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Abstract

Our aim is to develop a machine learning (ML) model that can predict

dementia in a general patient population from multiple health care institu-

tions one year and three years prior to the onset of the disease without any

additional monitoring or screening. The purpose of the model is to automate

the cost-effective, non-invasive, digital pre-screening of patients at risk for

dementia.

Towards this purpose, routine care data, which is widely available through

Electronic Medical Record (EMR) systems is used as a data source. These

data embody a rich knowledge and make related medical applications easy to

deploy at scale in a cost-effective manner. Specifically, the model is trained by

using structured and unstructured data from three EMR data sets: diagnosis,
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prescriptions, and medical notes. Each of these three data sets is used to

construct an individual model along with a combined model which is derived

by using all three data sets. Human-interpretable data processing and ML

techniques are selected in order to facilitate adoption of the proposed model

by health care providers from multiple institutions.

The results show that the combined model is generalizable across multiple

institutions and is able to predict dementia within one year of its onset

with an accuracy of nearly 80% despite the fact that it was trained using

routine care data. Moreover, the analysis of the models identified important

predictors for dementia. Some of these predictors (e.g., age and hypertensive

disorders) are already confirmed by the literature while others, especially the

ones derived from the unstructured medical notes, require further clinical

analysis.

Keywords: Dementia, Prediction, Random Forest, EMR, Machine

Learning.

1. Introduction

The recent increase in life expectancy, although desirable, has also re-

sulted in an increase in the number of persons affected by chronic diseases

[1]. Indeed, according to the CDC, one half of the US adult population has

one or more chronic disease [2]. Moreover, chronic diseases are not only the

leading cause of deaths in the US, but also contribute to lower quality of life

and carry a substantial burden on the family, the patient, and the health

care system [3]. In particular, dementia affects a large number of the adult

population. For instance, it is estimated that 5.7 million Americans are liv-
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ing with Alzeihmer’s dementia [4] and this chronic disease is projected to

cost in excess of 1 trillion US dollars annually by 2050 in the US [3]. Identi-

fying persons likely to develop dementia in the future can help support the

development of preventive interventions.

The proposed predictive model is based on a random forest (RF) classi-

fier which is trained by EMR data of dementia and non-dementia patients

from a large number of health institutions in Indiana. These data are ob-

tained from the Indiana Network for Patient Care and Research through the

Regenstrief Institute. Prescriptions (Rx), diagnosis (Dx) and medical notes

(Nx) are extracted from the records of the patients. The Rx and Dx data are

structured, while the Nx data are unstructured (i.e., free text). These data

sets are augmented with demographic information (i.e., age, gender, race and

institution affiliation). Different dimension reduction techniques are used for

each data set and the resulting data sets are used to derive models with one

and three years prediction horizons prior to the onset of dementia.

This prediction horizon may provide the opportunity for early screening

and for delaying the onset of the disease through adequate health plan-based

interventions. In fact, it was estimated that delaying the onset of the disease

by one year can help reduce cost by as much as 14% [3].

2. Background

Extensive research work has been devoted to developing data-driven ML

models that can automate disease diagnosis and prognosis in recent years

[5, 6]. This section includes a brief review of related ML studies from the

following aspects: 1) data sources, 2) feature engineering, 3) ML techniques,
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and 4) target applications. The review primarily focuses on dementia and

discusses the scalability and interpretability of the sources and techniques as

these represent key requirements for our proposed model. A summary of a

selected set of most relevant previously proposed ML models is included in

Table 1.

2.1. Data Sources

Data sources for ML models fall under two broad categories: struc-

tured (e.g., diagnosis, prescriptions, images, medical tests, etc...) and un-

structured (e.g., medical notes).

Most previous dementia models are derived by using structured data from

targeted medical tests (e.g., MRI [10, 8, 12, 13, 14] and cognitive tests [7, 15,

16, 17]). For instance,

- Cognitive tests for a cohort of 400 patients are used in [7],

- Neuropsychological tests for a cohort of 321 patients are used in [9],

- A combination of MRI images and cognitive tests are used in [10] for

a cohort of 825 MCI patients, and

- MRI images, PET scans and cerebrospinal fluid (CSF) from 186 pa-

tients are used in [8].

The extensive use of structured data is not limited to dimentia studies but

also extends to other healthcare areas with a large portion of structured

data being images [6]. This data category is appealing because it requires

relatively limited pre-processing compared to unstructured data. However,

the underlying tests are expensive to administer which in turn restricts the
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Table 1: Summary of target applications, data sources, machine learning techniques, pre-

diction horizons and accuracies for a selected set of most relevant previous studies. X/Y

is used to denote the classes of the model (e.g., AD/HC denotes AD patients versus HC).

