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Abstract: Zika virus (ZIKV) recently emerged in the Western Hemisphere with previously unrecognized
or unreported clinical presentations. Here, we identify two putative binding mechanisms of ancestral
and emergent ZIKV strains featuring the envelope (E) protein residue asparagine 154 (ASN154) and
viral phosphatidylserine (PS). Synthetic peptides representing the region containing ASN154 from
strains PRVABC59 (Puerto Rico 2015) and MR_766 (Uganda 1947) were exposed to neuronal cells and
fibroblasts to model ZIKV E protein/cell interactions and bound MDCK or Vero cells and primary
neurons significantly. Peptides significantly inhibited Vero cell infectivity by ZIKV strains MR_766 and
PRVABC59, indicating that this region represents a putative binding mechanism of ancestral African
ZIKV strains and emergent Western Hemisphere strains. Pretreatment of ZIKV strains MR_766 and
PRVABC59 with the PS-binding protein annexin V significantly inhibited replication of PRVABC59 but
not MR_766, suggesting that Western hemisphere strains may additionally be capable of utilizing
PS-mediated entry to infect host cells. These data indicate that the region surrounding E protein
ASN154 is capable of binding fibroblasts and primary neuronal cells and that PS-mediated entry may
be a secondary mechanism for infectivity utilized by Western Hemisphere strains.

Keywords: Zika Virus; Neurotropism; Flavivirus; Microcephaly; ASN154; N-acetylglucosamine;
Encephalitis; binding motif

1. Introduction

Zika virus (ZIKV) is a mosquito-borne Flavivirus that recently emerged and established endemicity
in the Western Hemisphere (reviewed here [1,2]). ZIKV disease historically presented as a mild febrile
illness featuring myalgia, rash, and conjunctivitis. However, novel and more severe clinical presentations
and increased disease incidence were reported as the virus emerged in the South Pacific [3,4] and the
Western Hemisphere [5–7]. Since that time, case reports and animal models have implicated ZIKV in a
congenital syndrome most notably featuring microcephaly [7–12], primary encephalitis, encephalomyelitis,
lyssencephaly, or Guillan-Barré syndrome [5,13–20], chorioamnionitis [21], testicular infection [22], changes
in semen quality [23], and potentially hemorrhagic shock syndrome [24,25]. The biology and pathogenesis
of ZIKV were virtually unexplored at the time of its detection in the Western Hemisphere, making
rapid progress toward diagnostics, therapeutics, or vaccine development challenging in the absence of
viral targets [26]. Substantial progress in the understanding of ZIKV biology has been made in a short
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time and includes identification of potential host cell receptors [27–29]—factors that impact replication
kinetics [30–33]—and the development of animals models for both neurological and prenatal disease [34,35].

Changes in clinical presentation during ZIKV infection from strains in the Asian/American lineage
relative to the ancestral African lineage are likely the result of divergent nucleotide and amino acid
sites conferring new phenotypes [36–39], and the relative contributions of various changes are still
being explored. The structure of the ZIKV strain H/PF/2013 (Asian/American lineage) was resolved
by cryo-electron microscopy and illustrated both unique features of this lineage and commonalities to
other flaviviruses. A key difference between ZIKV lineages predicted computationally and detected
structurally is the modification of asparagine at position 154 (ASN154) of the envelope protein (E) with
N-acetylglucosamine (NAG). This modification is also seen across many flaviviruses but is often variable
across strains [40]. Reports have implicated the ASN154 counterpart in host cell interactions by the four
dengue virus serotypes [41] and in neuroinvasion of West Nile virus and St. Louis encephalitis virus [42,43].
Additionally, a recent study by Yuan et al. demonstrated that a single amino acid substitution within the
PrM protein of Western Hemisphere strains conferred increased virulence and resulted in exacerbated
pathology in vivo [33]. While this change confers an increased capacity for cell death and correlates with
the clinical findings suggesting more severe and invasive disease, it cannot explain the newly emerged
ability to directly invade the central nervous system (CNS). We sought to build upon our recent informatics
analysis [36] by utilizing the findings to identify additional binding mechanisms of ZIKV.

