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ABSTRACT 
An experiment for the synthesis of N-acyl derivatives of natural amino acids has been developed as 

part of the Distributed Drug Discovery (D3) program.  Students use solid-phase synthesis techniques 

to complete a three-step, combinatorial synthesis of six products, which are analyzed using LC-MS 

and NMR spectroscopy.  This protocol is suitable for introductory organic laboratory students and has 

been successfully implemented at multiple academic sites internationally.  Accompanying pre-lab 

activities introduce students to SciFinder and to medicinal chemistry design principles.  Pairing of 

these activities with the laboratory work provides students an authentic and cohesive research project 

experience. 
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GRAPHICAL ABSTRACT 
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INTRODUCTION 
Numerous studies have highlighted the benefits of guided-inquiry and research project-based 

experiments in undergraduate chemistry laboratory courses.1-8 The Distributed Drug Discovery (D3) 

program9-13  is one of several initiatives that introduces organic chemistry students to drug discovery 

and combinatorial synthesis through course-based research projects.14-17 By integrating targeted 

syntheses of bioactive molecules into teaching laboratories, the D3 program seeks to combine 

undergraduate chemistry education with broader research efforts in drug discovery.  It also offers 

students hands-on experience with solid-phase synthesis,18-23 complementing the solution-phase 

techniques typically taught in undergraduate laboratory courses.24  D3 chemistry protocols are designed 

to be robust, reproducible, and accessible to undergraduates in a variety of academic environments 

worldwide.  The first reported D3 protocol (D3 Lab 1) involved the α-alkylation of glycine derivatives for 

the preparation of unnatural amino acid derivatives using a five-step synthesis.12  

In the new D3 laboratory experiment (D3 Lab 2) described herein, students complete a three-

step synthesis to prepare N-acyl derivatives of natural amino acids (Scheme 1).  Compounds in this class 

have demonstrated antibiotic activity and therefore represent a useful starting point for further 
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optimization.25-28 In contrast to the five-step D3 Lab 1 protocol,12 this shorter D3 Lab 2 experiment is 

suitable to a wider range of laboratory environments.  Another unique new feature of this D3 experiment 

is the involvement of students in both the design and synthesis of new compounds for drug discovery 

programs; few other initiatives engage undergraduate students in drug design.16,29-32  This experiment 

includes the following three components, including two previously unreported pre-lab activities:  

1) Pre-lab SciFinder exercise

2) Pre-lab medicinal chemistry design activity

3) Experimental work and post-lab analysis

The first two components introduce students to SciFinder tools and drug design principles prior 

to initiation of the laboratory work, enhancing the authenticity of the research experience.  In the third 

component, students use a combinatorial “Bill-Board” array design (Figure 1) using two Fmoc-protected 

amino acids (Step 1) and three substituted benzoic acids (Step 2) to prepare a six-compound array of N-

acylamino acids (Figure 2), which are analyzed using LC-MS and NMR spectroscopy.  The final products 

from this synthesis are suitable for submission to biological assays, such as the Community for Open 

Antimicrobial Drug Discovery (Co-ADD) screening panel.33,34 The modular design of these activities 

allows instructors to implement any or all of the components to fit their schedules and resources.  A 

complete set of classroom materials and protocols are provided to enable chemistry students and faculty 

from a diversity of settings to participate in the D3 synthesis program. 
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Scheme 1. D3 Lab 2: Solid-Phase Synthesis of N-Acylated Natural α-Amino Acidsa
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OVERVIEW: DESIGN AND SYNTHESIS 

Students may work individually or in pairs and can complete the laboratory component of the 

experiment over four 3 – 4 h lab periods (Table 1).   A prelab meeting and prelab videos are typically 

used to introduce the overall program and specific reactions.35 The laboratory component can be 

supplemented by two additional pre-lab activities, described below. 
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Table 1. Timeline for Classroom Activities and Laboratory Tasksa 

Laboratory or 
Classroom Session 

Activities/Tasksb 

1 • Pre-Lab Lecture: Introduction to drug discovery and D3
program, solid-phase combinatorial synthesis, and
SciFinder