MCI-to-AD is used to denote the conversion from MCI patients to AD patients. When

multiple techniques are used in a study, the technique with the highest performance is

reported. HC = Healthy Controls, MCI = Mild Cognitive Impairment, AD = Alzheimer’s

Disease. (*) Dementia, AD, MCI not included.

Target Data ML Pred. Acc.

Disease Source Technique Horizon

[7] MCI-to-

Dementia

Cognitive tests SVM 0.5-4

yrs

76%

[8]-a MCI/HC,

AD/HC

MRI, PET, CSF SVM 0 83%,

93%

[8]-b MCI-to-AD MRI, PET, CSF SVM 2 yrs 74%

[9] AD/MCI/HC Neurophysilogical

tests

BN 0 83%

[10] MCI-to-AD Cognitive tests,

MRI

RF 0-3yrs 82%

[11] multiple∗ EMR RF 0-1yr > 85%

proposed HC-to-

dementia

EMR RF 1 yr 77%

proposed HC-to-

dementia

EMR RF 3 yrs 74%
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inclusion criteria as exemplified by the above studies. Moreover, this aspect

also limits the scalability of the models derived from these sources to a large

population.

Wearable and home devices, an emerging source of structured data, may

help overcome the above restriction. For example, accelerometor data from

an ankle bracelet was used in [18] to model gait and movement activities

for dementia patients and healthy controls (HC). A multisensor home device

was used to monitor the daily activities of ten dementia patients and HC

in [19]. A comprehensive discussion on the use of these devices and their

potential contribution to dimentia detection and monitoring is provided in

[20]. The authors mention that while these devices can become ubiquitous,

their main disadvantage is privacy infringement. That said, as the sensor

technology continues to mature, it is foreseeable that EMR records will start

incorporating this source of patient-provided data.

Unstructured data in health applications is primarily extracted from med-

ical notes. Using this source of data is a new area of research [5]. It was used

to develop models for different disease conditions (e.g., Type-2 diabetes [21],

heart failure [22], colorectal cancer [23] and early readmission for psychiatric

patients [24]). A large number of patient health records from a single health

care institution consisting of both structured and unstructured data was used

in [11] for the prediction of the onset of multiple disease conditions.

The use of medical notes for the development of dementia models in

the literature is scarce. One example study [25] considers text notes for

visits and medical history from the ADNI data set. The model proposed

in this paper also uses structured and unstructured data and confirms the
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findings of previous studies [11, 25] which concluded that combining these

two data sources yields ML models with better performance than each source

individually.

There are recent sources of unstructured data that are gaining impor-

tance in health care applications and may benefit dementia prediction. For

example, transcripts of daily conversation are used in [26] to identify social

behavior (e.g., giving advice, receiving advice, conversation). Another study

[27] uses speech samples and MRI data from 32 semantic dementia patients

and 10 HC.

2.2. Feature Engineering

Both structured and unstructured data must be transformed into a fea-

ture vector that can be used as an input to the ML model. Feature selection

for structured data is relatively well studied. In the case of numerical data

(e.g., age, blood pressure) and categorical data (e.g., gender, disease condi-

tion), the process is either guided by human experts [17] or relies on a well

established nomenclature (e.g., disease codes or drug groups) [11]. A more

difficult procedure is required to transform free text into structured features

[5].

A preliminary step in processing free text consists of syntactic transfor-

mations such as removing punctuation and stop words [26]. This is followed

by a process which identifies features that are representative of the text.

Techniques for feature extraction from free text range from frequency-based

to more advanced techniques that employ autoencoders and deep neural net-

works. A review of the latter two techniques in health care applications is

provided in [5].
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Selecting features based on the most frequent keywords is referred to as

bag of words and was used in [25]. A mapping technique that can further

reduce the feature space and enhance the entropy of each feature consists of

grouping a set of related keywords under a single concept. For example, using

latent Dirichlet allocation (LDA), keywords are grouped by concept in [11]

and [26]. Word2vec [28] and autoencoders have also been used for keyword-

to-concept mapping in several health care applications [5]. LDA, word2vec

and autoencoders are computationally expensive [29] and may select features

that are not interpretable [30]. For these reasons and because of the size of

the corpus which is derived from a large number of different types of medical

notes in this paper, we designed a variant of the bag of words. This approach

is inspired by [28] and selects features based on the differential frequency of

the keywords in dementia cases and healthy controls rather than an absolute

frequency. The modified bag of words used in this study is scalable and

interpretable.

2.3. ML Techniques

The choice of the ML technique is highly dependent on the application

domain and the source of the data [6]. For instance, support vector machine

(SVM) [31], RF [32] and aritificial neural networks (ANN) [33] are used in [7]

to identify conversion from mild cognitive impairment (MCI) to dementia.

