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Abstract

Intracellular dynamics in living tissue are dominated by active transport driven by bioenergetic 

processes far from thermal equilibrium. Intracellular constituents typically execute persistent 

walks. In the limit of long mean free paths, the persistent walks are ballistic, exhibiting a “Doppler 

edge” in light scattering fluctuation spectra. At shorter transport lengths, the fluctuations are 

described by lifetime-broadened Doppler spectra. Dynamic light scattering from transport in the 

ballistic, diffusive, or the crossover regimes is derived analytically, including the derivation of 

autocorrelation functions through a driven damped harmonic oscillator analog for light scattering 

from persistent walks. The theory is validated through Monte Carlo simulations. Experimental 

evidence for the Doppler edge in three-dimensional (3D) living tissue is obtained using 

biodynamic imaging based on low-coherence interferometry and digital holography.

1. INTRODUCTION

Motions inside living cells, and motion of the cells themselves, are ubiquitous signatures of 

the active processes involved in the maintenance of cellular function and health. Many 

aspects of cellular function involve active movement driven by energetic processes. 

Conversely, thermal motions, though participating in subcellular processes such as 

molecular diffusion and membrane flicker, are physical processes that continue after the 

death of the cell. Therefore, driven motion is a defining characteristic of living matter. 

Quantifying the many aspects of active cellular motions provides a measure of cellular 

health or a measure of deviation from normal behavior caused by disease or by applied 

xenobiotics. Cellular dynamics become surrogates that can be used as real-time endogenous 
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reporters in place of nonendogenous fluorophores or end-point measurements [1,2] when 

studying how tissues respond to changing environments or to applied therapies.

Motions in two-dimensional cell culture are easily observed under a microscope as physical 

displacements. Furthermore, adaptive optics combined with light sheet microscopy and 

lattice light sheet microscopy can achieve 3D in vivo aberration-free imaging of subcellular 

processes [3,4]. However, dynamic light scattering (DLS) and Doppler fluctuation 

spectroscopy are better suited for ensemble measurements of a broad range of intracellular 

motions across a wide field of view. These ensemble techniques are sensitive to motion 

changes and can be used to monitor cellular health, disease progression and drug response. 

Spatial localization in DLS in tissue can be achieved with low coherence [5-7], including 

dynamic signals observed in optical coherence tomography (OCT) [8] and optical coherence 

imaging (OCI) [9], which is a full-frame form of OCT [10,11]. Diffusing-wave spectroscopy 

[12] and diffuse correlation spectroscopy (DCS) are techniques that apply DLS to media like 

tissues. DCS is widely used for cerebral blood flow monitoring [13], in which temporal 

autocorrelation functions of speckle or light electric fields are measured, analyzed, and then 

compared with a certain type of motion, e.g., Brownian motion. Autocorrelation functions 

for molecular Brownian motion are usually measured in the time range of 10−5–10−2 s [14], 

which covers a significantly different range than active transport processes. As another 

example, diffuse reflectance spectroscopy uses a spectrometer to analyze the diffuse 

reflectance of a tissue illuminated by a broadband light source and quantifies optical and 

physiological properties of tissues [15,16].

Biodynamic imaging (BDI) [17-19] is an optical imaging technology derived from OCI, 

with enhanced partially coherent speckle generated by broad-area illumination with 

coherence detection through digital holography [20-23]. Biodynamic imaging penetrates up 

to 1 mm into living tissue and returns information in the form of dynamic light scattering 

across a broad spectral range [6,24]. Frequency-domain decomposition of the light 

fluctuations using tissue dynamics spectroscopy [18,25] produces broadband fluctuation 

spectra that encompass the wide variety of subcellular motions. When pharmaceutical 

compounds are applied to a tissue, dynamic cellular processes are modified, and these 

modifications appear as changes in the fluctuation spectra, which can help provide 

information about the effect of the compound on cellular processes, such as necrosis and 

apoptosis [25]. This type of phenotypic profiling has seen a resurgence in recent years as a 

more systems-based approach to drug discovery and development [26].

This paper focuses on lifetime-broadened Doppler scattering from persistent walks. We 

present evidence that shows Doppler fluctuation spectra from midsections of three-

dimensional (3D) cultured tissues as the sum of active intracellular processes with long 

persistence distances, i.e., in the ballistic regime, which is consistent with findings from 

motion tracking within 2D tissues. Our model is based on random walks with a simple 

exponential distribution of free path lengths, where a particle walks at a constant velocity 

along a mean free path. This “piecewise continuous random walk” model leads to a temporal 

crossover from ballistic transport at short time scales to diffusive transport at long time 

scales. The approach is fully statistical, without resolving individual scattering objects, by 

restricting the analysis to ensembles of actively transporting subcellular constituents. The 
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theory of light scattering from random walks is developed for field-based heterodyne 

detection. Transport in the ballistic, diffusive, and the crossover regimes is described 

analytically, including the derivation of autocorrelation functions in the two limits and a 

driven damped harmonic oscillator model for persistent walks in the crossover regime. The 

theory is validated by Monte Carlo simulations. Experimental measurements of Doppler 

fluctuation spectra, obtained using tissue dynamics spectroscopy on living tissue culture and 

living cancer biopsies, are presented, followed by a general discussion on the potential 

applicability of Doppler fluctuation spectroscopy for drug screening.