2. Methods

2.1. Virus Isolates and Culture Conditions

African Green monkey kidney (Vero) cells and Madin–Darby canine kidney (MDCK) cells
were obtained from the American Type Culture Collection (ATCC, Manassas, VA). Cells were
routinely propagated in Earle’s Minimum Essential Medium (EMEM) with Earle’s Balanced Salt
Solution (BD Biosciences, San Jose, CA), supplemented with 10% fetal bovine serum, L-glutamine and
Penicillin/Streptomycin. Cell cultures were incubated at 37 ◦C, with 5% CO2 and a relative humidity
(RH) of 90%. Low-passage isolates of ZIKV strains MR_766 (ATCC VR-84, Uganda) and PRVABC59
(ATCC VR-1843, Puerto Rico) were obtained from the American Type Culture Collection. Virus stocks
were propagated on monolayers of Vero cells. Harvested virus lysates were clarified by low-speed
centrifugation (500× g/10 min) and stored in 1-ml aliquots at −80 ◦C.

2.2. Protein Analysis and Peptide Design

The Envelope protein structure was visualized using Jmol via the Protein Data Bank (PDB
ID 5JHM) [44,45], and the PDB Ligand Explorer was used to visualize the structure of NAG on
ASN154. Probabilities of protein disorder at each amino acid site was estimated using PrDOS [46].
This analysis indicated that the region surrounding ASN154 constitutes a highly disordered linear
epitope. Synthetic peptides representing this linear epitope including the differentially glycosylated
ASN154 were generated (see Table 1) by Bachem (Bubendorf, Switzerland). The aminoterminal and
carboxyterminal domains from PRVABC59 were also synthesized. Peptides were modified by the
addition of an aminoterminal FITC label to allow detection and visualization.

2.3. Primary Dorsal Root (DRG) Ganglia Neuron Culture

Adult C57/black mice were anesthetized and perfused transcardially with 4 ◦C 1× PBS.
Cervical, thoracic, and lumbar dorsal root ganglia (DRGs) were dissected in Ca++/Mg++-free Hank’s
basic salt solution (HBSS) and dissociated as previously described [47]. DRGs were cultivated on
laminin/polyD-lysine coated EZ slides (MilliporeSigma, Burlington, MA, USA) for 18–24 h in F-12 medium
(Gibco, ThermoFisher Scientific, Waltham, MA, USA) supplemented with 10% fetal bovine serum, 1%
penicillin/streptomycin at 37◦ C/5% CO2. Collection of DRG neurons was performed in accordance with a
protocol approved by the University of New England’s Institutional Animal Care and Use Committee.
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2.4. Peptide Binding Assays

Vero cells and MDCK cells, both of which are permissive for all Zika strains, were grown to 80%
confluency in 48-well plates. Following the removal of medium, wells were blocked with 10% fetal
bovine serum for 30 min at 37 ◦C. Peptides (0.2 µmol) were incubated with Vero or MDCK cells for
1 hour at 37 ◦C. Unbound peptides were removed by washing with 1× PBS, and mammalian cells were
counterstained with 4′,6-diamidino-2-phenylindole (DAPI, diluted 1:300) to control for minor variations
in monolayer populations. Bound peptides (FITC) were detected at 485/490 (excitation/emission),
and cells were quantified at 350/460. Data are presented as FITC:DAPI ratios to correct for minor
variance in cell numbers between wells. Statistical significance was measured by analyses of variance,
and by Fisher’s Protected Least Significant Difference test for posthoc comparisons when main effects
were significant (GraphPad Prism v. 6.0).

Primary DRG neurons grown on coverslips were incubated with 100 µg peptide for 1 hour at
37 ◦C to qualitatively assess ZVBM binding potential. Unbound peptides were removed by washing
with HBSS, and DRG neurons were counterstained with DAPI (diluted 1:300). Bound peptides were
visualized using Keyence BZX-700 inverted widefield digital microscope. Binding was evaluated
qualitatively to avoid ambiguities from the potential for greater or lower affinities for certain peptides
by heterogeneous populations of neurons that may vary slightly from well to well, and from the
formation of cellular islands as opposed to confluent monolayers. To avoid ambiguities with the
impact of glycosylation, peptides PRV, MR, and PRVScrwere used.

