic milieu can increase intracellular calcium influx but differentially activate 

TRPC6. Finally, we have demonstrated that activation of TRPC6 leads to the depletion of 

intracellular cAMP. Although a large body of data exists pointing the importance of TRPC6 in the 

health of podocyte here we describe another mechanism where crosstalk between calcium and 

cyclic nucleotides that might play an important role in cellular physiology. 
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3.2 Methods and materials 

3.2.1 Reagents 

All chemicals and reagents were obtained from commercial sources. Hyperforin 9 (cat#H9791-

25MG, Sigma Aldrich, St Louis, MO), Forskolin (cat#1099, TOCRIS Chemicals) were prepared 

as either 25uM or 10mM solution with DMSO. Both Angiotensin II (cat# A9525) and 1-Oleoyl-

2-acetyl-sn-glycerol (OAG, cat# O6754) was purchased from Sigma Aldrich. The DAG sensor 

and cAMP sensor were purchased from Motana Molecular. 

3.2.2 Cell Culture 

TRPC6 overexpressed cell C11 (in the background of HEK293) cells were grown in mono layer 

culture at 37 °C in a humidified air atmosphere with 5% CO2 using DMEM/F12 media with 

250ug/ml HYGRO, 20mM Hepes, 1X NEAA, 1X NaPyruvate, 10% heat-inactivated fetal bovine 

serum, and 1% penicillin-streptomycin solution. All the experiments were performed between 

passage number 55-60. 

3.2.3 Construction of recombinant plasmid and generation of TRPC6 stable cell line 

Human TRPC6 gene was cloned using pcDNA™5/TO Mammalian Expression Vector system 

from Thermo Fisher (cat# V103320) using the manufacturer protocol. Briefly the human TRPC6 

gene was first cloned between 1492 and 2870bp flanked by ava 1 and HindIII restriction sites. The 

whole construct was then chemically transformed in E. coli DH5α™-T1R strain and was 

propagated using the condition described by the manufacturer. Clones were selected on LB agar 

plates containing 50–100 μg/mL ampicillin. Once the presence and orientation of the hTRPC6 was 

confirmed plasmid were isolated and stored in -800C. For making the stable cell line 

overexpressing hTRPC6, HEK293 cells were grown at approximately 60% confluent.  Following 

day they were co-transfected with pcDNA™5/TO construct and pcDNA™6/TR at a ratio of 6:1 

using lipofectamine 2000 (cat# 11668030). After transfection, fresh medium was added, and the 

cells were allowed to recover for 48 hours before induction. The final clones were selected based 

on a final concentration of 250μg/mL of hygromycin to the media. 10–20 clones were selected and 

analyzed for the presence and orientation of TRPC6 insert and plasmid vector.  
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3.2.4 Adenoviral construction of GCamp2 Ca sensor with hTRPC6 

In order to monitor the calcium influx a hybrid construct was created by ligating GCamp2 sequence 

to the 5’ end of the hTRPC6 under the CMV promoter. The hybrid construct was cloned into the 

pcDNA5/TO plasmid vector using the above protocol. Once the plasmid sequence and orientation 

confirmed the whole construct was commercially made by Vector Bio Labs. The titer was 

confirmed as 5 X 1013 gc. 

3.2.5 Membrane potential assay 

FLIPR assay development was performed following manufacturer’s protocol (Molecular Devices, 

Sunnyvale, CA). Briefly, the day before the experiment TRPC6 overexpressed clones or HEK293 

cells were seeded at 30K, 40K, 50K or 60K cells per well on Biocoat 96well plate (BE01770) for 

overnight incubation in cell culture incubator (5%CO2, 37°C). Cell plates were loaded with 50ul 

of assay buffer containing 1× membrane-potential dye component A and incubated for 1hr. For 

making the stock solution of AngII and OAG, 1mM stock solution was prepared using the water 

and DMSO respectively. Either a single concertation was prepared, or a serial dilution was made 

to prepare the different doses of stimuli with their respective vehicle. For compound TRPC6 

inhibitor a serial dilution was made using DMSO. The stimuli were prepared in 96 well plate and 

placed in the ‘reservoir’ section of the FLIPR system. The plate containing the cells and loading 

dye was placed in the on the platform of FLIPR384 (Molecular Devices), and the fluorescence 

signal was read with excitation/emission spectrum at 488/540 nm. The FLIPR tetra has a fully 

automated High-Speed Distributed Motion (HSDM) Thermo LAS microplate assay system which 

was used to conduct the HTS campaign. Measurements were made at 5s intervals. Basal 

fluorescence was measured for 15–30s, followed by addition of 5ul of the test stimuli and 

measurement of fluorescence for 300s. Raw fluorescence readings were first converted to response 

over baseline using the analysis tool of Screenworks 3.1.1.4 (Molecular Devices). The result was 

expressed relative to the maximum increase in fluorescence of control responses. 
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3.2.6 Measurement of Calcium influx in cell using FLIPR calcium assay kit 

 

About 50K cells of TRPC6 stable cell line C11 were plated in each well of a black walled 96-well 

imaging plates and cultured for 24 h. The calcium dye used in the experiment was commercially 

available FLIPR Calcium 6 no-wash dye (Molecular Devices) that was prepared by dissolving the 

contents of one Component A vial by adding 10 ml of Component B or 1X HBSS Buffer plus 20 

mM HEPES in physiological salt solution as per manufacturer’s instructions. Before adding the 

appropriate stimuli growth media was completely removed and replaced with 100ul of the prepared 

reagent and incubated for 2hrs in the dark at 37˚C. The plate was placed on the platform of FLIPR 

machine and the reagents were added using the automated injector system. The immediate change 

in fluorescence was measured using excitation 470–495 nm, and emission 515–575 nm every 5s 

after addition of test compounds. Raw fluorescence readings were first converted to response over 

baseline using the analysis tool of Screenworks 3.1.1.4 (Molecular Devices). The result was 

expressed relative to the maximum increase in fluorescence of control responses. 

3.2.7 DAG measurement  

C11 cells were plated at 20K per well in a 96-well black walled plate and transduced with either 

DAG sensing protein (cat#D0300G, BacMam; Montana Molecular, Bozeman, MT) or cADDi 

cAMP senor (cat#during split and grown for 24hrs.  Next day growth medium was removed and 

replaced with 100ul of PBS. Cells were mounted on a FLIPR station and stimulated with test 

compounds and fluorescent signal was captured at for 5 minutes at excitation 470–495 nm, 

emission 515–575 nm. Data was expressed as relative light units and the AUC was calculated 

using the Screenwork software. 

3.2.8 cAMP measurement  

A cAMP upward mNeon Green cADDis biosensor expressed under a CMV promoter was obtained 

from Montana Molecular (U0200G), and delivered by transduction with BacMam, a baculovirus 

modified to infect C11 cells. The cells were incubated in the presence of 2 mM sodium butyrate 

for 48 hours after transduction according to manufacturer’s specifications before imaging. After 
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confirming the expression of the cAMP sensor cells were treated with test compounds. In case 

compound treatment, cells were pre-incubated with compounds for 1hr before the experiment. 

Some cultures were supplemented with 10 μM forskolin for 30 minutes as positive control. 

Following the treatment with either test compounds or the positive control cells were fixed with 

4% formaldehyde and stained with Hoechst dye. Cell images were captured using a Cellomics 

Arrayscan VTI and analyzed with the Target Activation BioApplication reading in two channels 

at a magnification of ×10. An algorithm was used to identify objects by nuclear staining with 

Hoescht dye at 365nm, and cAMP was determined using 475nm wavelength. All fluorescent 

intensities are displayed as relative fluorescent units. 

3.3 Results 

3.3.1 Generation and selection of TRPC6-overexpressing stable cell line 

As a first step towards the generation of stable TRPC6 overexpressing cell line, human embryonic 

kidney 293T cells (HEK293T) were transiently transfected with plasmid containing human TRPC6. 

Clones were selected based on their hygromycin resistance and expression of TRPC6 was 

measured using standard RT-PCR as shown in Fig 3.1. Based on relative expression of TRPC6, 

C1, C11, and C6 clones were selected to further evaluate their function. Membrane potential assay 

is a fluorescence-based method that does not directly measure ionic current, rather it measures the 

membrane potential-dependent changes of fluorescence signals as a result of ionic flux. As 

described in the Methods and Materials, the selected clones, including non-transfected HEK293T 

cells, were treated with either water or angiotensin II. Following the incubation with the dye, the 

fluorescent signal was captured by the FLIPR tetra high throughput imaging system. No changes 

in fluorescence was detected in HEK293 cell in response to 1uM of Ang II. However, C11 clone 

demonstrated a steep increase in fluorescent signal in response to Ang II-mediated depolarization, 

and the signal remained elevated during the time of the recording. The other two clones, C1 and 

C6, did not show any changes in the fluorescence signal (Fig 3.2A). Interestingly, even C1 had 

higher fold of TRPC6 expression compare to C11 but did not elicit any change in depolarization 

in response to angiotensin II. We further confirm this observation by treating the C11 along with 

C6 and naïve HEK293 cells with different doses of angiotensin II. As we have seen before, neither 
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naïve HEK293 nor C6 showed any change in the fluorescent signal. However, C11 demonstrated 

dose-dependent membrane depolarization (Fig 3.3). To confirm that AngII-mediated response is 

TRPC6 dependent, the cells were preincubated with a TRPC6-selective small molecule inhibitor 

and then treated with AngII. As shown in the Fig 4, TRPC6 inhibitor dose-  

 

Figure 3.1.  TRPC6 gene expression in the stable HEK293 cell line. Following transfection 
with hTRPC6 construct individual clones were selected in the presence of hygromycin . Twenty-
four clones were selected, and RNA was isolated. Using human TRPC6/GAPDH taqman primer 
pair gene expression was analyzed. A) hTRPC6 plasmid map. B) Fold increase in TRPC6 
expression. 
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Figure 3.2. Comparison of fluorescent signal response of selected TRPC6 clones to 
membrane potential change during AngII stimulation. WT HEK293, clone 1(C-1), clone 
11(C-11) and clone 6(C-6) were grown over night in poly-D-Lysine coated 96 well plate. After 
incubating with membrane potential dye for 30min cells were treated with 1uM angiotensin II 
and calcium signal was measured using FLIPR tetra high throughput screening system. 