2. MATERIALS AND METHODS

A. Persistent Walk

Many biological applications proceed via active persistent walks that have persistent 

motions of relatively uniform speed v0 traveling a mean free length (also known as the 

persistence length) Lp in a mean free time tp (also known as the persistence time) before 

changing direction or speed. Persistent walks have two opposite limiting behaviors. When 

the persistence time is much longer than an observation time, then the transport can be 

viewed as an ensemble of ballistically transported objects. This is the ballistic limit. When 

the persistence time is much shorter than an observation time, then the transport approaches 

a Wiener process. The Wiener process has a path that is nowhere differentiable [27]. This is 

the diffusion limit, although, in the case of active media, it is active diffusion that 

significantly exceeds thermal Brownian motion. The ballistic limit and the diffusion limit 

have well-recognized properties in terms of dynamic light scattering. However, many 

biological transport processes occur in the crossover regime between these extremes.

The key parameters characterizing the walks are the mean-squared speed during the free 

runs and the mean free time between changes in speed or direction. A model that describes 

this process of free runs with mean persistence times is called the Ornstein–Uhlenbeck 

process [27], given by

dv = − γvdt + ΓdW t (1)

for one-dimensional transport, where 1/γ = tp is the persistence time, Γ is the amplitude of 

the fluctuations, and dWt is a Wiener process of unit variance. Setting x(0) = 0, the 

associated position process is described by

x(t) =
v0
γ [1 − exp( − γt)]

+ Γ∫
0

t
dt′ exp( − γt′)∫

0

t′
dW t″ exp(γt″) .

(2)

The mean squared displacement (MSD) for quasi-ballistic transport in 1D is

Li et al. Page 3

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2019 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



〈x2(t)〉 = Γ2

γ2 t +
v0

2

γ2 [1 − exp( − γt)]2

− Γ2

2γ3 [3 − 4 exp( − γt) + exp( − 2γt)],

(3)

where v0 is the molecular motor speed. In the long-time limit, this is

〈x2(t)〉 = Γ2

γ2 t = 2v0
2tpt = 2Dt, (4)

where the effective diffusion coefficient is D = v0
2tp related to the speed and the persistence 

time, but unrelated to temperature or thermal processes. The relationship in Eq. (4) 

establishes the fluctuation-dissipation theorem for active transport,

Γ2tp = 2v0
2, (5)

that relates the persistence time and speed to the magnitude of the fluctuations. Based on this 

relation, the MSD in Eq. (3) is expressed in terms of the mean free path length Lp = v0tp as

〈x2(t)〉 = 2Lp
2 t

tp
− 2Lp

2 1 − exp − t
tp

. (6)

The MSD is plotted in Fig. 1 for several values of mean free path. At short times, the MSD 

grows as the square of time, which is representative of ballistic transport, while for time t > 

2tp the MSD grows linearly in time, which is representative of diffusive transport. Therefore, 

the MSD displays a temporal transition from ballistic to diffusive transport depending on the 

observation time.

B. Doppler Light Scattering

The light-scattering configuration for dynamic light scattering from a moving particle is 

shown in Fig. 2. The incident light has an initial k-vector k1 that is scattered by a small 

particle into a final k-vector k2. The momentum transfer in the scattering process is q = k2 – 

k1, where the magnitude of the transferred momentum is

∣ q ∣ = k 2(1 − cos θ) = 2k sin(θ ∕ 2) (7)

at the scattering angle θ. The Doppler frequency shift from the central frequency of the 

incident photon is given by
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Δωϕ = q ⋅ v = qv cos ϕ = ωD cos ϕ, (8)

where

ωD = qv (9)

is the maximum (or co-linear) Doppler angular frequency shift, v is the velocity of the 

particle, and ϕ is the angle between the particle velocity and the momentum transfer vector. 

For forward scattering, θ = 0, and the Doppler frequency shift is identically zero. For 

backward scattering, the momentum transfer q = 4πn/λ0 is a maximum, and the Doppler 

frequency shift depends only on the particle velocity through ωD = qv.

The co-linear Doppler frequency shift ωD and the persistence time tp (and equivalently the 

momentum transfer q and the mean free path Lp) set a dimensionless scaling parameter that 

divides the ballistic transport regime from the diffusive regime. The dimensionless 

parameter is called the Doppler number, or the ND, given by

ND = ωDtp = qLp . (10)

The characteristic scale is set when ND = 1:

ND =
Lp
λred

= 1, (11)

which is defined in terms of the reduced wavelength as

λred =
λ0

4πn ≈ 50 nm (12)

for a refractive index n ≈ 1.35 and a free-space wavelength λ0 = 840 nm. Therefore, the 

dividing line between diffusive transport and ballistic transport occurs when the mean free 

path is greater than approximately 50 nm. The conditions on the ND for the different regimes 

are

ND > 3 Doppler Regime, ND < 1
3 Diffusion Regime, (13)

although the division is not sharp. Doppler effects dominate when ND > 3, and diffusion 

effects dominate when ND < 0.3. Most active transport processes in cells have mean free 
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paths larger than this, placing most active subcellular processes in the Doppler regime (see 

next section).