• Pre-Lab Classroom Activity or Homework: Students
complete SciFinder worksheet/exercise

2 • Pre-Lab Classroom Activity: D3 Bill-Board Design Activity
3 • Laboratory Session 1: Students prepare reagent solutions

and complete reactions 1 and start reaction 2 (Fmoc
deprotection and N-Acylation)

4 • Laboratory Session 2: Students work-up reaction 2,
complete reaction 3 (cleavage of product from resin) and
prepare samples for LC-MS; students observe LC-MS
instrument demonstration

5 • Laboratory Session 3: Students weigh crude products and
analyze by TLC; each student purifies one product by
column chromatography and submits purified sample for
LC-MS

6 • Laboratory Session 4: Students obtain 1H NMR data on
purified product, store/submit samples

7 • Post-Lab Classroom Activity: Discussion of LC-MS and
NMR data sets, reaction outcomes, and final report
expectations

a Schedule represents schedule for D3 experiment in second-semester introductory 
undergraduate organic chemistry course at Colorado College, Spring 2018; Alternative 
schedules used at IUPUI and University of Havana are provided in the Supporting Information 
SI-2 pp 2-3.bLaboratory lecture or classroom activities are completed in 60-90 min class 
sessions; Laboratory sessions are completed in 3-4 h. 

SciFinder Search Activity 

Development of information literacy is an important pedagogical goal for undergraduate chemistry 

curricula.36-38  The learning objective of the new SciFinder component of this D3 program is for students 

to learn to use SciFinder to obtain key data and vendor information prior to beginning a new research 

project.  The worksheet activity (Supporting Information, (SI)-1, pp 3-6) can be completed in class (~60 

– 90 min) or as a homework assignment after a general introduction to SciFinder.  Students completing

this exercise gain information literacy, including proficiency using the structure searching capabilities 
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of SciFinder and finding commercial availability, pricing, and NMR spectral data for chemicals relevant 

to their D3 experiment. 

Bill-Board Design Activity 

The pedagogic goal of this pre-lab activity is for students to learn to utilize structure-activity relationship 

(SAR) data to practice hypothesis-driven drug design. Earlier versions of the D3 experiments assigned 

each student a specific six-compound array (e.g., Figure 2) designed by the instructor. Involving students 

in the design of their own Bill-Board arrays underscores their participation as collaborators in the 

research process. This activity, which includes a worksheet (SI-1, pp 7-13) and instructor-led 

discussion, can be completed in a 60 – 90 min class session.  In the first part of the activity, students 

work in pairs to evaluate a set of antimicrobial data for a set of N-acylamino acids accessible by D3 Lab 

2.39  The instructor may prompt students to consider features that may contribute to drug-protein 

binding interactions, including electron-withdrawing groups (e.g., nitro- or fluoroaryl groups) that may 

impact electrostatic interactions or functional groups that participate in hydrogen bonding (e.g., tyrosine 

vs. phenylalanine).  Students may also consider the strategic benefits of evaluating derivatives of closely 

related amino acids (e.g., tyrosine and phenylalanine) versus a structurally diverse compound set (e.g., 

phenylalanine vs. isoleucine).  Using the provided data, students develop SAR hypotheses and propose 

their set of new analogs to synthesize in the lab. The instructor can emphasize that there is no “right” 

answer in this exercise. Rather, students may choose different SAR questions to interrogate via their 

selected Bill-Board designs. 

To ensure Bill-Board replication within each laboratory section, the class is then typically divided 

into three to four “medicinal chemistry” teams, with six to ten students per team.40  In this second phase 

of the activity each team works to design one Bill-Board that all students in that team will synthesize 

(i.e., students work in pairs on a Bill-Board in the laboratory, allowing the selected Bill-Board array to 

be synthesized in replicate at least three times).  During this activity, students explain and defend their 

hypotheses to their peers and negotiate toward a final team proposal.  Students become highly engaged 

in this exercise, which is intended to simulate a real-world situation in which chemists prioritize ideas 

and agree upon synthetic targets.  In an instructor-led discussion, each team then presents their 

proposals to the class.  If multiple teams have proposed the same Bill-Board design, the instructor may 
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suggest changes to ensure sufficient chemical diversity across the class set of Bill-Boards. Enabling 

students to contribute to the selection of their synthetic targets through this exercise ultimately 

increases student ownership and engagement in the project. 