 

dependently inhibits AngII-mediated membrane depolarization. Finally, we tested C11 against 

another well-known TRPC6 activator OAG and showed that C11 dose-dependently responded to 

OAG-induced change in membrane potential (Fig 3.5). The dose response study showed that, in 

C11 clone, OAG dose-dependently induced membrane depolarization at cell density between 30K-

40K (Fig 3.5). Cell number higher than 40K did not show any response to Ang II stimulation. 

Figure 3.3. Membrane potential assay. About 30K cells of naïve HEK293 along with C6 and 
C11 clones were plated in a 96-well plate. After an overnight incubation the cells were incubated 
with membrane potential dye for 30 minutes. Cells were then treated with different concentration 
of AngII and the change in the fluorescent was captured in FLIPR. Relative fluorescence units 
(RFU) and were calculated from the maximum fluorescence value (Max) after addition of AngII 
immediately before addition of AngII. Data shown represent the mean ± S.E.M. 
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Taken together, these data suggested that the selected clone C11 is functionally active clone among 

others with similar level of TRPC6 gene expression.  

3.3.2 Hyperforin 9 induced calcium flux in HEK293 cells in TRPC6-dependent manner 

As a next step, we aimed to confirm that hyperforin 9, a widely used TRPC6 activator, induces 

calcium influx in a TRPC6-dependent manner. To achieve this goal, we constructed a plasmid 

whereby GCamp2, a calcium biosensor, was fused in the 3’ end of human TRPC6 gene and cloned 

into pcDNA3.1 vector under CMV promoter (Fig 3.6 A). The whole construct was then packaged 

in an adenovirus for the ease of delivering to the cell. Following infection, HEK293 cells were 

treated  

 
Figure 3.4. TRPC6 inhibitor inhibits AngII mediated change in membrane polarization. 
About 30K cells of C11 clones were plated in a 96-well plate. After an overnight incubation the 
cells were pre-incubated with TRPC6 inhibitor for 1hr and with membrane potential dye for 30 
minutes. Cells were then treated with 1uM of AngII and the change in the fluorescent was 
captured in FLIPR for 5minutes. Relative fluorescence units (RFU) were calculated from the 
maximum fluorescence value (Max) after addition of AngII and the minimum fluorescence 
value (Min) immediately before addition of AngII. Data shown represent the mean ± S.E.M. 
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with hyperforin 9, and the fluorescence signal was captured using a laser scanning confocal 

microscope. Hyperforin 9-treated cells have shown increased fluorescence signal within 30 sec of 

addition, and it reached its peak within 60s. To test if this signal is indeed mediated by TRPC6 

activation, we pre-treated the cells for 2hr with TRPC6-specific small molecule inhibitor  

 

 

 

Figure 3.5. Effect of cell density on the fluorescence response of membrane potential dye 
in TRPC6 clone 11 against different stimuli. Different amount of clone 11 were plated in 
poly-D-lysine coated plate. Following loading with membrane potential dye for 30min cells 
were stimulated with different concentration of A) Angiotensin II (AngII) and B) 1-oleyl-2-
acetyl-sn-glycerol (OAG). Fluorescent signal was captured in FLIPR for 5minutes. Relative 
fluorescence units (RFU) were calculated from the maximum fluorescence value (Max) after 
addition of AngII and the minimum fluorescence value (Min) immediately before addition of 
AngII. Data shown represent the mean ± S.E.M. 
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Figure 3.6. TRPC6 inhibitor inhibits hyperforin 9 induced calcium influx in C11. The 
hybrid construct to monitor the calcium signal was created by fusing GCamp2 coding sequence 
to the human TRPC6 and cloned in adeno viral vector. HECK293 cells were infected with 
adenoviral TRPC6-Ca sensor hybrid. Following overnight infection, the cells were treated with 
50uM Hyp9 in presence or absence of TRPC6 inhibitor. A. Genetic map for the hybrid construct 
B) upper panel: Time lapse fluorescent signal following Hyp9 stimulation. B) Lower panel: The 
fluorescence signal is inhibited by the pre-treatment of 10uM of TRPC6 inhibitor. C. 
Quantitative representation of the fluorescent signal. 

 
 

and then treated the cells with hyperforin 9. As shown in the lower panel of figure 6B, TRPC6 

inhibitor-treated cells showed complete attenuation of the fluorescent signal. Taken together, this 

suggests that hyperforin 9 induced calcium influx in TRPP6-dependent manner. 
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3.3.3 Several risk factors of DKD caused increased calcium influx in TRPC6-
overexpressing cell line 

Published studies have shown that several risk factors in diabetic milieu like AngII, endothelin 1, 

glucose can cause increased calcium influx in the cell. To evaluate the involvement of TRPC6, we 

treated C11 clone with several molecules representing these known risk factors and measured 

intracellular calcium release using high-throughput Fluorometric Imaging Plate Reader (FLIPR). 

About 50K cells were plated. and after overnight incubation with various “risk factor’ molecules, 

cells were incubated with calcium 6 assay dye for 30 minutes, and fluorescence signal was captured 

with FLIPR. Representative fluorescence traces illustrating cellular response to different stimuli 

in C11 clone are shown in Fig 3.7. The corresponding solvent for each reagent was used as negative 

control. Carbachol and hyperforin 9 were used as positive controls. Incubation with water did not 

induce any change of fluorescence, whereas incubation with carbachol produced dose-dependent 

spikes in the fluorescent signal (fig 3.7).  Out of the all stimuli tested, hyperforin 9 demonstrated 

the highest amplitude in the peak of calcium signal and an extended duration similar to glucose 

(Fig 3.7A). Among the hemodynamic risk factors, both Ang II and endothelin-1 demonstrated 

increased calcium influx (Fig 3.7B and 3.7C). Interestingly, even though they belong to the same 

class of vasoactive amines, endothlin-1 demonstrated a higher amplitude and instant increase in 

intracellular calcium whereas the response to Ang II was much delayed with much lower amplitude 

in the signal at the same concentration. Among the metabolic risk factors, glucose dose- 

dependently increased intracellular calcium and demonstrated extended response, whereas insulin 

did not induce any response (Fig 3.7D and Fig 3.7E). These data suggested that not all the risk 

factors in diabetic milieu induce similar response in intracellular calcium.  

3.3.4 Diabetic risk factors differentially activate TRPC6  

It has been demonstrated that both reactive oxygen species (ROS) and diacylglycerol (DAG) 

production are the key factors for activating TRPC6 [153, 170]. As we have demonstrated in the 
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Figure 3.7. Representative FLIPR traces showing changes in calcium influx in C11 in 
response to diabetic risk factors. Cells were incubated with Calcium 6 dyes from Molecular 
Devices for 30 minutes before the treatment. Fluorescence measurements were taken for 30 
seconds before addition of different stimuli. FLIPR traces showing change in fluorescence after 
addition of different doses of A. Hyperforin 9, B. Angiotensin II, C. Endothelin-1, D. Glucose 
and   E. Insulin. In each cases water or DMSO were used as negative control and carbachol was 
used as positive control. 

 

earlier section that systemic risk factors in diabetic milieu triggers TRPC6 mediated calcium influx, 

we next moved to evaluate if they differentially activate TRPC6. To evaluate the DAG-mediated 

activation of TRPC6, we employed a fluorescent downward DAG biosensor which is a fusion of 

a PKC-d fragment with circular permuted enhanced green fluorescent protein (GFP). Reactive 

oxygen species (ROS) were detected using cell-permeable dye, CELL ROX-Green, which is 

oxidized by O2– and •OH and the signal was captured by high throughput imaging platform called 
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Cellomics. Before proceeding with the actual risk factors, we tested detection assays using positive 

control. For DAG production, C11 cells were infected with mixture of Baculoviral construct of 

DAG sensor and muscarinic receptor M1 as described in the Methods. The change in fluorescence 

due to carbachol mediated DAG synthesis was captured by FLIPR. Carbachol demonstrated a 

rapid production of DAG soon after the compound injection. The calculated AUC of the 

fluorescent signal showed significantly higher DAG levels compared to water (Fig 3.8A). We then 

used hyperforin 9 to test if it induces any DAG production. Following infection with DAG sensor, 

plates were loaded to FLIPR chamber, and soon after adding hyperforin 9, dose dependent changes 

in the fluorescent signal was detected (Fig 3.8B). To measure ROS, C11 cells were treated with 

tert-Butyl hydroperoxide (TBHP) for 1hr. Before fixation with paraformaldehyde, cells were 

incubated with CELL ROX green dye and Hoechst stain for 30 minutes. The fluorescent signal 

was detected with Cellomics imaging system at 665nm. TBHP demonstrated dose-dependent 

production of ROS which was attenuated by treatment with a redox scavenger N-acetyl-L-cysteine 

(NAC), showing dose-dependent inhibition of fluorescence signal (Fig 3.9). After confirming that 

we have methods to detect DAG and ROS, we tested several diabetic risk factors in our system. 