C. Processive Motion in Biological Processes

Active intracellular transport is processive, meaning that motion persists for multiple cycles 

of adenosine triphosphate (ATP) or guanosine triphosphate (GTP) hydrolysis [28]. For 

molecular motors, the step length is fixed at δATP per hydrolysis (e.g., for kinesin δATP = 8 

nm [29]), with a mean value of n steps before the motor detaches. The mean free path for the 

persistent motion is then Δ = nδATP. Likewise, for cytoskeletal restructuring, periods of 

protrusion are interspersed with periods of retraction, with characteristic mean free lengths. 

Examples of intracellular dynamics, speeds, and lengths are given in Table 1 for a variety of 

motions under a variety of conditions [29-40]. For these processes, the Doppler frequency 

depends on the observation wavelength and observation direction. The Doppler frequencies 

in Table 1 are calculated for a backscattering configuration using a free-space wavelength of 

λ0 = 840 nm. Speeds range from several micrometers per second (organelles or vesicles 

carried by molecular motors) to several nanometers per second (cell membranes driven by 

cytoskeletal processes). The corresponding Doppler frequencies (maximum frequencies in a 

backscatter configuration) are tens of hertz to tens of millihertz. The mean Doppler 

frequency (averaged over many cellular volumes in living tissue) is zero because transport is 

isotropically averaged over all directions. For these processive processes associated with 

kinesin, dynein, myosin V, cytoskeleton restructuring, and filopodia and lamellipodia, the 

Doppler numbers in Table 1 are greater than unity and can range into the hundreds. 

Therefore, processive motors and cytoskeletal restructuring are in the Doppler regime. An 

interesting case is for kinesin/dynein complexes, which are engaged in a tug-of-war 

transporting vesicles in alternating directions on the microtubules. The ND is smallest for 

this case in Table 1, and is in the crossover regime.

D. Dynamic Spectroscopy of Living Tissue

Fluctuation frequencies relate to Doppler frequency shifts caused by light scattering from the 

subcellular constituents that are in motion, creating beats among all the multiple partial 

waves. The speeds of intracellular dynamics range across 3 orders of magnitude from tens of 

nanometers per second (cell membrane) [43-46] to tens of micrometers per second 

(organelles, vesicles) [47-50]. For near-infrared backscattering geometry, these speeds 

correspond to Doppler frequencies from 0.01 to 10 Hz. Because of the wide variety of 

intracellular processes and the wide range of speeds, the fluctuation spectra obtained from 

dynamic light scattering of living tissue contain a continuous distribution of Doppler-

broadened spectra. The experimentally measured field-based fluctuation spectrum is

SE′ (ω) = ∫
0

∞
ρ(ωD)SE(ω, ωD)dωD, (14)

where SE(ω, ωD) is the fluctuation spectrum of each individual process and ρ(ωD) is a 

normalized distribution function that captures the range of intracellular Doppler processes. 

The combined power spectral density of Eq. (14) produces an envelope that contains the 
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individual Doppler spectra of the underlying processes. For this reason, the power spectral 

density from most living tissue samples has a broad frequency dependence without a distinct 

Doppler edge. However, it is sometimes possible to observe from experiments either 

sharpening or broadening of an underlying Doppler edge.

E. Experimental Setup

Spectroscopic responses of several types of biological samples were measured and analyzed 

using the 6-F biodynamic imaging system shown in Fig. 3. A Superlum S840-B-I-20 

superluminescent diode (SLD), with a center wavelength at 840 nm and full power output of 

15 mW, was used as the light source. The SLD has a short coherence length of 

approximately 10 μm, enabling the formation of low-coherence holograms in a Mach–

Zehnder interferometric configuration with a CCD camera as the detector at the Fourier 

plane. A Q-Imaging EMC2 camera captures 500 frames at 25 fps and 50 frames at 0.5 fps, 

and a stitching algorithm is used to construct a continuous spectrum ranging from 0.01 to 

12.5 Hz [51]. Holograms [Fig. 4(a) with a close-up in Fig. 4(b)] are written by scattered 

photons that share the same optical path length as the reference arm. By adjusting the delay 

stage, light scattered from different depths inside the sample can be selected, setting the 

“coherence gate” for the detection. Tissue samples are typically between 0.5 and 1 mm 

thick, and the coherence gate is typically set at about 200–500 μm inside the sample. The 

transport length of light in many types of tissue samples is approximately 100 μm. 