Materials 

Students use the commercially available Bill-Board apparatus41 for the combinatorial solid-phase 

syntheses. Bill-Board equipment organizes six reactions and simplifies the repeated cycles of reactions 

and washings, product collection, and solvent evaporation.  It includes three modular polypropylene 

components:  

1) A reaction board fitted with six fritted glass reaction vessels arranged in a two by three grid

2) A channeled drain tray to facilitate collection of solvent and reagent washes into a waste beaker

3) A collection vial rack with six wells to hold 25 x 52 mm vials

Laboratory Experiment and Post-Lab Analysis 

The learning objectives (LOs) of the laboratory experiment are for students to: 

1) Complete a three-step combinatorial synthesis using solid-phase synthesis techniques.

2) Purify a final product using column chromatography.

3) Obtain and analyze TLC, LC/MS, and 1H NMR data for their final products to assess compound

purity and identity. 

4) Contribute to the D3 program by providing compounds for biological screening in antibiotic

assays. 

In the first laboratory session, students deprotect the Fmoc group from the resin-bound amino 

acids.  Students wash the resins and add the necessary reagents for the N-acylation step.  This reaction 

is completed overnight, but for courses meeting weekly, this step can proceed for a week.  In the second 

laboratory session, students wash the resins to remove excess reagents and cleave the N-acylated 

products from the resin using trifluoroacetic acid.  Students submit an aliquot of each crude product 

solution for LC-MC analysis.  In the third lab session, students weigh their crude products and calculate 

crude yields.  Students complete TLC analysis on all six crude product samples.  Each student purifies 

one compound by column chromatography and obtains LC-MS data on the purified product.42   Finally, 
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in a fourth laboratory session, students obtain 1H NMR data on their purified samples prior to final 

sample submission. 

HAZARDS 

See the Supporting Information (SI-2, pp 6-8) for a complete list of reagents, CAS numbers, supplier 

information, and hazard statements.  The product N-acylamino acids should be assumed to have 

biological activity, and direct contact should be avoided.  Students and instructors should use standard 

laboratory safety precautions and should handle all solvents, reagents, and products in a fume hood 

while wearing standard personal protective equipment, including gloves, lab coats, and goggles.   

RESULTS AND DISCUSSION 

Students have reproducibly executed this experiment in diverse settings, including second-semester, 

introductory undergraduate organic chemistry laboratories at IUPUI; short format Block Plan courses 

at Colorado College; a four-day workshop at the University of Havana;43 and independent research labs 

at Goshen College and Medical University of Lublin (Table 2).  In total, over 950 students have completed 

this laboratory experiment, and a diverse set of compounds has been prepared, with replication within 

and between participating institutions (SI-3). 

Student learning in the prelab activities has been assessed using the student worksheets. By 

completing the SciFinder activity, all students (n = 32) in a second-semester introductory undergraduate 

organic chemistry course in 2018 at Colorado College demonstrated proficiency with this digital resource 

critical for practicing chemists, as shown by their scores on this worksheet (average score = 99 ± 5%). 

Students completed the Bill-Board design worksheet as part of an in-class activity, and these worksheets 

were not collected or graded. Students presented their hypotheses to the class as part of the activity, 

and the majority of students demonstrated the ability to use the available data to generate a reasonable 

hypothesis. The design activity also contributed to student motivation and engagement in the overall 

experimental process, as noted responses on student assessment of learning gains. 