To explore the risk factor-mediated DAG production, C11 cells were treated with different 

concentration of AngII, Et-1, glucose and insulin. As shown in Fig 11, glucose and Et-1 dose 

dependently induce DAG production whereas AngII did not. When tested for ROS production, 

hyperforin 9 did not induce any ROS generation. This would be the first time we demonstrated 

that hyperforin 9 activated TRPC6 via DAG production but not via ROS (Fig 11). When tested for 

differential activation of TRPC6 by the systemic risk factors, we found that Ang II activated 

TRPC6 via ROS generation but not via DAG production. In our experimental system, glucose 

demonstrated activation of TRPC6 via DAG production in dose-dependent manner but did not 

induce any ROS, whereas insulin induced neither DAG nor ROS (Fig 3.10 and Fig 3.11).  

 

To confirm these findings in more complex system, we ran similar experiments in isolated rat 

glomeruli. Rat glomeruli were isolated as described in Methods and Materials. About 60-70 

glomeruli were plated in a 96-well plate and, following overnight incubation in the media, they 

were treated with different agents to induce ROS, and the fluorescent signal was captured via 

Cellomics. As shown in Fig 12, TBHP dose-dependently produced ROS which can be inhibited 
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by NAC. AngII dose-dependently induced ROS within 1hr, and the signal remained elevated for 

4hrs. Interestingly, THBP shown much higher level of ROS compare to AngII in one hour but the 

Figure 3.8. Hyperforin 9 induce transient intracellular diacylglycerol (DAG) in C11. Cells 
were plated overnight after infecting with baculoviral DAG construct. For testing carbachol 
the cells were also co-infected with muscarinic receptor M1. After overnight incubation cells 
were loaded in FLIPR chamber and treated with respective stimuli and the fluorescent signal 
was captured for 10 minutes. Baseline fluorescent signal was captured for 30s before the 
treatment. The traces show fluorescence changes following treatment with A. Carbachol and B. 
Hyperforin 9. 

 

signal came down in 4hr. Like in C11 clone, glucose did not induced ROS even with longer 

incubation (Fig 3.12 B). We could not explore DAG production in isolated glomeruli using our 

existing DAG sensor as it failed to generate any signal with repeated effort.  

3.3.5 Activation of TRPC6 caused depletion of cellular cAMP level 

We used a genetically encoded single-color cAMP bio-sensor cADDis, that has been validated 

previously [9] to evaluate the cellular cAMP level upon TRPC6 activation. To optimize the time, 
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TRPC6 overexpressed cells  (C11 clone) were treated with 50uM of forskolin and incubated for 5, 

10, 20 and 30 minutes. After incubation, cells were fixed with 4% paraformaldehyde and the 

Figure 3.9. N-acetyl cysteine (NAC) attenuates tetra butyl hydrogen peroxide (TBHP) 
induced ROS in C11. Cells were treated with different doses of A) TBHP alone or with B) 
NAC for 1hr. Cells were fixed with 4% paraformaldehyde and ROS was detected using CELL 
ROX dye and the fluorescence signal was captured using cellomics. Qualitative analysis 
showing the fold induction as calculated by normalizing with respective control well. Data 
presented are the mean±s.e.m. p value calculated by one way ANOVA (N=4). 

 

fluorescent signal was measured using Cellomic high throughput image analyzer. Forskolin 

showed a time-dependent increase in fluorescent signal that reached significance at 20 minutes, 

and the signal started to decrease at 30 minute (fig 3.13). To evaluate the effect of TRPC6 

activation on cAMP level, clone C11 was treated with two different doses of hyperforin 9 in the 

presence or absence of forskolin. As shown in the Fig 13,   forskolin significantly increased cAMP 

production in a dose-dependent manner. hyperforin9 caused reduction in the cAMP concentration. 

Hyperforin9 also significantly decreased cAMP in presence of forskolin (Fig 13). However, no 

obvious dose dependence was observed. Thus, it demonstrated that TRPC6-mediated increase in 

intracellular calcium resulted in the depletion of cellular cAMP (likely via activation of PDE1).  

3.4 Discussion 

In the previous chapter, we have identified TRPC6 as a likely source of calcium activating PDE1. 
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Figure 3.10. Differential response in DAG signal by diabetic risk factors in activation of 
TRPC6. Cells were plated overnight after infecting with baculoviral DAG construct. After 
overnight incubation cells were loaded in FLIPR chamber and treated with different doses of 
respective stimuli and the fluorescent signal was captured for 10 minutes. Baseline fluorescent 
signal was captured for 10s before the treatment. The traces show fluorescence changes 
following treatment with A. AngII and B. ET-1, C. Glucose and D. Insulin. 

 

 

Figure 3.11. Differential response of TRPC6 activators in generating ROS in C11. Cells 
were treated with various doses of different TRPC6 activators for 1hr. Cells were fixed with 4% 
paraformaldehyde and ROS was detected using CELL ROX dye and the fluorescence signal was 
captured using cellomics. Qualitative analysis showing the fold change in fluorescent by A) 
AngII and B) Hyperforin 9 or endothelin 1 as calculated by normalizing with respective control 
well. Data presented are the mean ± SEM. p value calculated by one way ANOVA (N=8). 
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Figure 3.12. ROS signal in isolated glomeruli as assessed by CEL ROX dye. Equal number 
of glomeruli were plated in 96well plate and incubated with different ROS producing agent for 
1hr. Following incubation and live Hoechst staining fluorescent signal was captured by 
Cellomics. Qualitative analysis showing the fold change in fluorescent signal as calculated by 
normalizing with respective control well following treatment with several doses of A) TBHP 
alone or with NAC,. B) Isolated glomeruli was treated with different ROS producing agents and 
incubated for 1 and 4hrs. Following incubation and live Hoechst staining fluorescent signal was 
captured by Cellomics. Qualitative analysis showing the fold change in fluorescent signal as 
calculated by normalizing with respective control Data presented are the mean ± s.e.m. p value 
calculated by one way ANOVA (N=8). 

 
Figure 3.13. Detection of cAMP using green upward cAMP sensor. A) C11 cells were 
infected with baculoviral construct containing cAMP biosensor. Following overnight 
incubation cells were treated with 50uM forskolin and fluorescent signal was captured after 5, 
10, 20 and 30 minutes incubation. B) C11 cells were incubated with forskolin or hyperforin9 or 
in combination with both.  Fluorescent signal was captured using Cellomics after fixing the cells 
with 4% paraformaldehyde. Data presented are the mean ± SEM. p value calculated by one way 
ANOVA (N=8). 
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In the present study, we investigated upstream mechanisms of TRPC6 activation. Specifically, 

using human embryonic kidney (HEK) cell expression model we investigated how/whether 

systemic risk factors of DKD interacted with TRPC6.  

 

We identified multiple clones over-expressing TRPC6 and selected one clone, C11, based on the 

change in membrane potential in response to several known TRPC6 activators. Using small 

molecule TRPC6 inhibitor, we demonstrated that this increase in membrane potential and 

corresponding calcium influx were TRPC6-specific. We also have demonstrated that several risk 

factors of DKD can increase intracellular calcium influx but differentially activate TRPC6. Finally, 

we have demonstrated that activation of TRPC6 leads to the depletion of intracellular cAMP.  

 

The role TRPC6 in chronic kidney disease has been of interest for many years since the discovery 

of gain-of-function mutation related to FSGS [68]. Using heterologous system and in vivo models, 

several reports have emphasized its role in regulating calcium influx and contribution in both 

cardiac hypertrophy and renal diseases [75, 171, 172]. Recent animal studies also demonstrated its 

involvement in the pathophysiology of DKD [77, 173, 174]. We also have reported in the previous 

chapter that TRPC6 expression is higher in the glomeruli of several form of CKDs including DKD 

in human. We also have demonstrated that activation of TRPC6 leads to renal cell apoptosis in 

PDE1 dependent manner. However, it is unclear what systemic risk factors activate TRPC6 and 

what are specific molecular mechanisms of TRPC6 activation. Here we set out to examine how 

these factors activate TRPC6 using biosensor technology in the cell-based systems. 