The SVM model had the highest accuracy (76%) and the RF model ranked

second best (73%). However, the SVM model had significantly lower sensi-

tivity. RF is also used in [10] to predict conversion from MCI to Alzheimer’s

Disease (AD) with an accuracy of 82%. In [8], SVM was used to classify MCI

and AD patients versus HC with an accuracy of 83% and 93%, respectively.
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Naive Bayesian network (BN), SVM and ANN are used in [9] to develop a

multi-class classifiers for MCI, AD and HC with accuracies of approximately

83%, 60% and 82%, respectively.

It is hard to adequately compare the performance of different ML tech-

niques across multiple studies because of variances in the sources of data,

features and number of records in the training and validation data sets.

However, one common aspect of all of the above studies is that they use

structured data with relatively small number of features.

Despite feature reduction, when a model uses unstructured data, the

number of features still remains large and thus the feature space is highly

dimensional. RF is often the ML technique of choice in these cases. For

example, in [11] once feature reduction is performed on the medical notes

by using LDA, a multi-class RF classifier is trained to identify future disease

conditions for each patient. SVM and RF are used in [26] to classify fea-

tures extracted from transcription of daily conversations by using LDA into

different social behavior classes. In this case, RF had better accuracy and

precision than SVM.

For the dementia prediction model being proposed in this paper, we opted

to use RF. This choice was motivated by several factors that were derived

from the literature and from our own preliminary investigation. Namely, RF

is interpertable, computationally efficient and can handle a high dimensional

space of noisy, continuous and categorical features [34, 35, 36]. That said,

we also experimented with SVM and ANN. SVM had a comparable accu-

racy but was not as interpretable as RF [35]. ANN had a lower accuracy

compared to both RF and SVM, primarily because the number of available
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patient records is much lower than what would be needed to adequately train

a high dimensional deep neural network. Similar observations are made in

[26]. In addition, ANNs are also not interpretable [5]. BN was not consid-

ered since an efficient BN model requires significant engineering effort and

is computationally demanding especially for a model with a large number of

features [32].

2.4. Applications

The accuracy of predictive ML applications depends on the prediction

horizon and the ability to infer the outcome from the evidence. Applications

with short-term horizons support diagnosis whereas applications with long-

term horizons support prognosis. The latter are for early pre-screening and

therefore are most useful when the horizon is long enough to allow adequate

intervention.

Typically, short term horizon applications are based on evidence available

up to the time of occurance of the target outcome. This temporal proximity

allows the use of evidence with a higher entropy. For example, in [9], the

evidence (e.g., age, gender, education, functional ability and visual memory)

is used to classify patients into three classes: HC, MCI and dementia.

In [8], the authors first create short prediction horizons models that clas-

sifies MCI versus HC and AD versus HC. These models show that discrimi-

nating between AD and HC has a higher accuracy compared to MCI versus

HC. This result is anticipated since AD indicators are typically stronger. The

authors then create a model dedicated to the conversion of MCI to AD with

a prediction horizon of 2 years. This model did not have access to evidence

within the prediction horizon, and therefore had a lower accuracy than both
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short term models (Table 1). Models for HC to AD or HC to MCI conver-

sion with a 2 year horizon were not available for comparison with the models

proposed in this paper.

MCI to dementia and MCI to AD conversion models are introduced in

[7] and [10], respectively. These models did not segregate patients according

to the prediction horizon. Therefore, the outcome and the evidence can be

from 0.4 to 4 years and 0 to 3 years apart, respectively.

A general model for the prediction of the onset of multiple diseases (e.g.,

cancer, diabetes, and schizophrenia) with an accuracy greater than 85% was

introduced in [11]. As mentioned above, this model uses structured and

unstructured EMR data from a single institution. However, dementia is not

included as a target disease. Moreover, the prediction horizon is 0 to 1 year

from the time of evidence and varies across the patients.

In the current study, we removed the records of MCI patients in order

to ensure that they do not bias the proposed model which is intended for

the prediction of dementia in a general patient population. Furthermore, no

evidence is used within the prediction horizon of 1 year or 3 years for all

patients.

3. Methods

In order to train and test the proposed models, a group of dementia

(cases) and non-dementia (controls) patients are identified. The processing

steps used to extract the training and testing data from the EMR database as

well as the methodology used to develop the predictive models are discussed

in the next two subsections.
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3.1. Data Preprocessing

The dementia cases are identified by using their diagnosis code. Only

cases of incident dementia are retained. MCI or prevalent dementia cases

are excluded in order to avoid the bias they may introduce in the model.

The diagnosis date (index date) for each case is then established and 3 to 4

matching controls are identified for each case. The matching criteria between

the cases and controls are based on birth year, gender, race and index date

(within 6 months).