2.5. Viral Inhibition Assays by ZVBM Peptides

Vero cells were propagated in 48-well plates (seed concentration-1e5 cells/well) for 24-h.
Resulting monolayers (85% confluence) were washed twice with warmed PBS and incubated for
2 hours (37 ◦C, 5% CO2, 90% RH) with 0.1 ml volumes of either PBS (Negative Control), or PBS
containing 0.8 µmol of the selected ZVBM peptide. Following treatment, PBS or peptide was decanted,
and monolayers washed twice with warmed PBS. ZIKV stocks (stock concentrations: Strain MR_766–107

TCID50/ml; Strain PRVABC59–107 TCID50/mL) were serially diluted in serum-free Dulbecco’s Minimum
Essential Medium (DMEM). Host cell monolayers in treated, or untreated plates were inoculated with
either strain MR_766 or PRVABC59 (0.1 mL/well, 5 wells per dilution [MOI = 1], N = 3 replicates
each) and incubated for 2 hr. After inocula were removed, wells were supplemented with 0.5 ml
EMEM growth medium and returned to the incubator. Virus cytopathogenic effects (CPEs) were
monitored and scored over a period of 10–12 days and the resulting virus titers calculated as TCID50/mL.
Statistical significance of changes in virus titer as a result of peptide pretreatment versus untreated
control was measured by Student’s T-test (GraphPad Prism v. 6.0).

2.6. Virus Treatment with Annexin V

Annexin V (AbCam, Cambridge, MA) was dissolved in PBS (2335 µg/mL) and filter-sterilized
(0.2 µm). ZIKV stocks MR_766 and PRVABC59 were then serially diluted in either PBS, or PBS-Annexin
V. Dilutions were incubated for 2 hours (37◦ C, 5% CO2, 90% RH). Host cell monolayers, prepared in
48-well plates as previously described, were inoculated with respective virus dilutions (0.1 mL/well,
5 wells per dilution [MOI = 1], n = 3 replicates each). Virus CPE were scored over a period of 10–12 days
and the resulting virus titers calculated as TCID50/ml. Statistical significance of changes in virus
titer as a result of Annexin V pretreatment versus untreated control was measured by student’s T test
(GraphPad Prism v. 6.0) for each ZIKV strain.

3. Results

3.1. Binding Motif Prediction

Structural modeling predictions of strain PRVABC59 (Puerto Rico, 2015) indicated that asparagine
154 (ASN154) is part of a linear β strand (Figure 1A). The disorder probability of this region peaks
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at 0.72 (Figure 1B), suggesting that this portion of the E protein is particularly dynamic and flexible.
Structural and disorder probability predictions of the African type strain MR_766 (Uganda 1947) exhibit
similar characteristics (Figure 1C). This region was termed the (putative) Zika virus binding motif
(ZVBM). ZVBM sequences from strains PRVABC59 and MR_766 were synthesized and N-terminally
labelled with fluorescein isothiocyanate (FITC) in order to assess their capacity to bind ZIKV-susceptible
and -permissive cell lines, disrupt ZIKV adsorption, and to interact with dorsal root ganglia (DRG)
neurons ex vivo. The PRVABC59 sequence was used to generate a peptide that was modified with an
N-acetyl glucosamine (NAG) molecule at position 8 (equivalent to ASN154), as it natively occurs in
this strain, and without carbohydrate modification (Table 1).
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Figure 1. Envelope protein structure. (A) The predicted E protein structure indicates that the region
containing ASN154 (circled) and its N-acetyl glucosamine (NAG) modification (inset) is a linear β

strand. Intrinsic disorder probabilities were calculated for each amino acid position in the E protein
sequence from strains (B) PRVABC59 and (C) MR_766. Probabilities above 0.5 (blue line) are considered
indicative of sites representing disordered regions. The region containing ASN154 is indicated (blue
box) for each strain.

Table 1. Peptide sequences.

Peptide Name a Strain Sequence b Strain Type c Molecular
Weight

PRV-N PRVABC59 *QHSGMIV N DTGHETDENRAKV Asian/American 2949.082 g/mol

PRV PRVABC59 *QHSGMIVNDTGHETDENRAKV “African” 2727.872 g/mol

MR MR_766 *QHSGMI—-GYETDENRAKV African 2324.482 g/mol

PRVScr N/A *QDHVIHVDMTGRTGSEEANKN N/A 2727.872 g/mol

PRV-NScr N/A *QDHVIHVDMTGRTGSEEA N KN N/A 2949.082 g/mol

PRV-NTD PRVABC59 *QHSGMIVND “African” partial 1398.47 g/mol

PRV-CTD PRVABC59 *ENRAKV Asian/American 1105.192 g/mol
a Peptide abbreviations represent the strain they derived from. The modifiers N, NTD, and CTD reflect the addition
of NAG, use of the aminoterminal domain, or the carboxyterminal domain, respectively. The superscript “Scr”
indicates a scrambled control peptide of the same designation. b Asterisk (*) indicate location of the FITC molecule.
Shaded asparagine (N) residues indicate location of NAG coupling. c The designation “African” indicates that sequence
from the Asian/American clade strain PRVABC59 has been made to resemble an African strain by its lack of NAG.