 

Multiple researchers have shown enhanced calcium influx and associated increase in current as 

demonstrated by patch clamp using heterologous expression of TRPC6 in various cell lines 

including HEK293 [153, 175, 176]. Traditional patch-clamp has been the standard method for 

monitoring the ion channel activity.  Several other techniques including radioligand binding , 

radio-active flux assay or optical recording are currently accepted methods for investigating the 

fucntion of ion channels [177]. Fluorescent readouts are widely used both to monitor intracellular 

ion concentration and to measure membrane potential [177-179]. The principal behind the 

membrane potential assay is that any ionic flux across the membrane will result in the change in 

membrane potential which causes the redistribution of the dye and thus changes in the fluorescence. 
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They also have demonstrated a good correlation with the traditional patch clamping [177]. Here 

we generated similar heterologous system and used membrane potential as surrogate to calcium 

influx. Several stable cell lines were selected based on the gene expression. When tested for 

functional readout, only one clone, C11, showed positive response in membrane potential assay. 

Using this clone, we tested TRPC6-related activities of several DKD risk factors. For obvious 

reason, comprehensive investigation of multiple risk factors was not practical. Therefore, we 

decided to focus on two main groups of molecules: representing hemodynamic risk factors 

(angiotensin II and endothelin 1) and representing metabolic risk factors (glucose and insulin). In 

each case, we asked if a given extracellular molecule affected membrane potential and, if yes, what 

intracellular signaling molecule(s) mediated this effect. The former was assessed by changes in 

membrane potential, while the latter focused on DAG and/or ROS production as the main 

mechanisms of TRPC6 activation. As a positive control, we demonstrated that ROS, associated 

with several TRPC activators, and OAG, a DAG analog, modulated membrane potential dose-

dependently in C11 corroborating published data [180]. 

 

Angiotensin II (AngII) has been shown to induce calcium influx in podocytes and in vascular 

smooth muscle cell of the small arteries and afferent arterioles [181]. It has also been shown that, 

at least in podocytes, AngII-mediated increase in calcium is TRPC6 dependent [170]. We also 

have demonstrated that AngII dose-dependently induced membrane depolarization in C11. Using 

a small molecule TRPC6 inhibitor and multiple known TRPC6 activators, we confirmed that both 

the calcium influx and membrane potential is indeed TRPC6 specific. Our data corroborated the 

fact that AngII, after binding to AT1R, a GPCR, activates TRPC6 by ROS generation[182]. 

 

Another mediator of hemodynamic stress, endothelin 1 (ET1), has been shown to increase calcium 

current and upregulate TRPC6 and induce hypertrophy in cardiomyocyte in calcineurin-NFAT 

dependent manner [183] but the mechanism of activation was not addressed. In our hands, ET-1 

dose-dependently increased calcium influx and activated TRPC6 via DAG production but did not 

induce any ROS production. Interestingly we found that AngII activates TRPC6 via ROS 

generation, which corroborates others findings [159]. Unlike ET-1 it did not induce DAG 

production. Although both binds to the similar class of GPCRs and exert similar physiological 

effect, vasoconstriction, through elevation of calcium, the interim signaling pathways might be 
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different. Another observation we found in this study is that the amplitude of calcium signal is 

much higher in ET-1 compare to AngII. Further studies are needed to elucidate the detailed 

mechanism.  

 

Among metabolic risk factors of DKD, plasma glucose and insulin are, arguably, playing the major 

role. While hyperglycemia is a broadly accepted cause od glucotoxicity, leading to the end-organ 

damage, insulin can play dual role as a factor reducing blood glucose levels thereby acting as a 

protective factor and, in the context of selective insulin resistance, also contributing to end-organ 

damage. Both have glucose and insulin been shown to activate TRPC6. Hhigh glucose has been 

shown to increases OAG-induced calcium current and upregulate TRPC6 in monocytes and 

platelets [80, 160]. We have found that glucose-induced, TRPC6-mediated increase in calcium 

influx is attributed to the DAG production but not ROS. This contradicts the data published by 

several authors that showed that glucose-mediated TRPC6 activation is ROS dependent [182]. 

This could be attributed to the use of two different cell types. Intracellular calcium influx did not 

change with insulin treatment nor it produces any DAG or ROS. Our data showed that although 

glucose and insulin are both risk factors for diabetic condition, glucose might be playing a role in 

TRPC6 mediated pathophysiology of DKD, while effects of insulin could be mediated by other 

mechanisms. 

 

Thus, we have elucidated certain aspects of upstream activation of TRPC6 in a context of 

metabolic disturbances. What is happening downstream? Once activated, TRPC6 activates 

multiple signaling pathways. Calcium flux leads to activation of protein phosphatase calcineurin. 

Calcineurin, in turn, activates a transcription factor NFAT that upregulates several disease related 

genes. In addition to that,  we identified PDE1 as another potential downstream effector  of TRPC6, 

thereby connecting two second messenger systems, calcium and cyclic nucleotides . Among all 

the phosphodiesterase, PDE1 is the only one that is activated by calcium/calmodulin.  Recently, 

Zhang et al showed that AngII mediated activation of PDE1 leads to the reduction of cAMP in 

cardiomyocyte and this requires TRPC3 [88]. We have shown in the previous chapter that TRPC6-

mediated apoptosis can be attenuated by blocking PDE1. Thus, we confirmed that in renal cells, 

TRPC6 is associated with the PDE1-mediated apoptosis. Here, we provided some mechanistic 

connection that the cell death is associated with the depletion of cAMP. We showed that hyperforin 
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9-mediated TRPC6 activation resulted in depletion of cAMP implying that increased intracellular 

calcium activates PDE1 leading to depletion of cAMP. We also demonstrated that in human 

mesangial cells all three isoforms of PDE1 are upregulated by hyperforin 9. 

 

Mechanisms of DKD are multifactorial. Elevated level of calcium, DAG and ROS are all thought 

to contribute to the pathogenesis of DKD. In our hands, glucose did not show any ROS generation, 

while other reports have shown it can induce ROS. We have demonstrated that glucose can activate 

TRPC6 by DAG production. Elevated levels of AngII and Et-1 in diabetic patients is known [72]. 

All these can contribute to the activation of TRPC6. Our studies for the first time connected the 

diabetic risk factors with activation of TRPC6. Our studies also have shown a crosstalk between 

two second messengers, calcium and cyclin nucleotides. Earlier we have shown pre-clinical 

evidence where inhibiting PDE1 exerted benefit in the animal mode of DKD. Here we provided 

mechanistic evidence of activation of PDE1 by the systemic risk factors that involves TRPC6. One 

of the limitations of this study is the lack of either pharmacological or genetic evidence of 

involvement of PDE1 in depletion of cAMP. Although we showed that hyperforin mediated 

increase in calcium is TRPC6 specific, but the depletion of cAMP could be due to potential non-

specific action of hyperforin. Further studies are required to show the specificity. The lack of 

reliable cGMP biosensor also precluded us from investigation of potential mechanistic link 

between TRPC6, PDE1, and cGMP. More research is needed to interrogate this pathway. However, 

available data still provide sufficient evidence of a crosstalk between TRPC6 and PDE1 and their 

potential role in pathogenesis of DKD. 
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 TRANSLATING ANIMAL TO HUMAN; USE OF 
COMPUTATIONAL BIOLOGY IN UNDERSTANDING DIABETIC 

KIDNEY DISEASE 

4.1 Introduction 

In our earlier chapters we described a novel role of PDE1 in a mouse model of DKD and 

demonstrated that systemic risk factors of diabetes activate PDE1 in TRPC6 dependent manner. 

However, without conducting a clinical trial it is hard to predict whether this finding will translate 

to humans. This chapter describes the use of computational biology which was applied to renal 

gene expression, and histopathological data as well as clinical biomarkers from the DKD patients, 

in order to evaluate the pre-clinical to clinical translation. 

 

DKD is the leading cause of chronic kidney disease and in the US its prevalence has progressively 

increased over the past few decades. Despite current treatment strategies for optimizing glycemic 

and blood pressure, DKD still contributes to almost one-half of all cases of end-stage renal disease 

and becoming a major medical burden in the United States. Development of new therapeutic 

interventions for DKD requires better understanding of the pathophysiology of the disease.  