For both cases and controls, a query was developed to retrieve all the

medical records within 10 years prior to the index date. Only patients that

had at least one encounter per year were retained. However, patients may

or may not have complete records that span the entire 10 year period (e.g.,

patients that seek additional treatment outside the network, partially mi-

grated patient records from a legacy EMR system). This query resulted in

2,159 cases and 11,558 controls from 15 and 25 different institutions, respec-

tively. The distribution of both cases and controls across the institutions is

not uniform. Moreover, patients may have records spanning multiple insti-

tutions. With respect to race and gender, the distribution of the cases and

controls (Table 2) is similar, thereby limiting any gender or race bias among

the two classes. However, Table 2 shows that within a class, there are more

females and more patients of race white than the other gender and races.

This reflects the demographic of incident dementia patients in Indiana.

Features are extracted from the prescription (Rx), diagnosis (Dx) and

medical notes (Nx) of the EMR record of each patient. Age, gender, race

and institution are also included as features in all models. In the case of insti-
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Table 2: Demographics of the cases and controls.

African American White Other

Male Female Male Female Male Female

Cases 10% 21% 23% 41% 2% 4%

Controls 11% 19% 24% 42% 1% 3%

tution, if a patient is associated with multiple institutions, for each data set,

the most recent institution on record during the model period was selected.

Feature reduction for each data set is performed by using a different

approach. Each Rx feature corresponds to a drug group according to the

Generic Product Identifier (GPI) classifier [37] for a total of 100 features.

The value of the feature is the number of times a medication from the given

drug group was prescribed for the patient within the model period. Age,

gender, race and institution (InstRx) are added to the drug groups in order

to construct a feature vector with 104 features. A similar approach was used

in [35].

A total of 19 dementia related disorders (Table 3) are identified using

expert opinion. These groups of disease conditions are represented by using

ICD-10 or ICD-9 codes in the EMR database. Codes for the target dis-

ease groups were identified and the relevant records for each patient were

extracted. The value for each feature in the Dx data sets corresponds to the

count of the diseases in the corresponding disease group during the model

period. As in the case of prescriptions, age, gender, race and institution (In-

stDx) are added to these features in order to form a Dx feature vector with

23 features.
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Table 3: List of dementia related disorders or disease groups in Dx.

Angina Chronic Ischemic Heart Disease

Anxiety Transient Ischemic Attack

Abnormal Weight Loss Transient Ischemic Attack Related Syndromes

Bipolar Disorder Other Acute Ischemic Heart Disease

Depression Stroke/Cerebral Infarction

Insomnia Acute/ Subesequent MI

Hypercholesterolemia Hemorrhagic Cerebrovascular accident

Hypertensive Disorders other Cardiovascular diseases

Schizophrenia Claudication/Atherosclerosis

Sleep Apnea

Medical notes are a sequence of records starting with the patient’s unique

ID, the date of the record followed by a list of reports. Each report consists

of a report type and a report content in the form of unstructured free text.

There is a total of 2,146 different report types. This large number of report

types is due, in part, to the fact that each institution may use its own set of

reports. In addition, there is a large number of administrative reports such

as “attending MD”, “encounter ID”, “signature”, “enterer ID”, “verified by”

and “dictated by”. These administrative reports are excluded. A total of

340 different report types out of the original 2,146 report types are retained.

The retained report types consist of notes or findings recorded by the health

care provider such as “radiology impression”, “recommendation”, “history of

present illness”, “md progress note” and “social history”. An example report

is shown below:
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<p>EXAM: KUB SINGLE VIEW</p><p>HISTORY: Recurrent left flank

pain. History of nephrolithiasis.</p><p>FINDINGS:</p><p>The

bowel gas pattern is nonspecific but does not appear grossly

<br/>obstructive.</p><p>The renal shadows are obscured by

stool/bowel gas. No definitive<br/>calculi are appreciated.

</p><p>IMPRESSION: Negative KUB.</p><p>Read By: Malaz Boustani

<br/>Reviewed and Electronically Signed By: Malaz Boustani<br/>

</p></text></text_report>

The processing of free text in the medical notes start with the preliminary

syntactic transformation described in Section 2.2. This is a procedure which

is commonly applied to free text [6]. When using the bag-of-word approach,

the next step consists of selecting the keywords with the highest count as

features [24]. However, some of the frequent keywords may be informative

(e.g., abdomen) while others (e.g., patient, doctor, nurse) may not include

significant information towards the target outcome. In fact, the sub-sampling

of some frequent words should be considered as recommended in [28].