3.2. ZVBM Binding to ZIKV Replication-Permissive Fibroblast Lines

ZVBM peptides from strains MR_766 (“MR”) and PRVABC59 (NAGylated and unglycosylated,
“PRV” and “PRV-N”) all bound Vero cells at levels significantly above those of scrambled (NAGylated
and unglycosylated, “PRVScr” and “PRV-NScr”) controls (Figure 2A). Unglycosylated ZVBM peptides
MR and PRV both bound Madin–Darby canine kidney (MDCK) cells significantly (p < 0.05) above
scrambled controls PRVScr and PRV-NScr, though the signal generated by PRV was significantly higher
than MR. Interestingly, NAGylated PRV-N did not bind MDCK cells above the scrambled controls,
(Figure 2B). Two-fold dilutions of adherent ZVBM peptides resulted in proportional reductions in
FITC signal, indicating that titration of binding to both Vero and MDCK cells is readily achieved
(Figure 2C,D).
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Peptides PRV, PRV-N, and MR bound Vero cells significantly (* p < 0.05) above scrambled PRVScr

and PRV-NScr controls (A). Peptides PRV and MR bound Madin–Darby canine kidney (MDCK) cells
significantly (* p < 0.05) above PRV-N and scrambled PRVScr and PRV-NScr controls, and PRV bound
with significantly († p < 0.05) higher avidity than MR (B). Two-fold dilutions of ZVBM peptides resulted
in proportional reductions in signal, with significant (*, p < 0.05) differences between binding peptides
and scrambled controls apparent with 0.05 µmol for Vero cells (C) and 0.0125 µmol for MDCK cells (D).
The difference in avidity between PRV and MR became significant († p < 0.05) with 0.0125 µmol of
treatment. Error bars indicate standard deviations in all panels.

3.3. ZVBM Binding to Primary Neuronal Cells Ex Vivo

We collected dorsal root ganglia (DRG) from C57/black mice and cultured DRG neurons on
coverslips to qualitatively assess interactions with ZVBM peptides. Peptides PRV and MR were
visualized in association with 24-hour DRG neuron cultures by fluorescence microscopy (Figure 3A–B).
Cell association was not detected for the scrambled PRVABC59 control peptide (Figure 3C).
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Figure 3. Peptide binding to dorsal root ganglia (DRG) neurons ex vivo (20x magnification).
Primary DRG neurons from C57 black mice (DAPI, blue fluorescence) were exposed to ZVBM peptides
(FITC, green fluorescence) from (A) PRVABC59, (B) MR_766, and (C) scrambled (unglycosylated)
PRVABC59. Punctate green staining around the DRG nuclei was observed in panels A and B, but was
largely absent from panel C.
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3.4. Refinement of ZVBM Functional Elements

Peptides representing the NTD and the CTD of strain PRVABC59′s ZVBM sequence (“PRV-NTD”
and “PRV-CTD”) were synthesized and N-terminally labelled with FITC (Figure 4). To avoid ambiguities
with the impact of glycosylation, neither peptide was NAGylated, and Vero cells were used to assess
binding. PRV-NTD was unable to bind Vero cells above the scrambled control PRVScr, whereas
PRV-CTD bound significantly (p < 0.05) above PRVScr. Additionally, PRV-CTD bound at equivalent
levels to full-length PRV and to MR.
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bound Vero cells significantly (* p < 0.05) above the scrambled control peptide PRVScr (white), and the
aminoterminal peptide PRV-NTD (red) did not. PRV-CTD bound Vero cells at equivalent levels to
peptides PRV-N, and MR (black), indicating that this refined motif facilitates binding to Vero cells.