The use of genome wide Genome-wide transcriptome analysis kidney expression arrays recently 

advanced our understanding of DKD and provided insights into disease pathogenesis, and 

identification of biomarkers for progression or treatment response. Woroniecka et al, described a 

comprehensive catalog of gene-expression changes in human diabetic kidney biopsy samples using 

micro-dissected glomeruli and tubule samples and identified some novel pathways as well as 

confirmed some known pathways [82].  Several studies have been published based on the gene 

expression analysis from the European Renal cDNA Bank, a large collection of renal biopsies 

comprising of  micro-dissected glomeruli and tubule segments from CKD patients They identified 

Janus kinase1/2/signal transduced and activator of transcription (STAT), nuclear factor NFB and 

Wnt/b catenin as major pathways altered in DKD [184-187]. But identification of a consensus sets 

of gene in multiple dataset is still lacking. 
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Deciphering the pathogenesis of DKD is not straightforward and has multiple challenges. The 

complexity stems from the interaction of hyperglycemia, hypertension and renal hemodynamics 

and later through the involvement of proinflammatory factors and immune cell infiltration, makes 

it difficult to identify a single causative mechanism [188] . Second, the complex architecture and 

heterogenous cell populations of the kidney poses another challenge. The functional unit of the 

kidney, called the nephron, has a highly ordered structure, consisting of several specialized cell 

types. The important major components of the nephron are the glomeruli, which is functional 

barrier and the proximal and distal tubules that absorbs or excretes solutes. Specialized cells along 

the nephron include endothelium, mesangial cells, podocytes, and epithelial cells should be 

accompanied by corresponding regional variation in gene expression patterns [189]. In that context 

the gene expression analysis of the whole kidney often misinforms the role of specific cell types 

in the disease process. Third, DKD is clinically diagnosed by albuminuria but often the patients 

don’t progress to ESRD which makes it challenging to associate the molecular changes to the 

disease progression. Moreover, the confirmatory diagnosis of DKD is still based on histopathology 

assessment which, most of the time, is not available thus making correlation of the clinical 

phenotype to renal structural changes difficult. Renal transcriptomic analysis of DKD patients 

sometimes does not provide relevant information as the alteration in a gene expression does not 

necessarily lead to proportionate changes in protein production.. To overcome some of these issues, 

the kidney molecular signature linked to histopathology constitutes a systems biology approach 

which is becoming the mainstream to understand the pathophysiology of DKD. For example, using 

cortical interstitial fractional volume (VvInt), an index of tubule-interstitial damage and 

compartment-specific gene expression profiling from CKD patients, Nair et al demonstrated the 

early molecular signature can be linked to long-term disease progression [76]. In a separate study 

Beckerman et al., identified key driver modules from kidney expression data which correlated with 

renal structural changes rather than functional GFR [77]. These data demonstrate that relating 

transcriptomic data with histological features, provides better understanding of DKD progression 

rather than relying on molecular data alone. 

 

Finally, a severe limitation in finding a therapeutic intervention is the lack of animal models that 

accurately recapitulate human disease. Animal models often fail to reflect the diversity of the DKD 

population but also there is often a mismatch between endpoints measured in animals versus 
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humans. For example, any drug discovery process to evaluate an anti-fibrotic drug relies on the 

multiple histological, histochemical and biochemical parameters in animals whereas in clinic the 

more restrictive end points would be mortality, glomerular filtration or proteinuria. Also, most 

animal models demonstrate changes of early diabetic glomerulopathy, but they fail to capture later 

structural changes, including glomerulosclerosis, advanced tubulointerstitial fibrosis caused by 

chronic diabetes, and eventually renal function decline. These types of cross-species differences 

form barriers to translational research that ultimately hinder the success of clinical trials. Therefore, 

there is an urgent need to develop methodologies for reducing the gap between cross-species 

translational research. 

 

We have used three publicly available gene expression datasets from DKD patients to find a 

consensus set of causal genes. The canonical pathway, disease and function analysis revealed the 

association of an inflammatory and immune response signature with DKD. Furthermore, we have 

analyzed the correlation coefficient density of the set of genes with individual clinical and 

histopathological features of DKD patients and used that data to develop a model for assessment 

of translatability of animal data to humans and provided two examples of this approach.  

4.2 Methods and materials 

4.2.1 Gene expression omnibus datasets.  

The Gene Expression Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/gds) hosted by the National 

Center of Biotechnology Information contains high-throughput gene expression datasets deposited 

by many authors. We selected potential GEO datasets according to the following inclusion criteria: 

1) specimens had histological diagnosis; 2) micro-dissected human kidney tissues with clinically 

diagnosed diabetic kidney disease. 3) normal kidney tissues used as controls; 4) expression 

profiling by array OR RNA seq and raw data had the CEL format. Finally, 4 GEO datasets, 

GSE30528, GSE30529, GSE104954 and GSE50892 were included in our study. The gene 

expression data based from animal models was generated at Eli Lilly and Company disclosed in a 

previous publication [97]. All the data set that passed the initial QC inspection were imported and 

processed further by GeneSpring GX software, version 12.6 (Agilent Technologies). An R 
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language based function RMA () function available in Affy package was used to summarize raw 

expression levels. DEGs were identified with classical t test, statistically significant DEGs were 

defined with p < 0.05 and [log FC] > 1 as the cut-off criterion. 

4.2.2 Gene Ontology and Pathway Enrichment Analysis 

Candidate DEGs functions and pathways enrichment were analyzed using multiple online and 

commercial software like Ingenuity pathway analysis (IPA) and Protein Analysis Through 

Evolutionary Relationships (PANTHER). Bonferroni corrected p values of < 0.05 were considered 

significant.  

4.2.3 Statistical Analysis Software 

Except where noted above, all statistical analyses were performed in R version 3.5.1. All the DEG 

analysis and correlation density analysis were used R packages from the biocondutor.org site. The 

following R code was used to create the correlation density between gene and histopathological 

score or clinical parameters. 

# loading lib 

library(aroma.light) 

# set working dir 

setwd('C:\\Projects\\DN\\Cell_Types') 

# read in corr matrix from the dir 

d = read.table("Susztak_RNA-vs-histopath_Corr.txt", header=1, sep='\t', row.names=1) 

corr_type = 'Pearson_' 

dcor = d[, grep(corr_type, names(d))] 

dim(dcor) 

names(dcor) 

# read in genesets mapping 

genesets = read.table("Genesets_Mapping.txt", header=1, sep='\t') 

table(sort(genesets$Group)) 

cells = table(sort(genesets$Group)) 

cellnames = names(cells) 
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traits = sub('Pearson_', '', names(dcor)) 

# running parameters 

K = median(as.vector(cells)) 

N=200 

for (j in 1:length(traits)) { 

 windows() 

 #nf <- layout(matrix(c(1:6), 2, 3, byrow = TRUE), respect = TRUE)  

  

 if (j==1||j==2||j==5||j==6||j==18||j==4) { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 5)) 

 } else if (j==14||j==9||j==7||j==3||j==17) { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 4)) 

 } else if (j==8||j==11||j==13||j==15||j==25||j==24||j==23) { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 3)) 

 } else { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 2)) }  

 # "DKD2000","Renin+lisinopril","renin+PDE1i","Renin+Ucn2-16h","Renin+Ucn2-

1wk","reninAAV","Spp1_interactome" 

 cell.col = c('red','darkviolet','hotpink','aquamarine2','green', 'cyan','blue')  

  cat("Median geneset size=", median(cells), '\n') 

  ## simulating 100 times with min geneset_size 

 for (k in 1:N) { 

  plotDensity(dcor[sample(row.names(dcor), K), j], add=T, col='gainsboro') } 

 for (i in 1:length(cells)) { 

  x=names(cells[i]) 

  y=toupper(as.vector(genesets[genesets$Group==cellnames[i], 'Gene'])) 
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    plotDensity(dcor[y, j], add=T, col=cell.col[i], lwd=3, ylab='density', 

xlab=paste('Pearson correlations w/ ', traits[j], sep='')) } 

  

 if (j==1||j==2||j==5||j==6||j==18||j==4) { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 5), add=T) 

 } else if (j==14||j==9||j==7||j==3||j==17) { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 4), add=T) 

 } else if (j==8||j==11||j==13||j==15||j==25||j==24||j==23) { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 3), add=T) 

 } else { 

  plotDensity(dcor[, j], col='black', lwd=3, ylab='density', xlab=paste('Pearson 

correlations w/ ', traits[j], sep=''), ylim=c(0, 2), add=T) 

 }  

 

 legend("topleft", title='legend', c("all gene", cellnames), lwd=4, col=c('black', cell.col)) 

} 

4.3 Results 

4.3.1 Identification of common genes modulated in DKD patients 

To identify a list of genes that are modulated in DKD patients we compared the expression profile 

using several public databases. European Renal cDNA Bank (ERCB) cohort with accession 

number GSE104954, had tubulointerstitial RNA-seq data from subjects with chronic kidney 

disease and from living donor biopsies. The dataset includes a broad range of CKD patients 

including DKD patients (N=12) and living donors. In all datasets the number of DEG was 

evaluated by filtering data using a false discovery rate (FDR) of >0.05, fold induction >1.5 and 

with a p value of <0.05. We found about 5564 tubular genes are differentially expressed in the 
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DKD patient in ERCB cohort when compared to the living donors.  GSE50892 contained 

expression data from kidney biopsies of liver disease patients where the DEG was analyzed from 

9 control and 8 CKD patients and a total of 4762 DEGs were found. GSE30529 dataset provided 

expression data of micro-dissected tubules from 12 control and 10 DKD patients and GSE30528 

included RNA-seq data from glomeruli samples of 13 control and 9 DKD patients. We have found 

3401 glomerular genes and 2996 tubular genes that are differentially expressed in DKD patients 

compare to controls. To increase the likelihood of identifying genes that are modulated in DKD, 

we performed concordance analysis which is defined by the percentage of DEGs shared by the 

two platforms with agreement in the direction of fold change. As shown in the Venn diagram in 

figure 2, 5564 genes detected in the tubule data of the  ERCB cohort, 1129 overlapped with genes 

identified in the GSE30528 dataset. Only those genes showing the same direction of regulation 

whether up-regulated or down-regulated in both datasets, were further selected. This resulted in a 

set of 1081 (96%) genes with concordant expression out of 1129 total probes (Fig. 1). Similarly, 

comparingGSE30528 and GSE30529 we found 853 genes that are common in the two databases 

and 609 of them moved in same direction. Finally GSE104954 was compared to the GSE0892 

dataset and 1513 genes overlapped with a concordance of 83% (1262 genes). To compile a set of 

consensuses DEGs all the concordant genes among the three datasets were listed that resulted in 

2040 genes identified, which would be referred as DKD2000 in the subsequent analysis. The 

intersection of these concordant genes showed that there are 207 genes common in all three 

concordant gene lists (Fig 4.1).  