In the traditional bag of word, the keyword count is talied in all notes

irrespective of whether the note is attributed to cases or controls. Inspired

by [28], we calculate the count of each keyword with respect to the class (i.e.,

cases or controls). For example, the keyword abdomen occurs 16,988 times

in cases reports and 65,635 times in controls reports. Based on the number

of cases and controls in the study, the difference in relative count for this

keyword is 16, 988/2, 159 (cases) - 65, 635/11, 558 (controls) = 2.19. This

differential frequency is defined as follows:
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DF (keyword) =

∣∣∣∣count(keyword|cases)number of cases
− count(keyword|controls)

number of controls

∣∣∣∣ (1)

The value of DF tends to be closer to zero for equally frequent keywords

in cases and controls. However, when the keyword is more prevalent in cases

than controls or vice-a-versa, the value of DF is high.

In this study, a total of 173,972 unique keywords are identified. Clusters

are constructed from these keywords using Algorithm 1. First, each keyword

with DF > 1.0 is selected as a seed of a cluster. Other keywords are assigned

to these clusters if their distance to the keywords in the cluster is less than a

given threshold. This assignment is human-validated at each iteration with

the assistance of an online medical dictionary. Most of the clusters included

a large number of keywords for various reasons. Spelling errors are the most

common reason. For instance, there are 43 different incorrect spelling of the

word abdomen (e.g., abbdomen, abdoomen, obdomin, etc.). Conceivably,

spelling errors can be eliminated with a spell checker. However, this implies

that medical notes from future patients need to also be corrected for spelling.

In order to avoid this processing step, the incorrect spellings of each keyword

were kept in the cluster.

In total, 110 clusters were constructed by using the above procedure. The

resulting Nx feature vector includes these clusters of keywords in addition to

age, gender, race and InstNx for a total of 114 features.

3.2. Model Development

The previous data processing steps are used to construct Rx, Dx, and Nx

training and testing data sets for various dementia prediction models. The

16



Data: Keyword list L, number of cases, number of controls

Result: A set of clusters where each cluster is an Nx feature

for ki ∈ L do

if DF (ki) > 1.0 then
assign ki to ci

end

end

C = set of ci

while not done do

foreach kj /∈ C do

foreach ki do

if distance(kj, ki) < threshold then
assign kj to ci

end

end

validate

end

end

Algorithm 1: Clustering algorithm for NX features.
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1Y r model is trained and tested by using the available records during the

period (index date - 10 years) to (index date - 1 year). Similarly, the 3Y r

model is trained and tested by using the available patient records during the

period (index date - 10 years) to (index date - 3 years). The aim of these

models is to predict dementia one year and three years prior to the onset of

the disease.

The number of cases and controls in the training and testing data sets

for each model is shown in Table 4. In order to avoid class imbalance a

50/50 split between cases and controls is maintained in the training data set.

Moreover, for cases an 80/20 split is maintained between the training and

testing data sets.

Table 4: Number of cases and controls in the training and testing data sets for each

dementia model.

Model
Training Testing

Cases Controls Cases Controls

1Y r 1,728 1,728 431 9,830

3Y r 869 869 216 4,817

1Y rs 1,225 1,225 299 2,167

Most of the patients in the data set are affiliated with multiple institu-

tions, in which case the value of InstRx, InstDx, and InstNx represents the

most recent institution on record for the patient during the model period.

The 1Y rs model (Table 4) has the same period as the 1Y r model. However,

it only uses patients that are affiliated with a single institution. Patients that

are affiliated with multiple institutions in a given data set are excluded. This

model was developed in order to better understand the impact of institution
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affiliation.

RF is used to train all the models. The hyperparameter of the RF include

the number of trees and the number of features which are presented to each

node of the tree. In [38], a number of trees in the RF equal to the number of

features in the model is recommended. In [34], it is recommended to increase

the number of trees until the model stabalizes. In this study, we experimented

with 100, 500, and 1000 trees and did not find a significant difference. The

performance metrics reported in the result section are for 500 trees in each

model. The second hyperparameter is the number of features presented to

each node in the tree. In this study, it is set to
√
n, where n is the number of

features in the model as recommended in [32]. Moreover, the best dementia

vs non-dementia classification at each node is measured by using the Gini

Impurity (GI) [39].

When the models are validated using the test data sets, the accuracy,

sensitivity and specificity of the models are computed. In addition, features

that are strong predictors for each model are identified. The approach used

to identify these predictors is based on the selection of each node in the clas-

sification decision of the patient [40]. This approach is used in [40] and [41] to

identify important features for RF models aimed at predicting cardiovascular

risk and cancer mortality, respectively. As each patient in the test data set

is classified, a count is maintained of the number of nodes associated with

each feature that are traversed in the decision tree. This count represents the

number of times each feature (fi) participates in the classification decision.