Recent data from two student groups completing this experiment in different settings (University 

of Havana, 2016 and Colorado College, 2018) demonstrated typical outcomes for laboratory groups 
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against LO 1. The majority of students had little or no previous experience in multi-step, combinatorial, 

or solid-phase synthesis.  At the University of Havana workshop, all students (100%) successfully 

completed the combinatorial syntheses and achieved LO 1.44  Their crude A1 controls (n = 10) had an 

average purity (LC-MS) of 82 ± 11%.  Due to time constraints in this workshop format, students did not 

purify their compounds and LO 2 was not assessed in this group.    In two recent laboratory sections at 

Colorado College, the targeted products were obtained in 14 out of 16 Bill-Boards.45  Thus, 28 out of 32 

students (88%) achieved LO 1.46  Within this Colorado College group, all students (100%) were successful 

in purifying their products and achieving LO 2.  The crude A1 products (n = 12) had an average purity 

of 56 ± 10%, which was improved to an average final purity of 91 ± 6% after cyanosilica gel 

chromatography.  An additional set of student samples (n = 20), which included greater structural 

diversity, had an average purity of 42 ± 15% before purification and 84 ± 11% after purification  

Table 2. Institutions involved in D3 Lab 2 Validation 

Institution Laboratory Format Total Lab 
Sections 

Number of 
Students 

per 
Section 

Total 
Independent 

Research 
Students 

IUPUI One-semester, 
undergraduate lab 
course 

39 20 20 

Colorado College Block Plan (short format) 
undergraduate lab 
course 

7 16 - 24 NA 

Goshen College Independent 
undergraduate research 
group 

NA NA 17 

University of Havana Four-day 
undergraduate/ 
graduate-level workshop 

1 24 NA 

Medical University of 
Lublin 

Independent 
undergraduate research 
group 

NA NA 8 

  Most students participating in this laboratory experiment had no previous experience analyzing 

LC-MS data.  Therefore, a post-lab classroom session in which the instructor helped guide students 

through an example LC-MS data set was essential for enabling students to achieve LO 3.  Additionally, 

many students completing this experiment had not previously obtained 1H NMR spectra of chiral 

compounds and had difficulty in correctly identifying the signals for the diastereotopic protons (e.g., 



Journal of Chemical Education 2/14/20 Page 11 of 19 

benzylic signals in their phenylalanine or tyrosine derivatives).  A brief instructor-led discussion on this 

aspect of 1H NMR spectral characteristics may assist students in correctly assigning all signals in their 

1H NMR spectra.  At Colorado College, student learning on LO 3 has typically been assessed using 

student laboratory reports (average lab report score = 94 ± 3%).47  Most students (>80%) are successful 

in analyzing and interpreting all of their data (TLC, LC-MS, and NMR) and correctly determining 

compound purity and identity (see SI-2 pp 20-23 for an example lab report grading rubric and student 

report).  The most common student errors involved misassignment of signals in the 1H NMR spectra. 

Independent undergraduate research students at Goshen College have demonstrated mastery of LO3 

through completion of an advanced undergraduate thesis project report (n = 6; average thesis report 

score = 92.2%, range 91 – 94%; grading rubric and sample thesis report included in SI-2, pp 24-58).  At 

Colorado College and IUPUI, students also completed lab quizzes to assess pre-lab preparation and 

understanding of concepts and techniques (Example quizzes in SI-2 pp 17-19).   In the recent Colorado 

College course, students demonstrated an acceptable level of pre-lab preparation and familiarity with 

the reaction protocols prior to the first laboratory session (n = 32, Average score 78 ± 16%). 

One key goal of this program (LO 4) is to provide compounds for biological screening for antibiotic 

drug discovery.  Therefore, it is noteworthy that most students (typically >80%) in recent D3 labs 

produced a purified sample in sufficient quantity (≥1 - 2 mg) and with appropriate purity (>85%) for 

biological assays, such as bacterial growth inhibition assays.  These biological assays are beyond the 

scope of organic chemistry instructional laboratories. Nevertheless, several collaborative approaches 

have been explored to involve undergraduate students in completing the full cycle of design, synthesis, 

and biological screening.  For example, students in introductory microbiology courses and independent 

research laboratories at IUPUI have tested compounds from this experiment in a variety of simple 

assays.48-51   Independent research students at the Medical University of Lublin have also prepared and 

tested compounds from this experiment in antimicrobial assays and have identified active compounds. 