Therefore, the light selected by the coherence gate in our experiments is multiply scattered 

with between 4 and 10 high-angle scattering events. Multiple scattering compounds the 

Doppler shifts and broadens the fluctuation spectra. The digital holograms are reconstructed 

numerically using a 2D FFT to generate optical sections approximately 400 μm inside the 

tissue. A reconstructed image and its conjugate are shown in Fig. 4(c) with a close-up in Fig. 

4(d).

F. Sample Preparation

Two types of tumor tissue were examined experimentally and analyzed for Doppler features 

in this paper: tumor spheroids and tumor biopsies. Multicellular tumor spheroids are small 

clusters of cancer cells grown in vitro. The three-dimensional growth of the spheroids 

captures many of the microenvironmental features of naturally occurring tumor tissues, 

including extracellular matrix and cell-to-cell contacts [52]. Tumor biopsies are even more 

biologically and physiologically relevant than 3D tissue culture and are obtained from living 

patients (animal or human from research projects approved by the Institutional Review 

Board (IRB)) either through surgical resection or by needle core biopsies.

For the tumor spheroids, cell lines were obtained from American Type Culture Collection, 

Manassas, Virginia, and cultured at 37°C in a humidified CO2 incubator. HT-29 cells were 

cultured in McCoy’s 5a Medium and the MIA-PACA2 were cultured in Dulbecco’s 

Modified Eagle’s Medium. All media contained 10% fetal calf serum (Atlanta Biologicals), 

penicillin (100 IU), and streptomycin (100 μg/mL). Tumor spheroids were created by 

seeding a 50 mL rotating bioreactor and growing the cells for 7–14 days until 400–600 μM 

diameter spheroids were formed. Spheroids were immobilized in a thin layer of 1% low gel 

temperature agarose (Sigma-Aldrich Chemical Co) made up with the basal medium in 96 
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well tissue culture plates. DLD-1 samples were grown as 3D tumor spheroids using Corning 

U-bottom spheroid plates. Cells are incubated in a 96-well plate and immobilized with low 

gel temperature agarose. Esophageal tumor biopsies were collected and transported in 

chilled RPMI-1640 medium supplemented with HEPES (Gibco). Within 2 h of collection, 

small pieces 1 mm or less were cut from the biopsy and immobilized in low gel temperature 

agarose in basal medium similar to the tumor spheroids. Canine B-cell lymphoma biopsies 

were handled with the same procedures [53].

3. RESULTS

A. Light Scattering from Persistent Walks

The transport of vesicles and organelles provide the simplest example of dynamic light 

scattering from persistent walks. Vesicles and most organelles are much smaller than a 

wavelength of light and hence represent point scattering objects in motion. In addition, the 

transport of vesicles and organelles is driven actively. In this section, we describe two ideal 

models of organelle transport. The first model is constrained and consists of organelles 

moving on one-dimensional filaments or microtubules. The orientation of these one-

dimensional tracks is distributed uniformly in three dimensions. The second model assumes 

a persistent walk in 3D that is unconstrained. An interesting result of these two models is 

their nonequivalence: isotropic 3D walks produce different Doppler fluctuation spectra than 

isotropically distributed 1D walks. These two models can be evaluated in both the extreme 

limit of very short persistence time (diffusion limit) and the limit of very long persistence 

time (ballistic limit). The intermediate regime can be approximated by a distribution of 

lifetime-broadened Doppler spectra to be discussed in the following section.

In dynamic light scattering, coherent speckle is a superposition of the individual partial 

waves from the individual scattering sources that are in motion. The statistical fluctuations 

in the speckle intensity are captured by a field autocorrelation function that is obtained as a 

stochastic sum evaluated using an integral over a probability distribution [54]:

AE(τ) = 〈E∗(0)E(τ)〉

= E0
2 + NIs∫−∞

∞
P(Δx)exp( − iq ⋅ Δx)dΔx

= I0 + NIs exp( − iq〈x〉)

× 1
2∫ exp( − q2〈Δx2〉 cos2 θ) sin θdθ

= I0 + NIs
π

2qΔxrms
exp( − iq〈x〉)erf(qΔxrms),

(15)

where E0 is the reference field magnitude, and the field autocorrelation is proportional to the 

Fourier transform of the probability functional [23]. Equation (15) is the field-based 

autocorrelation that would be equivalent to phase-sensitive detection in a dynamic light 

scattering experiment. There is also an intensity-based autocorrelation function given by
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AI(t) = 〈I∗(0)I(t)〉

= N2Is
2 ∫ P(Δx) exp( − iq ⋅ Δx)dΔx

2

= N2Is
2 + N2Is

2 π
4q2Δxrms

2 ∣ exp( − iq〈x〉)erf(qΔxrms) ∣2 .