4.3.2 Gene Ontology analysis of DKD2000 genes 

We used Ingenuity Pathway Analysis (IPA) to conduct a comprehensive analysis and identify the 

most significantly enriched molecular functions and discover any potential novel regulatory 

networks associated with our list of genes that are differentially regulated in DKD patients using 

a criterion of Benjamini-corrected p-value of less than 0.05.  The top 10 canonical pathways based 

on the significance of the enrichment are shown in (Fig 4.2). Canonical pathways related to 

immune response was one of the most prevalent., specifically, iCOSL signaling in T helper cells 

with 27 molecules identified with a ratio of 0.407. About 63 molecules were found to be associated 
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with neuroinflammation signaling pathways with positive z score and a ratio of 0.22. Several of 

the genes pertained to the macrophage, fibroblast and endothelial cells in rheumatoid arthritis.  

 
Figure 4.1. Identification of 2040 (DKD2000) commonly changed DEGs from the four 
cohort profile data sets (GSE30528, GSE30529, GSE104954 and GSE50892). Different 
datasets were represented using different color scheme. The cross areas meant the commonly 
changed DEGs. Statistically significant DEGs were defined with p<0.05 and [logFC]>1.5 as the 
cut-off criterion and DEGs were identified with classical t-test.  
 

 Many genes were linked to the atherosclerotic signaling pathway with apparent to activity pattern 

but a ratio of 0.343. Some other pathways that are relevant to kidney diseases were the Endothelin-

1 pathway, JAK1/JAK2/TYK2 pathway and the NFAT signaling pathway. The knowledge-based 

search for associations with disease and function revealed the association of the DKD2000 genes 

with cancer, immunological disease, metabolic disease, inflammatory disease, inflammatory 

response and cardiovascular disease (Fig 4.3). Further analysis for functional annotation in 
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immunological disease category revealed that the majority of the genes modulated belonged to the 

systemic autoimmune syndrome which are the diseases characterized by dysregulation of immune 

 

Figure 4.2. Ingenuity Pathway Analysis (IPA) top 10 canonical pathways for DKD 2000 
DEG list. (p < 0.001). The canonical pathways identified that are most statistically significant 
are listed according to their p value (−log; orange line). Blue bars represent negative z-score; 
orange bars represent positive z-score; gray bars represent no activity pattern available. The ratio 
of the number of differentially expressed genes found in each pathway over the total number of 
genes in that pathway were represented by the orange squares. 

 

system. Although IPA analysis did not list metabolic dysregulation as one of the top disease 

functions a sub-analysis revealed several genes related to glucose metabolism disorder and 

involved in diabetic complications including DKD (Fig 4.3). A large number of genes were linked 

with the connective tissue disorder disease category and a sub-analysis revealed genes for 

rheumatoid arthritis or general arthritis are all significantly increased (Figure 4.3).  We also 
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subjected the DKD2000 gene list to Protein Analysis Through Evolutionary Relationships 

(PANTHER) which revealed a significant number of genes associated with stress response and 

immune system process (Table 2). The molecular and cellular function analysis indicated 

numerous differentially expressed genes are involved in the cell movement, cell death and survival 

and cellular morphology. 

Figure 4.3. Significantly enriched A) disease and B) function pathway analysis of the DKD 
2000 genes. 

4.3.3 Correlations between clinical phenotype and expression data in diabetic nephropathy 

To evaluate the shared contribution of differentially expressed genes towards the disease 

phenotype, we estimated the Pearson’s correlation coefficient between each gene in DKD2000 list 

and the 25 different clinical and histopathological features reported in the DKD patients (N=146 

data set as described in the methods and materials). A total of 17,000 genes were reported to be 
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present in kidney in that dataset and we measured the Pearson correlation coefficient between 

individual genes and each of the 25 different clinical and histopathological features of DKD 

patients (Fig 4.4). The correlation density curve showed a trend to zero meaning the neutral effect 

 

 

Figure 4.4. Schematic representation of the correlation density analysis of the DKD 2000 
genes. The expression of all 17K genes reported in the kidney correlations with histopathology 
data across patients. Grey lines represented bootstrapping samples (500x) in order to establish 
significant boundaries.  

 

of the genes on each of the clinical and histopathological traits.  However, when similar analysis 

was done for the DKD2000 genes, the curve shifted towards left indicating a number of genes with 
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negative correlation with eGFR whereas it showed positive shift with serum creatinine and BUN 

(Fig 4.5). Comparatively less shift was observed with serum glucose and blood pressure indicating 

a weak correlation of the DKD2000 genes with these parameters. Similar analysis was done with 

the histopathological scores of the DKD patients. Positive correlations were observed with 

Figure 4.5. Density histograms of Pearson correlation coefficient between gene expression 
signature and clinical parameters of the DKD patients. Pearson correlation coefficient was 
measured for each of the DKD2000 genes against the clinical parameters and density histogram 
was created using R script. The black line showing normal human genes and the red line showing 
DKD2000 genes. Density correlation analysis of gene set and A) GFR, B) Serum creatinine, C) 
serum glucose D) diastole and E) serum BUN. 

 

interstitial fibrosis, mesangial matrix formation, pericapsular fibrosis, arteriolar hyalinosis (Figure 

4.6). The correlation analysis showed some genes were associated with renal Kimmel Wilson 

nodules, that is the pathology hallmark of DKD. Interestingly several genes were correlated with 
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a reduced number of glomeruli. Thus, the DKD2000 genes showed good correlations with the 

several clinical and histopathological traits in DKD patients. 

 

Figure 4.6. Density histograms of Pearson correlation coefficient between gene expression 
signature and histological parameters of the DKD patients. Pearson correlation coefficient 
was measured for each of the DKD2000 genes against the A) interstitial fibrosis, B) mesangial 
matrix, C) pericapsular fibrosis, D) KW Nodules, E) glomerular number and F) mesangial 
cellularity as reported in the clinical diagnosis of DKD patients. 

4.3.4 Translatability assessment of animals to human DKD 

Earlier we demonstrated that PDE1 inhibition resulted in renal protection in an animal model of 

DKD. To evaluate the translatability of this finding to humans we conducted a similar approach 

of associating transcriptomic data to human phenotype data. To build the model we first analyzed 

the microarray data as reported in the dbdb AAV renin DKD model [190]. We identified 800 genes 

that are differentially expressed using the same criteria as before (Fig 4.7). We also found that 300 

genes were differentially expressed in the Lisinopril treated group compare to the vehicle group. 
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We identified the human orthologs of all the DEGs in both groups using the Ensembl database. 

Pearson correlation coefficient was calculated between each of the gene and 25 of the clinical and 

histopathological features of the DKD patients. As shown in figure 7 the cyan line showed that the 

density plot of the DEGs in dbdb AAV renin model shifted left like the DKD2000 genes the eGFR. 

Similarly, when correlation coefficient was calculated for some of the other clinical parameters 

like serum creatinine and BUN the correlation density plot mimicked human DKD2000 density 

plot and the lisinopril treated group demonstrated reversing those phenotype (Fig 4.7).  We 

also measured the correlation of each of the genes in AAV renin animals with the histopathological 

traits of the DKD patients to further evaluate the relationship of the molecular signature to the 

clinical histopathology. We found the density curve for AAV renin model mimicked the DKD2000 

profile for several histopathological traits of DKD. A positive correlation coefficient of greater 

than 0.5 was found for arteriolar hyalinosis, interstitial fibrosis, pericapsular fibrosis and global 

sclerosis (Fig 4.8). The DEG analysis of the microarray of PDE1 treated mice found about 836 

genes that were modulated. After deriving the human orthologs we did the same correlation 

analysis and found that PDE1 treated animals demonstrated similar shift towards to the ‘zero’ as 

seen in the normal human (Fig 6 ) for GFR, mesangial matrix and interstitial fibrosis (Fig 4.9).  

4.4 Discussion 

 By using computational biology, we identified a consensus group of DEGs that are 

common in  two other sets of DKD gene expression data and  we further confirmed the anatomical 

location of the genes using a whole kidney data set. We used IPA software suit to analyze the 

canonical ,disease and functional pathways to show that the molecular signature is predominantly 

associated with inflammation and the immune response. In the second stage we measured the 

correlation coefficient density of the consensus gene set to the 25 different histopathological 

features and some clinical parameters of DKD. Our data showed that these genes collectively 

shifted the curve that was otherwise would have remained neutral stage in normal human. We used 

two in vivo preclinical gene expression data sets and identified the human homologs. It was 

demonstrated that the gene expression changes occurring in a mouse DKD model recapitulated 

those of human DKD and standard ACE inhibitor therapy (lisinopril) or a novel PDE1 inhibitor 

shifted the Pearson’s correlation curve back to normal.  
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Figure 4.7. Model for cross species translation based on the correlation density analysis.  
A) Schematic of the model. Human orthologs of 800 mouse DEGs from AAV renin animal 
and 300 DEGs in lisinopril treated animals were derived from ensemble.org and correlation 
density as analyzed with the clinical parameters of DKD patients following the same method. 
The resulting density histogram showed the curve shifted left for B) GFR, but to the right for 
C) serum creatinine and D) serum BUN in disease state but shifted to towards to normal with 
lisinopril treatment. The black line represents normal human, ‘red’ line for DKD2000, ‘blue’ 
for renin AAV mice and ‘cyan’ for the lisinopril treated AAV renin animals. 