(Example assay protocols and data are included in the Supporting Information, SI-2 pp 61-64.) 

Synthetic products from this experiment have also been submitted to the CO-ADD screening panel.33,34 

Student assessment of learning gains 
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A Student Assessment of Learning Gains (SALG) instrument was completed by students at University 

of Havana and Colorado College.  A common theme among students was their increased understanding 

of drug discovery and a sense of contribution to this enterprise.  Examples of student responses are 

included in Table 3 (SALG instrument in SI-2 pp 59-60).  Quantitative questions from the SALG survey 

also revealed topics and skills where students perceived the greatest learning gains after the D3 

experiment (Table 3).  All students noted gains in understanding how drugs are discovered and in their 

abilities analyze their data.  Nearly all students (30/31) noted that doing experimental work helped their 

learning. These student-reported gains are consistent with other measures of success highlighted in the 

assessments described above.  Numerous student comments indicated that the real-world applications 

of the D3 project were motivating and increased their engagement with the laboratory and classroom 

learning. Selected student comments include these observations: 

• “I have learned a lot more about planning experiments to get meaningful results.”
[Colorado College student, 2018]

• “It made me feel like I was an integral part of the procedure of producing a new drug.”
[Colorado College student, 2018]

• “It has motivated me to take additional chemistry courses and expand my knowledge of
solid phase synthesis.” [University of Havana student, 2016]

• “This workshop showed me how chemistry can be very useful in helping humanity. It has
motivated me to do research in the field of neglected disease.” [University of Havana
student, 2016]

• “Doing experimental work in groups mimics real world drug discovery.” [Colorado College
student, 2018]
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Table 3.  Selected Survey Response Data from Students’ Self-Reported Learning Gains 
Statements for Response Average Score,a N = 31 SD 
As a result of your work on the D3 lab, what gains did you make in your understanding of the following? 

How drugs are discovered 4.3 0.8 
How the studies done in this lab address real-world issues 4.1 1.2 

As a result of your work on the D3 lab, what gains did you make in the following skill? 
Analyzing and interpreting experimental data 4.0 0.8 

How much did each of the following aspects of the workshop help your learning? 
Listening to workshop lectures 3.6 0.9 
Working in groups 3.9 1.1 
Doing experimental work 4.1 0.9 

aScale has a range of 1–5, with 1 = no gains/help; 2 = a little gain/help; 3 = moderate gain/help; 4 = good 
gain/help; and 5 = great gain/help. 

CONCLUSIONS 
The complete set of design activities and laboratory experiments described herein represents the 

culmination of years of multi-institutional efforts to realize the D3 chemistry vision: an accessible, 

undergraduate-focused and globally Distributed Drug Discovery program.  Key components introduced 

students to the role of chemistry in drug discovery, involved them in the synthetic planning and design 

process, and enabled them to use well-described combinatorial solid-phase synthesis procedures and 

simple equipment to reproducibly synthesize new molecules as potential drug leads for antibiotic 

resistant infections. Through this experiment, students learned to complete the solid-phase synthesis, 

purification, and analysis of small organic molecules with potential bioactivity.  Furthermore, students 

provided samples for screening in antibiotic assays and learn about an important humanitarian 

application of chemistry.  The involvement of students from institutions in the U.S., Poland, and Cuba 

highlights the essential role of global collaboration in the research process.52-55  This experiment has 

been adapted to the variety of levels, resources, and educational goals represented by this diverse group 

of institutions. 

The D3 program continues to expand its international collaborations and advance its mission by 

developing new synthesis procedures for additional classes of molecules, which can be enumerated into 

virtual catalogs for computational analysis and synthesis selection.56  As the D3 community expands, 

the program will gain from the unique experiences of students and instructors from diverse 
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environments and will apply this learning in a powerful educational consortium searching for new 

antibiotic drugs. 
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