(16)

Field-based autocorrelation is linear in multiple underlying dynamical processes that 

contribute to the field fluctuations, making interpretations of underlying processes simpler 

compared with intensity-based autocorrelation. However, the most stable form of fluctuation 

spectroscopy performed experimentally is with intensity-based detection, because it is less 

sensitive to mechanical disturbance than the field-based detection (phase-sensitive 

detection). In the discussion below, field-based descriptions will be used when treating 

multiple dynamical processes. Intensity-based descriptions will be used for experimental 

studies and for pure theoretical cases with simple limiting behavior when persistent walks 

along isotropically oriented filaments or microtubules are driven by molecular motors that 

run at approximately constant speeds but with a distribution of persistence times. There are 

three limiting cases: (1) diffusive motion in 1D, (2) diffusive motion in 3D, and (3) ballistic 

motion. In all three cases, the motion is averaged isotropically over all angles.

1. 1D Isotropic Diffusion Limit—One-dimensional isotropic transport is a model for 

which particles are confined in one direction, with both positive and negative excursions 

along a line, while the direction is distributed isotropically in 3D. The distribution function 

for one-dimensional isotropic motion is [27]

P(Δx) = 1
4πDt

exp( − Δx2 ∕ 4Dt) . (17)

The intensity autocorrelation function can be written as

AI(t) = N2Is
2 + N2Is

2 1
4π∬ P(Δx)exp( − iqΔxcosθ)dΔxdΩ

2

= N2Is
2 + N2Is

2 1
2∫ exp( − q2Dtcos2θ)sinθdθ

2

= N2Is
2 + N2Is

2 π
4q2Dt

erf2 q2Dt .

(18)

The autocorrelation function behaves as the error function with the characteristic time 1/

q2D.
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2. 3D Isotropic Diffusion Limit—Three-dimensional isotropic transport is the model 

for which particles are free in three dimensions. The distribution function of the three-

dimensional isotropic is

P(Δr) = 1
4πDt

3
exp( − Δx2 ∕ 4Dt)

× exp( − Δy2 ∕ 4Dt)exp( − Δz2 ∕ 4Dt) .

(19)

The intensity autocorrelation function is

AI(t) = N2Is
2 + N2Is

2 ∫∫∫ Δr P(Δx)dΔxP(Δy)dΔyP(Δz) × exp( − iqΔz)dΔz 2

= N2Is
2 + N2Is

2 exp( − 2q2Dt) .
(20)

The autocorrelation function is an exponential equation, and the characteristic time is 1/q2D 
that is the same as for the one-dimensional isotropic model. The spectral density, calculated 

using the Wiener-Khinchin theorem, is

S(ω) = FT[AI(t)](ω)

= 2πN2Is
2 δ(ω) + 1

π
2q2D

(2q2D)2 + ω2 .

(21)

The second term in the spectral density is a typical Lorentzian function. In the low- and 

high-frequency limits, these are

S(ω) =

2
π N2Is

2

2q2D
= const, ω ⪡ 2q2D

2 2
π N2Is

2q2D

ω2 ∝ ω−2, ω ⪢ 2q2D

. (22)

3. 1D and 3D Isotropic Ballistic Limit—In the ballistic limit of long persistence time, 

the threedimensional ballistic transport model is identical to isotropically distributed 1D 

transport, so they share the same limit. The displacement is Δr = vt, and the distribution 

function for this type of motion is

P(Δr) = δ(Δr − vt) . (23)

The intensity autocorrelation function is
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AI(t) = N2Is
2 + N2Is

2 ∑
i ≠ j

∑
j

exp( − iqvt cos θi)exp(iqvt cos θ j)

= N2Is
2 + N2Is

2 1
4π∫ exp( − iqvt cos θ)dΩ

2

= N2Is
2 + N2Is

2sinc2(qvt),

(24)

where the oscillatory sinc function arises from the ballistic Doppler frequency. The spectral 

density is

S(ω) = FT[AI(t)](ω)

= 2πN2Is
2 δ(ω) + 1

2qv tri ω
2qv ,

(25)

where tri(x) is the triangular function.

Information contained within the autocorrelation function is contained equivalently within 

the spectral power density, but when there are many subensembles contributing to the 

dynamic light scattering, and the characteristic time scales are widely separated across 

several orders of magnitude, the fluctuation spectrum is a more “natural” representation than 

the autocorrelation by separating out processes according to their respective characteristic 

frequencies. For instance, when the subcellular transport is quasi-ballistic, the fluctuation 

frequencies of the fluctuation spectra are closely related to the Doppler frequencies of the 

moving scatterers. Doppler fluctuation power spectra, even in the homogeneous case, have 

no spectral peak, but are fluctuation spectra with zero mean frequency and characteristic 

“edge” or “knee” frequencies, as shown in Fig. 5(a) for the three limiting cases: ballistic, 3D 

diffusion, and isotropic 1D diffusion. On a logarithmic frequency scale, the diffusive 

fluctuation spectra show a characteristic “roll-off” of a Lorentzian line shape of zero mean 

frequency, while the ballistic spectrum displays a “Doppler edge” above which the 

fluctuation spectral power density drops rapidly.

4. Intermediate Crossover Regime—Between the diffusive and the ballistic limits is 

the crossover regime when ND ≈ 1, with the mean free path Lp in the range of 50 nm for a 

wavelength at 840 nm in the infrared using a backscattering optical configuration. The 

crossover regime, with significant deviations from the ideal limits, is relatively wide, with 

the mean free path spanning from approximately 10 nm to a quarter of a micrometer.