3.5. Disruption of ZIKV Infection and CPE Generation

Host cell monolayers were pre-treated with PRV, PRV-N, MR, and scrambled controls PRVScr

and PRV-NScr. To avoid ambiguities from the impact of glycosylation, Vero cells were used to for
this analysis. All peptides were used to inhibit both strains MR_766 and PRVABC59. Pretreatment of
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Vero cell monolayers with PRV, PRV-N, and MR significantly (p < 0.01) inhibited infectivity and CPE
generation by both ZIKV MR_766 and ZIKV PRVABC59 relative to scrambled control peptides and Vero
cells pretreated with PBS alone (Figure 5A). MDCK cells are still permissive for ZIKV replication [48],
suggesting that additional mechanisms facilitate infection when ZVBM is NAGylated. We pretreated
ZIKV strains MR_766 and PRVABC59 with the PS-binding protein annexin V prior to infection of
Vero cell monolayers. Annexin V significantly (p < 0.05) inhibited infectivity of PRVABC59 relative to
untreated controls but did not inhibit MR_766 (Figure 5B).

Viruses 2019, 11, x FOR PEER REVIEW 7 of 13 

 

analysis. All peptides were used to inhibit both strains MR_766 and PRVABC59. Pretreatment of Vero 
cell monolayers with PRV, PRV-N, and MR significantly (p < 0.01) inhibited infectivity and CPE 
generation by both ZIKV MR_766 and ZIKV PRVABC59 relative to scrambled control peptides and 
Vero cells pretreated with PBS alone (Figure 5A). MDCK cells are still permissive for ZIKV replication 
[48], suggesting that additional mechanisms facilitate infection when ZVBM is NAGylated. We 
pretreated ZIKV strains MR_766 and PRVABC59 with the PS-binding protein annexin V prior to 
infection of Vero cell monolayers. Annexin V significantly (p < 0.05) inhibited infectivity of 
PRVABC59 relative to untreated controls but did not inhibit MR_766 (Figure 5B). 

 

Figure 5. Disruption of ZIKV Infectivity. Pretreatment of Vero cells with peptides MR (red), PRV 
(blue), and PRV-N (green) significantly (* p < 0.05) inhibited cytopathogenic effect (CPE) generation 
following infection with both strains MR_766 and PRVABC59 relative to pretreatment with scrambled 
controls PRVScr (black), PRV-NScr (grey), or PBS alone (white) (A). Pretreatment of ZIKV strain 
PRVABC59 with the PS-binding protein annexin V (black) prior to Vero cell infection resulted in a 
significant (* p < 0.05) decrease in CPE generation relative to PBS alone (white). Pretreatment of ZIKV 
strain MR_766 with annexin V did not impact CPE generation relative to pretreatment with PBS alone 
(B). 

4. Discussion 

The change in clinical spectrum of ZIKV disease caused by Asian/American lineage strains 
suggests fundamental changes in key protein functions relative to African lineage strains. 
Comparative analyses between strains of both lineages identified areas of interest with potential to 
contribute to the changes in clinical presentations, including ASN154 [36,40]. ASN154 is part of an 
intrinsically disordered region of the E protein. Disordered regions lack fixed tertiary structures, 
which affords them flexibility in spatial arrangement. The array of structures expands further if the 
disordered regions are post-translationally modified, including via glycosylation [49]. The diversity 
that this provides in terms of function is increasingly reported for many organisms, including 
flaviviruses [50,51]. The region surrounding ASN154 was thus an attractive target for mechanistic 
evaluation to explore the changes in clinical presentation. 

ZVBM peptides MR, PRV, and PRV-N all bound Vero cells at levels significantly above those of 
scrambled controls (Figure 2A), and peptides MR and PRV bound MDCK cells significantly above 
scrambled controls (Figure 2B). Interestingly, NAGylated PRV-N did not bind MDCK cells above the 
scrambled controls, (Figure 2B). Two-fold dilutions of adherent ZVBM peptides resulted in 
proportional reductions in FITC signal, indicating that titration of binding to both Vero and MDCK 
cells is readily achieved (Figure 2C, 2D). These findings suggest that this motif binds to fibroblasts 
and has the potential to mediate ZIKV infectivity, but the difference in avidity between PRV and MR 
and the inability of NAGylated PRV-N to bind MDCK cells indicates that the functionality of ZVBM 
may be host cell and strain dependent. Pre-treatment of host cell monolayers with PRV, PRV-N, MR 
significantly inhibited infectivity and CPE generation by both ZIKV MR_766 and ZIKV PRVABC59 
relative to scrambled control peptides and Vero cells pretreated with PBS alone (Figure 5A), 