 
DKD is emerging as a major public health burden in the US, as 1 in 4 patients with type 2 

diabetes will develop nephropathy. Thus, the development of new therapies to treat the 

progression of DKD is a major unmet need. During the past few years, utilizing gene 
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expression profiling from renal biopsies  of diabetic  patients from has resulted in the 

identification of new therapeutic targets that enable the discovery of new drugs. In our present 

study we imported data from three publicly available GEO datasets and extract gene  

Figure 4.8. Density histograms of Pearson correlation coefficient between gene 
expression and histopathological parameters. Human orthologs of 800 mouse DEGs from 
AAV renin animal and 300 DEGs in lisinopril treated animals were derived from 
ensemble.org and correlation density as analyzed with the A)Arterial hyalinosis, B) Interstitial 
fibrosis, C) Pericapsular fibrosis, D) Global sclerosis, E) glomeruli number of DKD patients 
following the same method. The black line represents normal human, ‘red’ line for DKD2000, 
‘blue’ for renin AAV mice and ‘cyan’ for the lisinopril treated AAV renin animals. 
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Figure 4.9. Density histograms of Pearson correlation coefficient between gene expression 
and histopathological parameters. Human orthologs of 800 mouse DEGs from AAV renin 
animal and 300 DEGs in lisinopril treated animals were derived from ensemble.org and 
correlation density as analyzed with the histopathological parameters of DKD patients following 
the same method. The black line represents normal human, ‘red’ line for DKD2000, ‘green’ for 
renin AAV mice and ‘blue’ for the lisinopril treated AAV renin animals and ‘pink’ for PDE1 
treated animals. 

 

expression dataset of DKD patients in order to compare the DEGs to the living donor samples. 

The kidney is has heterogenous structure and to identify compartment specific genes, we used gene 
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expression data from the micro dissected samples of the glomeruli and tubule. We found 

expression of some of the well-known glomerular genes were downregulated in our common gene 

list. For example, NPHS1 is downregulated by 7.3 fold and NPHS2 by almost 3 fold. NPHS1 gene 

code is for nephrin, a podocyte transmembrane protein that functions both as a structural and 

signaling protein and the loss of nephrin is a sensitive marker of podocyte injury. It has been 

reported that in DKD patients nephrin mRNA and protein is downregulated [191]. NPHS2 codes 

for podocin which is located onthe cell surface in the area between two podocytes called the slit 

diaphragm. In a cross functional study of a few DKD patients found that both podocin and nephrin 

protein expression are downregulated in the kidney biopsies [192]. Moreover in a separate study 

urinary podocin level was higher in DKD patients with very low GFR [193]. Some other podocyte 

specific genes like WT1, SLIT2 and PODXL [189] were also found to be down regulated, overall 

indicating poor health of the podocytes in DKD. Several known tubular specific genes like 

SLC4A1, MME2, HNF1B and FBPI also were differentially expressed in the DKD patients [189].  

Canonical pathway analysis indicated that the consensus genes in DKD2000 list mostly involved 

in the inflammation and immune response. We found the top five canonical pathways are 

associated with helper T cell, macrophage and dendritic cell biology.  The top pathway based on 

the p value is  iCOS/iCOSL signaling pathway, that involves  inducible co-stimulatory molecule 

(ICOS) and ICOS ligand (ICOSL) which is critical in T cell activation and survival, particularly 

in T cell dependent humoral immunity [194].   Helper T cells are activated when exposed to 

antigens presented by such as dendritic cells, B cells, and macrophages which in turn orchestrates 

the adaptive immune response. Several studies have provided evidence that both Th1 and Th2 

responses requires ICOS to preferentially stimulates the production of Th2 cytokines IL-4 and IL-

10 [195]. In lupus nephritis both early and late blockade of ICOSL improved clinical signs [194]. 

Traditionally DKD is not considered “immune-mediated” form of kidney disease but recent data 

from both gene expression and experimental studies supports involvement of many immune 

system components during DKD progression. In an animal model of DKD, it has been 

demonstrated that the initial infiltration of T helper cells facilitates the later wave of macrophages 

and cytotoxic T cell, thereby suggesting a Th1-driven response [196]. We found a number of genes 

are linked to the signaling pathway of macrophages, fibroblast and endothelial cells in Rheumatoid 

arthritis. Baricitinib, a selective JAK1/2 inhibitor, demonstrated significant efficacy in the 

treatment of rheumatoid arthritis. In a phase 2 trial of DKD patients, this drug has demonstrated 
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significant reduction of albuminuria along with reduction of several inflammatory biomarkers in 

the plasma and urine. This supports our findings that the signaling pathway in rheumatoid arthritis 

plays a role in the pathophysiology of DKD. Our subsequent disease and function analysis along 

with upstream pathway analysis further support that the inflammation pathway is dominant in 

DKD. We found that injury and tissue abnormalities, and inflammatory response are among the 

top 10 disease categories and the major upstream regulators were INF- and TNF. 

Analysis of transcriptional changes helps to understand disease progression, but a critical 

limitation is it cannot establish a causal relationship between the altered expression of genes and 

pathophysiological responses [197]. In an order to evaluate the functional significance of these 

DEG, an unbiased measurement of the association between the clinical and histopathological 

features of the clinically diagnosed DKD patients was undertaken. Our correlation density analysis 

with the clinical parameters demonstrated that the gene sets collectively shifted the Pearson’s 

correlation curve left indicating a negative effect on eGFR. Some of the genes that showed strong 

correlation with eGFR included WFDC2, PAPPA2, ADAM28 and RGS10 and they were 

previously associated with kidney disease. WFDC2 encodes a protein with a highly conserved 

whey acidic protein domain (WAP) – which is a known biomarker for ovarian carcinoma. and the 

WFDC2 protein was identified in tumor tissue, urine and serum. In a mouse model of acute kidney 

fibrosis, it has been shown that WFDC2 expression is high and correlated with tubulointerstitial 

fibrosis. High expression of WFDC2 has been reported in kidney biopsies of CKD patients [198]. 

We report for the first time reported its negative association with eGFR and also show a strong 

correlation with interstitial fibrosis in DKD patients. Similarly, macrophage gene MSR1 codes for 

a multifunctional scavenger receptor. Genetic deletion of MSR1 has been shown to be protective 

in streptozotocin induced mouse DKD by inhibiting the macrophage migration into the  kidney 

[199]. Our analysis demonstrated MSR1  had a strong negative correlation with eGFR and positive 

correlation with interstitial fibrosis. In addition, we found both LCN2 and Sox9, two well-known 

markers for tubular injury strongly correlated with interstitial fibrosis. This type of corroborating 

evidence validates our method. Correlation analysis between structural features derived from 

whole slide images of tissue samples and gene expression data  has been used to identify many 

biological pathways that are strongly associated with cancer [200, 201]. Our initial analysis also 

found some new as well as some known genes that strongly correlated with the DKD phenotype. 
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Using our gene expression to phenotype correlation model, we showed that the gene expression 

signature well correlated with some of the hallmark features of the DKD such as eGFR, interstitial 

fibrosis or mesangial matrix.  Cancer gene signatures have been used to predict radiation response 

[201]. Similarly,  mouse CKD studies have shown a unique molecular signature  that recapitulates 

pathophysiological mechanisms of  CKD and human orthologs of the mouse genes can be used to 

predict eGFR in humans at various stages of CKD [202]. We tried similar approach to predict the 

translatability of our PDE1 animal study to human DKD. We first validated our approach using 

gene expression database from untreated and lisinopril treated AAV renin overexpressed dbdb 

uninephrectomized mice [190]. DEG analysis of the microarray data showed 800 genes modulated 

in this disease model. When we analyze the data in our unbiased statistical model it demonstrated 

a similar pattern in the correlation density analysis as seen with human DEGs. For instance, the 

mouse molecular pattern showed a strong negative correlation with eGFR and positive correlation 

with interstitial fibrosis, mesangial matrix and some other features of human DKD histopathology. 

The lisinopril treated mice gene expression data shifted the curve more to the neutral position as 

seen in the normal humans. The dbdb AAV-renin model has been shown to have many 

physiological features of advanced human DKD like robust proteinuria, reduced GFR, and 

increased serum creatinine and lisinopril has been shown to be beneficial in this model [97, 190]. 

Moreover, lisinopril and related drugs are widely used as standard of care in the clinic for DKD 

patients. This analysis provides some validation of our model for translatability of mouse  to human. 

Importantly, the DEGS from the PDE1 treated dbdb renin AAV DKD model  similarly shifted of 

the disease molecular signature towards normal human, thus suggesting higher potential of  renal 

protection translating to human DKD.  