An ensemble of N particles executing persistent walks with an exponential distribution of 

persistence time tp, inclined at angle ϕ, and with no discontinuous phase jumps between 

walk segments, produce a characteristic damped-harmonic oscillator power spectrum with a 

line shape given by
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SE(ω, ϕ) = 2Nπ2 ωϕ
2γ

(ω2 − ωϕ
2 )2 + ω2γ2 , (26)

where the damping factor is inversely related to the mean persistence time tp through γtp = 

1. In an isotropic tissue, the collinearity angles are distributed as

P(ϕ)dϕ = sin ϕdϕ . (27)

For a distribution of Doppler frequencies ωϕ caused by the distribution of angles, the 

increment to the fluctuation power spectrum is

dSE(ω) = L(ω, ϕ)P(ϕ)dϕ

= γN
π

ωD
2 cos2ϕ

(ωD
2 cos2ϕ − ω2)2 + ω2γ2 sin ϕdϕ .

(28)

For the frequency distribution from an isotropic tissue, the total power spectrum is integrated 

over all Doppler frequencies as

SE(ω) =
γωD

2 N
π ∫

0

π cos2ϕ
(ωD

2 cos2ϕ − ω2)2 + ω2γ2 sin ϕdϕ

= γN
πωD

∫
−ωD

ωD y2

(y2 − ω2)2 + ω2γ2 dy .

(29)

Examples of isotropically averaged 1D motion are shown in Fig. 5(b) for Doppler numbers 

ND = 0.1, 1, and 10. The dashed curves are for unidirectional 1D motion, showing a clear 

Doppler peak at fD = 1 Hz for ωDtp = 10. In the ωDtp = 0.1 case, there is a diffusion knee at 

f d = q2v0
2τ ∕ 2π ≈ 0.1 Hz. The crossover regime is captured when ωDtp = 1. The isotropic 

averaging produces a fluctuation spectrum that has no peak at the Doppler frequency, even in 

the case of large ND, although there is a distinct edge at the Doppler frequency for this case. 

When the Doppler number is small, a diffusive knee structure emerges at lower frequencies.

The crossover behavior from the Doppler regime to the diffusion regime is described in 

terms of a knee frequency, which is a function of diffusion and ballistic frequencies and 

persistence time:
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ωknee =
ωD

2

1 ∕ tp
2 + ωD

2 =
ωdiffusion

1 + ωD
2 tp

2 . (30)

For long persistence times tp, the knee frequency is a Doppler edge that is associated with a 

slope <−2, while for short persistence times, the knee frequency is the diffusive roll-off 

frequency ωdiffusion = q2D. The knee frequency is shown in Fig. 6 as a function of the mean 

intracellular speed for a range of persistence times, assuming no correlation between mean 

speed and mean persistence time. However, most biological processes display correlations 

between speeds and persistence times. The simplest scaling for such a correlation is vtp = 

Lp, as discussed in Section 2.B.

B. Monte Carlo Simulation of Transport and Light Scattering

The theoretical predictions were compared to Monte Carlo DLS simulations to validate the 

theoretical model for isotropically averaged one-dimensional transport processes. A 

calibration simulation was performed first on transport in the diffusion limit to test the three-

dimensional diffusion case in contrast to the isotropically averaged one-dimensional 

diffusion case. The Monte Carlo simulations were performed with 5000 particle walkers that 

contribute coherent scattered waves to the far field where the net complex field is sampled at 

a chosen sampling rate and transformed to the frequency domain through a fast Fourier 

transform. The resulting complex-valued fluctuation spectrum is taken modulus-squared and 

averaged over an ensemble of 50 simulations. The fluctuation spectral power density, in this 

case, is in the “heterodyne” mode to be compared with theoretical calculations. The walkers 

were simulated with a diffusion coefficient of 0.002 μm2/s using a probe wavelength of 0.84 

μm. The sampling frame rate was 25 frame/s, and the capture is assumed to be instantaneous 

(infinitesimal exposure time). The total capture time is either 100 s or 200 s.

Figure 7(a) shows the theoretical calculation and simulation of the Wiener process in one-

dimensional isotropic and three-dimensional isotropic transport. Numerical calculations are 

derived from the autocorrelation function via the Wiener–Khinchin theorem from Eq. (18) 

and (21), respectively. Figure 7(b) shows three cases: the two limits with persistence times tp 

→ 0, tp → ∞, and for a moderate persistence time tp = 0.5 s in the crossover regime, with 

persistence times distributed according to an exponential probability.