This metric is labeled CD(fi) in the remainder of the paper. As in [40] and

[41], the features with the highest CD(fi) are reported as strong predictors.
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4. Results

The performance metrics corresponding to the various models are shown

in Table 5. These metrics are the mean and standard deviation across the 5

groups in a 5-fold cross validation. The first three sections of this table are

dedicated to the models developed by using the Rx, Dx and Nx data sets,

respectively. The last two sections report the results associated with models

that are trained by using a data set that combines the Rx, Dx and Nx. This

combined data set (RDNx) consists of all the features from the above three

data sets where the duplicate age, gender and race features are removed for

a total of 235 features. As previously mentioned, each data set includes a

feature that represents the institution of the patient (e.g., InstRx for the Rx

data set). The combined RDNx data set includes the three institutions from

the three underlying data sets, namely, InstRx, InstDx, and InstNx. The

last section of Table 5 reports the results associated with a model developed

using the combined data set without these three institution features (RDNx

w/o Inst).

Table 6 shows the top predictors for cases and controls for the models

developed by using the individual data sets. Similarly, Table 7 shows the top

predictors for the models developed by using the combined data sets. Only

the top five ranked features are reported (i.e., with the highest five CD).

The top predictors can be different for cases and controls as shown in tables

6 and 7.

An effort was made to train the models with the same patients. This was

done in order to avoid variations due to different patients (e.g., complete vs.

incomplete records) and number of patients. In general, the more records
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Table 5: Accuracy, sensitivity and specificity for the 1Yr and 3Yr dementia prediction

models trained by using different data sets. For each metric, the entry in the table cor-

responds to the mean value of all groups in a 5-fold cross validation and the number in

parenthesis is the standard deviation across the groups.

Model Accuracy (%) Sensitivity (%) Specificity (%)

Rx

1Y r 70.39 (0.88) 68.94 (2.35) 70.46 (0.98)

3Y r 65.63 (1.24) 65.00 (3.91) 65.65 (1.43)

1Y rs 67.93 (0.94) 72.24 (3.02) 67.33 (1.47)

Dx

1Y r 65.21 (0.74) 66.06 (2.44) 65.18 (0.80)

3Y r 62.91 (1.71) 63.80 (4.26) 62.87 (1.95)

1Y rs 69.27 (1.69) 65.15 (3.37) 69.84 (2.22)

Nx

1Y r 74.07 (0.98) 72.01 (1.72) 74.16 (1.01)

3Y r 70.13 (2.65) 67.31 (3.28) 70.25 (2.85)

1Y rs 78.47 (1.44) 73.04 (2.98) 79.22 (1.97)

RDNx

1Y r 77.43 (1.89) 76.01 (1.88) 77.49 (2.02)

3Y r 73.50 (2.03) 70.93 (2.18) 73.61 (2.17)

1Y rs 79.68 (1.29) 76.35 (2.10) 80.15 (1.30)

RDNx w/o

Inst

1Y r 72.64 (0.34) 73.97 (3.23) 72.58 (0.41)

3Y r 67.88 (1.82) 68.52 (3.48) 67.85 (1.96)

1Y rs 78.60 (0.32) 75.05 (1.22) 79.09 (0.28)
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Table 6: Strong predictors for models trained by using individual data sets. Features with

the top five CD are reported for each model. When the strong predictors for the two

classes (i.e., cases/controls) differ, they are reported separately.

Rx

1Y r InstRx, Age, Antidepressants, Diuretics, Antihyperlipidemics

3Y r InstRx, Age, Antihyperlipidemics, Antidepressants, Antihy-

pertensives

1Y rs InstRx, Age, Antidepressants, Psychotherapeutic & Neuro-

logical Agents - Misc., Analgesics - Opiod

Dx

1Y r InstDx, Age, Hypertensive Disorders, Hypercholesterolemia,

Chronic Ischemic Heart Disease

3Y r InstDx, Age, Hypertensive Disorders Hypercholesterolemia,

Chronic Ischemic Heart Disease

1Y rs cases : InstDx, Age, Hypertensive Disorders, Depression, Hy-

percholesterolemia

controls : InstDx, Age, Hypertensive Disorders, Hypercholes-

terolemia, Chronic Ischemic Heart Disease

Nx

1Y r cases : InstNx, Age, accurate, independently, oral

controls : InstNx, Age, accurate, independently, oldest

3Y r cases : InstNx, Age, accurate, oral, independently

controls : InstNx, Age, accurate, independently, oral

1Y rs cases : InstNx, accurate, oldest, independently, participate

controls : InstNx, Age, radiology, accurate, independently

22



Table 7: Strong predictors for models trained by using the combined data sets. Features

with the top five CD are reported for each model. When the strong predictors for the two

classes (i.e., cases/controls) differ, they are reported separately.