There are some limitations of this study. We have combined both microarray and RNA-seq data 

sets to do our analysis which might have resulted in loss of a few genes. RNA-Seq and microarray 

are the most commonly used high-throughput technologies for transcriptome profiling, each with 

their own inherent strengths and limitations. However Chen et al. reported that for most transcripts 

within the same tissue, the results obtained by RNAseq and microarrays were highly reproducible 

[203].  The other potential limitation is that we did not demonstrate the statistical significance of 

the relationship for our correlation density measurement. enough statistical power to demonstrate 

the confidence of the correlation density data. The patient cohort used in this study did not have 

large number of samples. Moreover, there was no simulation run with the correlation coefficient 
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to determine the significance of this relationship. More study is needed to determine the 

significance of this finding. At this stage our efforts should be deemed exploratory and require 

further refinement.  

 In summary we have found a consensus set of renal DEGS in multiple DKD patient cohorts 

and demonstrated that the expression signature is associated with inflammation and immune 

response. We also developed a molecular phenotype model to show that the renal gene expression 

signature strongly correlated with the histopathological and clinical features of DKD patients. The 

trend to normal human gene expression in in lisinopril treated DKD mice, suggested that this model 

has the potential to predict the progression of human kidney disease and thus estimate the likely  

the outcome for novel therapeutics.  
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 GENERAL CONCLUSION 

By 2035 it has been estimated that the number of diabetic patients worldwide will reach about 593 

million and with a ¼ of them progressing to the end stage renal disease and it is conceivable that 

a major medical and economic burden of DKD will occur in the future. In clinic, the treatment of 

diabetic kidney disease (DKD) is still mainly based on control of hyperglycemia and blood 

pressure, as there is no other validated and novel therapies able to halt the progression of renal 

failure. Several clinical trials controlling both blood pressure and/or or hyperglycemia already 

established modest renal protection, however these approaches are not enough to stop the 

progression of DKD. The role of intensive glycemic control in treating DKD is controversial. Two 

large observational trials, Diabetes Control and Complications Trial (DCCT) in T1DM and the 

United Kingdom Prospective Diabetes Study (UKPDS) could not provide a clear-cut HbA1c 

threshold in T2D patients, only further confirming that there is a strong relationship between 

glucose control and the risk of the development of diabetic microvascular complications. A more 

sophisticated designed trial called ADVANCE, included patients with a high HbA1C levels, but it 

also demonstrated no significant relationship between renal protection in T2D patients with 

Hb1AC levels of 6.5% [204]. Moreover, the imprecision of HbA1C measurements and undesirable 

pharmacokinetics of some recent promising antidiabetic drugs, makes their use in glycemic 

management in patients with DKD complicated. Despite the success with an SGLT2 inhibitor in 

slowing DKD, thetrial indicates the limitations their use  in renal impaired patients due to 

hypovolemia, ketoacidosis and hyperkalemia as issued by the FDA [205]. 

 

The mechanisms responsible for the development and progression of DKD remain incompletely 

understood. In the past several years there has been tremendous advancement in understanding 

several downstream signaling pathways that are triggered by the interplay of hemodynamic and 

metabolic factors of T2D. Chronic hemodynamic and metabolic changes as a result of prolonged 

exposure to systemic risk factors like high glucose or overactive RAAS can modulate various 

intracellular signaling pathways, transcription factors, cytokines, or growth factors that can 

ultimately promote structural abnormalities in the kidney, such as basement membrane thickening, 
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podocyte injury, and mesangial matrix expansion, glomerular sclerosis and tubulointerstitial 

fibrosis all of which associate with declining GFR [2, 10]. Despite some understanding of these 

signaling pathways causing DKD, it is less clear how risk factors activate of intracellular signaling 

pathways.  

 

This thesis attempts to establish this connection. We provided a synopsis of how external stimuli 

activate cell surface receptors, generating secondary signals inside the cell to alter TRPC calcium 

channel function, calcium sensitive PDE1 and the downstream cyclic nucleotides that affect the 

progression of DKD. In our first chapter we used a potent and selective PDE1 inhibitor to address 

its hemodynamic properties and its potential to protect diabetic nephropathy. The vasodilatory 

properties of PDE1 inhibition has been featured in many publications but its effect on systemic 

hemodynamics has not been reported until very recently [50-52, 55, 101, 103]. Using a potent pan 

PDE1 inhibitor we have demonstrated vasodilation in vivo by adopting a novel technique using 

elevated ear temperature as surrogate marker for peripheral vasodilation which resulted in 

lowering of blood pressure in both normotensive and hypertensive rats. This prompted us to 

investigate PDE1 inhibitor’s role in the context of renal disease as anti-hypertensive drugs have 

shown to be reno-protective. Moreover, PDE1 is highly expressed in both glomeruli and tubule 

[58] and preservation of cyclic nucleotide has been found beneficial for kidney [23, 43, 93], 

suggestion a direct renal protective role as well Indeed, we demonstrated for the first time that 

PDE1 inhibition leads to the renal benefit using a rodent model of DKD as evident by lowering of 

ACR, serum creatinine and several urinary biomarkers of kidney injury. The histopathological 

improvements due to PDE1 inhibition were associated with and likely driven by inhibition of 

inflammation and fibrosis pathways. Using gene expression analysis of CKD patients, we 

identified TRPC6 as major calcium channel that is upregulated in the glomeruli and, using human 

primary mesangial cell and rat isolated glomeruli, we have shown that induction of TRPC6 activity 

leads to apoptosis in PDE1 dependent manner. In next section we asked the question of how 

TRPC6 gets activated in the diabetic environment, that is to focus on the upstream signaling 

pathway.  

 

In the second chapter we have elucidated certain aspects of upstream activation of TRPC6 in a 

context of metabolic disturbances. Elevated level of calcium, DAG and ROS are all thought to 
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contribute to the pathogenesis of DKD. Elevated levels of angiotensin II and ET-1 in diabetic 

patients is known [[206]63]. Both can contribute to the activation of TRPC6. Our studies for the 

first time connected the diabetic risk factors with activation of TRPC6 and demonstrated a 

crosstalk between two second messengers, calcium and cyclic nucleotides. In connection to our 

earlier pre-clinical finding of renal benefit upon PDE1 inhibition, here we provided mechanistic 

evidence of activation of PDE1 by the systemic risk factors that involves TRPC6. One of the 

limitations of this study is the lack of either pharmacological or genetic evidence of involvement 

of PDE1 in the depletion of cAMP. Although we showed that hyperforin mediated increase in 

calcium is TRPC6 specific, the depletion of cAMP could be due to non-specific action of 

hyperforin. Further studies are required to show the specificity of hyperforin 9 with selective 

inhibitors of TRPC6. The lack of reliable cGMP biosensor also precluded us from investigation of 

potential mechanistic link between TRPC6, PDE1, and cGMP. More research is needed to 

interrogate this pathway. However, our data still provide sufficient evidence of a crosstalk between 

TRPC6 and PDE1 and their potential role in pathogenesis of DKD. 

 

In this context of pathophysiology of DKD it is not surprising to see that the successful drugs in 

DKD are those that interfere with inflammation, fibrosis and hemodynamic pathways. Both 

canagliflozin (SGLT2 inhibitor) and atrasentan (ETA receptor antagonist) demonstrated their 

renoprotective effects in large clinical trials that were associated with  lowering of systolic and 

diastolic blood pressures [13, 90]. Moreover, ET-1 has been linked with renal inflammation and 

ETA receptor blocker showed reduction of proteinuria by reducing inflammation. In this regard 

PDE1 inhibition seems to be an ideal candidate to treat DKD as it demonstrated its vasodilatory 

and anti-inflammatory and anti-apoptotic features in a pre-clinical model of DKD. The dbdb renin 

AAV model of diabetic nephropathy has been shown to demonstrate several human DKD features 

[97, 190], however translation of these results to human DKD remains to be determined. To tackle 

this translation problem, we utilized computational biology, analyzed gene expression data of 

DKD patients and correlated it with clinical parameters and renal histopathology of DKD patients 

to develop a predictive model. 

 

Thus, the focus of the third chapter was to correlate human kidney gene expression to physiological 

and histopathology phenotypes and develop a statistical model to assess the preclinical DKD 
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treatments outcomes on gene expression with that observed in humans. While DKD is not regarded 

as a exclusive form of “immune-mediated” kidney disease, recent gene expression data from DKD 

patients and several preclinical data supports involvement of many immune system components 

in DKD progression. Our findings in DKD2000 gene pathway and disease analysis is in line with 

recent reports [207]. Our gene expression to phenotype model showed that the gene signature 

strongly correlates with the histopathological and clinical features of DKD patients. Using the gene 

expression data set from untreated and  lisinopril treated mice with DKD,  showed a high level of 

correlation with normal and diseased human DKD This model could be used to predict the human 

outcome  since the murine gene expression changes with the PDE1 inhibitor overlapped with the 

human data set.  

 

Overall the contents of this thesis demonstrated a new unique biology connecting calcium and 

cyclic nucleotides, the two important intracellular messengers in the progression  of DKD . In 

addition, an exploratory effort using bioinformatics provided some evidence of the clinical 

relevance of our findings.  
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