Similar Monte Carlo simulations in the crossover regime were carried out that match closely 

with the analytical result from Eq. (29) [Figs. 7(c) and 7(d)], although the high-frequency 

side of the spectrum has a Nyquist floor. The simulations were done for conditions similar to 

experimental measurements (discussed in the next section), and the finitetime sampling 

means that walk events that are long compared to the persistence time may end outside the 

observation time-frame, being recorded as an event with a shorter time. As a result, the 

spectrum starts to flatten above the frequency around 1/tp = 2πfD/ND, and the effect is more 

visible in processes with a longer mean persistence time (lower fD or larger ND), because of 

the exponential distribution of persistence times.
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C. Doppler Fluctuation Spectra of Living Tissues

Figure 8 shows examples of tumor spheroid spectra and their spectral responses to drugs 

measured with the BDI system. Most spectra have a Lorentzian-like shape, with a knee at 

low frequency, a power-law roll-off in the mid frequency, and a floor near the Nyquist 

frequency. Figure 8(a) compares the spectrum of a PaCa2-derived spheroid to an HT29-

derived spheroid, showing a higher Doppler knee frequency in the case of the more loosely 

aggregated PaCa2 spheroid. In Fig. 8(b) paclitaxel is applied to a DLD-1 spheroid. The 

cytoskeletal drug stabilizes polymerization of tubulin, lowers the rates of microtubule 

dynamic instability in human tumor cells [55], and causes cell death [56,57]. The Doppler 

knee shifts to lower frequency caused by the increased stiffness of the cell. This represents a 

“redshift” in frequency content. In Fig. 8(c) valinomycin, a mitochondrial ionophore, 

facilitates K+ charge movement and triggers loss of mitochondrial membrane potential, 

DNA fragmentation, and death [58,59]. The spectrogram pattern observed in this case is 

correlated with apoptosis [60]. In Fig. 8(d) the relative change in spectral content for 

valinomycin is displayed as a relative spectrogram with frequency along the horizontal axis 

and time along the vertical axis. The spectral change is relative to the average baseline 

spectrum (average of spectra prior to the application of the drug at t = 0). The spectrogram 

displays a suppression of the Doppler edge while enhancing high-frequency and low-

frequency content.

Compared with cell-line spheroids, tumor biopsies show more heterogeneity among samples 

and more diverse responses to treatment. The biopsy samples obtained from resected tissue 

or needle cores were carefully dissected by hand to avoid connective tissues or fat, which 

have relatively low activity. Biopsies display spatial heterogeneity in the dynamics, 

including motility, spectrum, and spectral responses. In a study on a standard-of-care 

chemotherapy treatment (cyclophosphamide, doxorubicin, prednisolone, and vincristine) of 

dogs with B cell lymphoma, lymph node biopsies were treated with the combination 

treatment as well as by the single-agent compounds. The averaged spectral response of 

canine biopsy tissue resistant to vincristine is shown in Figs. 9(a) and 9(b) [53]. Vincristine 

is a vinca alkaloid that prevents polymerization of tubulin and induces depolymerization of 

microtubules, blocking mitosis during metaphase by arresting cells, and causing cell death 

by apoptosis. The spectrogram displays an enhanced mid-frequency in response to the drug, 

which may be a marker for drug resistance. The spectra in Fig. 9(c) are biopsies from two 

different esophageal cancer patients. Patient 1 has low activity with no discernible Doppler 

edge. However, the biopsy from Patient 2 displays a distinct Doppler edge near 0.2 Hz that 

becomes sharper after the addition of carboplatin, a DNA drug that leads to apoptosis. The 

power spectrum has an almost flat power density at low frequencies, with a distinct Doppler 

edge and a large negative slope of s = −2.4. The associated spectrogram for Patient 2 is 

shown in Fig. 9(d). The sharpening of the Doppler edge appears as a dark red strip in the 

mid-frequency range. These data are consistent with the existence of a Doppler edge in these 

patient samples. As pointed out in Eq. (14), an experimental spectrum is an envelope of 

Doppler broadened spectra of processes with different ND and fD values. As a result, sharp 

Doppler edges or knees of individual processes are washed out, and there is not a well-

defined single ND or fD value for an experimental spectrum. However, a spectrum with a 
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Doppler edge and a steep slope is strongly indicative of processes with high ND and fD 

values and highly ballistic motions.

4. DISCUSSION

Fluctuation power spectra from living tissue display characteristic spectral shapes that are 

reminiscent of the common diffusive power spectra obtained from dynamic light scattering 

measurements of diffusing particles. This has led to conventional interpretations that 

consider intracellular transport to be primarily in the diffusive regime without strong ballistic 

character. However, this tentative conclusion from dynamic light scattering contradicts a vast 

literature from two-dimensional cell culture that directly tracks motions with long 

persistence lengths that places most active intracellular processes in the ballistic regime. The 

resolution of this contradiction is simply the superposition of many ballistic processes in 

living tissue with a wide range of characteristic frequencies.

We have investigated the fluctuation spectra of transport modeled by persistent walks in the 

dynamic light scattering setting. The Doppler number defined as ND = qvtp is a 

dimensionless scaling parameter that determines the regime of the motion and the spectrum 

shape. Many intracellular motions, including the processes associated with kinesin, dynein, 

and filopodia, have a long persistence length, leading to Doppler numbers greater than 1, 

placing the motions in the Doppler regime. In the intermediate regime, the power spectrum 

of a damped harmonic oscillator averaged over all angles yields the Doppler spectrum while 

in the ballistic and diffusive regimes, the power spectra are obtained through Fourier 

transforms of autocorrelation functions of intensities.