Figure 5. Disruption of ZIKV Infectivity. Pretreatment of Vero cells with peptides MR (red), PRV (blue),
and PRV-N (green) significantly (* p < 0.05) inhibited cytopathogenic effect (CPE) generation following
infection with both strains MR_766 and PRVABC59 relative to pretreatment with scrambled controls
PRVScr (black), PRV-NScr (grey), or PBS alone (white) (A). Pretreatment of ZIKV strain PRVABC59 with
the PS-binding protein annexin V (black) prior to Vero cell infection resulted in a significant (* p < 0.05)
decrease in CPE generation relative to PBS alone (white). Pretreatment of ZIKV strain MR_766 with
annexin V did not impact CPE generation relative to pretreatment with PBS alone (B).

4. Discussion

The change in clinical spectrum of ZIKV disease caused by Asian/American lineage strains suggests
fundamental changes in key protein functions relative to African lineage strains. Comparative analyses
between strains of both lineages identified areas of interest with potential to contribute to the changes
in clinical presentations, including ASN154 [36,40]. ASN154 is part of an intrinsically disordered
region of the E protein. Disordered regions lack fixed tertiary structures, which affords them
flexibility in spatial arrangement. The array of structures expands further if the disordered regions are
post-translationally modified, including via glycosylation [49]. The diversity that this provides in terms
of function is increasingly reported for many organisms, including flaviviruses [50,51]. The region
surrounding ASN154 was thus an attractive target for mechanistic evaluation to explore the changes in
clinical presentation.

ZVBM peptides MR, PRV, and PRV-N all bound Vero cells at levels significantly above those of
scrambled controls (Figure 2A), and peptides MR and PRV bound MDCK cells significantly above
scrambled controls (Figure 2B). Interestingly, NAGylated PRV-N did not bind MDCK cells above the
scrambled controls, (Figure 2B). Two-fold dilutions of adherent ZVBM peptides resulted in proportional
reductions in FITC signal, indicating that titration of binding to both Vero and MDCK cells is readily
achieved (Figure 2C,D). These findings suggest that this motif binds to fibroblasts and has the potential
to mediate ZIKV infectivity, but the difference in avidity between PRV and MR and the inability of
NAGylated PRV-N to bind MDCK cells indicates that the functionality of ZVBM may be host cell and
strain dependent. Pre-treatment of host cell monolayers with PRV, PRV-N, MR significantly inhibited
infectivity and CPE generation by both ZIKV MR_766 and ZIKV PRVABC59 relative to scrambled
control peptides and Vero cells pretreated with PBS alone (Figure 5A), suggesting that ZIKV and ZVBM
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target the same host cell receptor. These findings demonstrate that adherence of ZVBM peptides to
Vero cells has functional relevance, and that this motif likely mediates at least some host cell infection.

Binding of the MR_766 ZVBM peptides to Vero cells and MDCK cells, despite a four-amino acid
deletion relative to PRVABC59, suggests that the critical portion of the ZVBM is potentially contained
entirely on the aminoterminus (NTD) or the carboxyterminus (CTD). PRV-NTD was unable to bind
Vero cells, whereas PRV-CTD bound significantly (p < 0.05) above scrambled controls. Consistent with
the notion that binding is facilitated by either the NTD or the CTD, PRV-CTD bound at equivalent levels
to full-length PRV and to MR indicating that the functional element of ZVBM that mediates binding is
contained entirely on the CTD (Figure 4). Interestingly, PRV-CTD does not contain ASN154, suggesting
that any impacts of this residue on host cell binding and/or specificity stem from its proximity to the
critical binding mediators rather than its direct involvement.

Given that MDCK cells are still permissive for ZIKV replication [48], we hypothesized that a
more generalized mechanism may be contributing to viral adsorption to some strains. The association
of human AXL with ZIKV adsorption [27–29] suggests that viral PS may facilitate entry into certain
host cells by binding Gas6, which in turn binds AXL, as is seen with multiple viruses [52–56].
Pretreatment ZIKV strain PRVABC59 with the PS-binding protein annexin V prior to infection of Vero cell
monolayers significantly inhibited infectivity relative to untreated controls. Conversely, pretreatment
of ZIKV strain MR_766 with annexin V did not impact infectivity (Figure 5B). This finding suggests
that PS-mediated ZIKV adsorption is possible for at least some strains, although a relationship between
PS-mediated infectivity and ZVBM- NAGylation is unclear, and it is plausible that strains differing in
maturation kinetics will differ in membrane PS concentration. While at least one additional mechanism
has been described for the greater infectivity of Asian and American strains [33], PS-mediated host
cell entry has high potential to contribute to this phenotype as well. Additionally, these findings also
support previous studies that both implicate AXL as a host cell receptor for Asian/American ZIKV
strains and those that show genetically ablated animals are still susceptible to infection by establishing
two distinct binding mechanisms for this clade [27–29,57–59].