RDNx

1Y r cases : InstNx, InstRx, Age, InstDx, oldest

controls : InstNx, InstDx, InstRx, oldest, Age

3Y r cases : InstNx, InstDx, InstRx, oral, oldest

controls : InstDx, InstRx, oral, oldest, Antihyperlidemics

1Y rs cases : InstNx, oldest, participate, independently, InstRx

controls : InstNx, Age, InstRx, oldest, participate

RDNx w/o Inst

1Y r cases : Age, accurate, oldest, independently, oral

controls : Age, accurate, oldest, independently, participate

3Y r Age, oldest, accurate, participate, oral

1Y rs cases : Age, participate, accurate, oldest, independently

controls : Age, participate, accurate, oldest, oral
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available to train an ML model, the higher the accuracy of the model. The

quality of the data is also important. Missing and incomplete data may lead

to poor predictive performance. In this study, the number of patients was

not only limited by the number of cases but also the number of cases that

had Nx data. Moreover, fewer patients are available for the training of the

3Y r compared to the 1Y r models (Table 4). This indicates that the data set

includes a large number of patients that had less than three years of complete

medical records prior to the index date. Similarly, there are fewer patients

available for the training of the 1Y rs compared to the 1Y r models (Table

4). The difference in this case is due to patients that tend to seek treatment

from one institution versus multiple institutions.

5. Discussion

Several observations can be drawn from the results shown in Table 5.

Some of these observations are expected while others are worth discussing.

The 1Y r models have higher accuracy, sensitivity and specificity than the

3Y r models. This is expected since the former models are trained with more

patients and have access to more recent records of the patients prior to the

onset of the disease. For example, the 1Y r and 3Y r Rx models have an

accuracy of 70.39% and 65.63%, respectively. They were trained with 3,456

and 1,738 patients, respectively.

Among the three data sets (i.e., Rx, Dx and Nx), Nx generated models

with the highest accuracy, sensitivity and specificity. Moreover, the accuracy

of the model derived by using the combined RDNx data set is higher than

the models derived by using the individual data sets. This is an indication
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that, despite the fact that Nx models have a higher prediction accuracy,

some of the Rx and Dx features (e.g., antihyperlidemics) make a significant

contribution to the overall accuracy of the combined model.

The most interesting aspect of the analysis is, undoubtedly, associated

with the features that contribute the most to the predictive models. As shown

in tables 6 and 7, cases and controls nearly have the same top predictive

features across all models. Moreover, with respect to patient’s demographics,

age is consistently among the top features of all the models for both cases and

controls. This is particularly interesting since the match between cases and

controls was based on age, gender and race. Gender and race do not, however,

appear as top features in any of the models and are unlikely, according to

these models, to be significant predictors of dementia.

The institution feature is also present in most models as a top feature.

In most cases, the 1Y rs models have higher accuracy than the 1Y r models

despite the fact that they were trained using fewer patients. Moreover, the

combined model based on the RDNx data set includes all three institutions

from the Rx, Dx, and Nx data sets as top features. The importance of

the institution as a feature in the predictive models is intriguing and we

hypothesize that it may due to various reasons including the following:

- An artifact of the way the medical records of the patients are stored or

extracted from the information systems of the various institutions.

- An indication of the completeness of the health record of the patients.

- An indication of the socio-economic demographics of the patients.
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- A representative feature of the health institution’s unique processes,

culture and areas of expertise.

The first reason is unlikely since multiple institutions are covered by cases

and controls in all the data sets. For instance, the training set of the 1Y r

RDNx model included patients from more than 20 institutions. The higher

accuracy of the 1Y rs models compared to the 1Y r models indicates the pos-

sibility that patients that are affiliated with one institution tend to have

more complete records whereas those that are affiliated with multiple insti-

tutions may have gaps in their records. There may also be key demographic

differences between the different health institutions and the availability of

information from certain institutions may bias the results. For instance,

individuals may chose to seek care at different institutions for certain co-

morbidities. If this is the case, the 1Y rs models are excluding patients with

certain comorbidities and are more likely to retain healthier patients. These

aspects will be investigated as part of future work.

In addition to the demographic features, several clinical features are im-

portant. For the 1Y r and 3Y r Rx models, “antidepressants”, “diuretics”,

“antihyperlipedimics” and “antihypertensives” are top features. For the

1Y rs Rx model, “diuretics” and “antihyperlipedimics” are less important

than “psychotherapeutic & neurological agents” and “analgesics - opiod”.

For the Dx data set, “hypertensive disorders”, “hypercholesterolemia”,

“chronic ischemic heart disease”, “depression” and “other cardiovascular dis-

eases” have a high CD. These results validate the experts’ opinion that these

disease groups are important predictors. However, the results also show that

the disease groups “other acute ischemic heart diseases” and “transient is-
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chemic attack related syndromes” are not necessarily strong predictors. This

finding is counterintuitive since “chronic ischemic heart disease” is a strong

predictor. We believe that one potential explanation for the low importance

of the disease groups “other acute ischemic heart diseases” and “transient is-

chemic attack related syndromes” is due to the low incidence rates associated

with these features in the data set used in this study. Indeed, only 32 and

40 patients out of the 3,456 used for the training of the 1Y r Dx model had

“other acute ischemic heart diseases” and “transient ischemic attack related

syndromes”, respectively.