CNS disease or infectivity with MR_766 following intrathecal or intracerebral inoculation in vivo,
or neuronal cell infectivity in vitro, has been reported [60–64]. Observation of the MR peptide binding
to DRG neurons is consistent with these findings; however, both stand in conflict with a lack of evidence
for CNS involvement during human disease caused by African ZIKV strains. We hypothesized that
exposure to neuronal cells ex vivo would result in MR_766 ZVBM peptide binding, and the lack of
neurological complications during Zika virus disease caused by African strains stems from an inability
of these strains to penetrate into the CNS. These findings were consistent with those of Annamalai et
al., who demonstrated a lack of neurological disease with strains lacking NAGylation at ASN154 when
injected intravenously, and overt disease when the same strain was injected intracranially [65].
This suggests that the ability of Asian/American lineage strains to cause disease in the CNS is not
exclusively due to a novel binding mechanism but is more likely due to a newfound ability to access
the CNS and other privileged body sites. The ZVBM peptide MR binding to neuronal cells ex vivo is
consistent with this suggestion. While additional mechanisms facilitate novel interactions between
Asian/American lineage ZIKV strains and neuronal cells [33], ZVBM-mediated binding to neuronal
cells is not unique to this lineage. N-linked glycosylation of E in other flaviviruses is proposed to
facilitate blood-brain barrier (BBB) transit by allowing interaction with DC-SIGN on microvascular
endothelial cells followed by transcytosis [66], and ASN154 is notably absent from strain MR_766.
Though not required for direct binding to neuronal cells, ASN154 may very well facilitate BBB passage
in Asian/American lineage strains. In vivo inhibition of Asian/American ZIKV BBB transit by peptides
would demonstrate this.

The outcomes of our in vitro and ex vivo studies suggest that the disordered region of the ZIKV E
protein surrounding ASN154, termed ZVBM, binds fibroblasts and primary neuronal cells, indicating its
potential to contribute to host cell infection. The carboxyterminal portion of the ZVBM (i.e., ENRAKV)
is capable of binding fibroblasts at the same levels as full-length ZVBM, suggesting that it mediates the
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binding. Despite retaining the sequence ENRAKV, glycosylated peptides have differing abilities to
bind MDCK cells and ZIKV strains lacking ASN154 feature different tissue tropism, suggesting that
glycosylation of this site could either sterically hinder binding to some cell types, provide proximity to
other cell types by facilitating entry into the privileged body sites, or both. This model is consistent
with both the clinical disparity between ZIKV lineages and the generation of neurological disease by
the African strain MR_766, which lacks ASN154, when introduced directly into the CNS as previously
described [61,65]. These findings demonstrate the impact of NAGylation of a pathogen surface protein
in the vicinity of a binding motif on its potential host cell targets. This change in post-translational
modification can therefore instantly alter the potential target tissues of infectious agents and can be
expected to similarly alter the array of clinical presentations they cause in turn. This concept has
widespread implications for parallel changes in other pathogens, and therefore applies broadly to the
field of emerging infectious diseases.
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Abbreviations

ZIKV Zika virus
E envelope protein
PS phosphotidylserine
CNS central nervous system
BBB Blood-brain barrier
ASN154 Asparagine 154
ZVBM Zika virus binding motif
NAG N-acetylglucosamine
FITC fluorescein isothiocyanate
DAPI 4′,6-diamidino-2-phenylindole
NTD N-terminal domain (aminoterminus)
CTD carboxyterminal domain (carboxyterminus)
DRG dorsal root ganglion
EMEM Earle’s minimal essential medium
DMEM Dulbecco’s minimal essential medium
HBSS Hank’s balanced salt solution
PBS phosphate buffered saline
TCID50 50% tissue culture infective dose
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