As discussed in Section 3, the Dx models are developed using a top-down

approach. In this case, most of the disease groups identified by the do-

main experts are confirmed by the model as strong predictors for dementia

with the exception of “other acute ischemic heart diseases” and “transient

ischemic attack related syndromes”. Another validation of these features as

strong predictors can be derived by comparison with the Rx models which

were developed using a bottom-up approach (i.e., with no pre-conditioning).

For instance the top feature “depression” in the Dx models aligns with the

drug group “antidepressants” in the Rx models. Similarly, “hypertensive

disorders” aligns with the “antihypertensives” drug group and “hypercholes-

terolemia” aligns with the “antihyperlipidemics” drug group. Moreover, “di-

uretics” are most commonly prescribed for “hypertensive disorders”. This

correlation between the top features of the Rx and Dx models reinforces the

validity of the disease groups identified by domain experts as strong predic-

tors.

In addition to the age and institution, the top features for the Nx model
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are “accurate”, “independently”, “oral”, “oldest”, “participate”, and “radi-

ology”. These labels are representative of a cluster of keywords. For instance,

the clusters “accurate” and “participate” have a DF > 4.3.

The top clinical features of the RDNx models include “oldest”, “oral”,

“participate”, “independently” and “antihyperlidemics”. The first four are

also top features of the Nx models and the fifth is a top feature of the Rx

model. The three institution features (i.e., InstNx, InstDx and InstRx) also

appear as top features in the combined RDNx models. They were omitted

in the RDNx w/o Inst model and the top features of the resulting model are

primarily from the Nx data set.

The results also show that the predictive accuracy of the 1Y rs RDNx w/o

Inst model is impacted the least by the removal of the institution feature

and the 3Y r RDNx w/o Inst model is impacted the most. This fact seem to

reinforce that the institution feature may be an indication of the completeness

of the patient’s records.

As a final step in the analysis of the proposed models, we wanted to

understand the distribution of the cases and controls that are accurately

predicted by the proposed models. For this purpose, we focused on the

combined RDNx models since they had the highest predictive accuracy. The

goal of this analysis is to identify salient characteristics of the cases or controls

that may have contributed towards a higher prediction accuracy. The cases

and controls of the 1Y r and 3Y r RDNx models are affiliated with multiple

institutions regardless of whether the prediction is correct or not. The cases

and controls of the 1Y rs RDNx models were selected based on their affiliation

with a single institution. Patients from multiple institutions are included in
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the test data sets and there are no bias toward higher predictive accuracy

with one institution versus another.

6. Conclusion

Models based on routine care EMR data collected prior to dementia can

help identify high risk individuals from the general patient population and

support the development of a customized health plan based interventions at

various points in the progression trajectory of the disease.

This paper presents a methodology for constructing ML models for de-

mentia prediction by using structured and unstructured routine care EMR

data. Several RF models are developed from three EMR data sets, namely,

drug prescription (Rx), diagnosis (Dx) and medical notes (Nx). The highest

accuracy was obtained with a model that combines these three data sets and

uses a total number of 235 features. This combined model is generalizable

across multiple institutions and can predict dementia within one year of its

onset with an accuracy of 77.43% , a sensitivity of 76.01% and a specificity of

74.16%. Moreover, the model was analyzed and was found not to be affected

by biases related to institution affiliation, race or gender.

Using routine care EMR data to develop the proposed models makes them

accessible to a wide range of patients at a reduced cost. Despite this fact,

the proposed models have a performance comparable to dementia models

that are based on specialized medical tests such as MRI and cognitive tests

(Table 1). One potential use of the proposed models is for the pre-screening

for dementia in the general patient population. A step that can then be

followed by targeted medical tests for patients that are at-risk.
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Top demographics and clinical features were identified by the models. In

the demographic feature set, institution affiliation and age are found to be

important predictors while race and gender are not. The clinical features

are extracted from prescriptions, diagnosis and medical notes. The diagnosis

features suggested by domain experts were confirmed by the exploratory

models developed from the prescriptions data set. The study also shows

that medical notes are the best source of predictive features. These features

require further analysis in order to understand their clinical relationship to

cognitive and executive functioning.

Future work include improving the proposed clustering approach and po-

tentially combining it with word embedding techniques while maintaining

interpretability. We also would like to pursue an aggressive feature reduction

technique as a minimalist model is more cost-effective to deploy in production

across multiple institutions.
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