Our model builds a framework for interpreting fluctuation spectra. A sample spectrum can 

be understood as a sum of processes with different Doppler frequency shifts (or velocities) 

and Doppler numbers (or persistence lengths). The slopes of spectra at high frequency for 

the ballistic and diffusion limits are −∞ and −2, respectively, indicating that a slope steeper 

than −2 is characteristic of persistent walks. In spheroid and biopsy spectra, the greater the 

(absolute) slope, the further the motions deviate from diffusive behavior, with walks having 

longer persistence lengths. It is interesting to note that many metabolically active tumor 

spheroids and biopsies show a typical spectral slope parameter of s = −1.7. If the typical 

Doppler number for active processes is assumed to be ND > 3 (with a sharp Doppler edge), 

then the probability density function needed to yield a slope parameter of −1.7 would have 

(1/f)k character with approximately k ≈ 0.6. Therefore, the spectral contributions to the 

fluctuation spectra increase at lower frequencies, consistent with stronger light scattering 

from membranes and cell-scale optical heterogeneities.

Experimental evidence for the Doppler edge is obtained using BDI. BDI is a coherent 

imaging technique that records the field information from backscattering and generates 

Doppler fluctuation spectra. For a given sample, the spectrum change caused by the addition 

of an anti-cancer drug can be understood as the speed up or slow down of certain processes. 

A 10-h time-lapse measurement of drug response captures the change of the velocities over 

time. These shifts may eventually be correlated to a specific drug mechanism, providing 

insights for treatment and drug development.
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Active transport processes in cells often are described by variations on the random walk. For 

instance, a Lévy flight is a random walk where the lengths of individual jumps are 

distributed with a probability density function P(x) ∝ ∣x∣−α−1 when x is large [61]. Levy and 

Cauchy flights produce anomalous diffusion because they have “fat tail” distributions with 

no finite variance [62]. Conversely, in the continuous-time random walk model [63] a 

particle waits between jumps for times set by a distribution function that also may have fat 

tails, producing anomalous subdiffusion. Combining waiting-time with jump-length models 

produces anomalous diffusion tunable continuously from subdiffusive to superdiffusive 

behavior. Future work will investigate this anomalous regime.

While the samples used in this paper are tumor biopsies and spheroids, the light scattering 

analysis can be extended to other forms of life. Swimming bacteria have transport known as 

“run and tumble.” Given that the velocity of a bacterium is 2–200 μm/s [64], the motion is 

firmly in the Doppler regime, and a sharp edge is expected in the spectrum, which would be 

suppressed if the bacteria slow down. In addition, cell divisions in gametocytes and zygotes 

may be slow processes that take place over a few hours, but they are firmly in the Doppler 

regime. Furthermore, fluctuation spectra of biased random walks, Levy walks, Cauchy 

walks, etc. can be studied, producing characteristic shapes and features that can help 

understand experimental observations. Therefore, biodynamic imaging and intracellular 

Doppler spectroscopy are poised to provide new insight into tissue dynamics and potentially 

important new screens of drug mechanisms.
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Fig. 1. 
Average mean squared displacement as a function of time for an Ornstein–Uhlenbeck 

process for a family of Lp values with a fixed speed of 100 nm/s. The transition from the 

ballistic to the diffusion regime occurs for t = 2tp along the dashed line.

Li et al. Page 20

J Opt Soc Am A Opt Image Sci Vis. Author manuscript; available in PMC 2019 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 2. 
Doppler scattering geometry for incident and scattered k-vector, q-vector, and particle 

velocity. The scattering angle of the light is θ, and the angle between the q-vector and the 

particle velocity is ϕ.
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Fig. 3. 
Biodynamic imaging system in a Mach–Zehnder configuration. The camera is located on the 

Fourier domain of the sample. A translation stage is used to select the coherence gate and to 

form images at different depths inside the sample.
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Fig. 4. 
Example of reconstruction of holograms captured by the BDI system. (a) Raw hologram 

image, (b) fringes, (c) FFT of the hologram, and (d) sample image in the first order.
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Fig. 5. 
(a) Fluctuation spectra for three limiting cases: isotropic 1D diffusion, 3D diffusion, and the 

ballistic case averaged isotropically over all angles. A diffusion coefficient is used for the 

first two cases, and a uniform velocity is applied to the last case. (b) Comparison of 

unidirectional (dashed) versus isotropically averaged 1D (solid) power spectra when the ND 

= 0.1, 1, and 10.
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Fig. 6. 
Knee frequency versus the mean intracellular speed for persistence times ranging from 0.1 to 

10 s. The markers are knee frequencies extracted from zero points of d3(log S)/d(log f)3, 

which are related to change in curvature, and lines are plots of Eq. (30). The values of S are 

numerical calculations from Eq. (29). The region labeled “knee transition zone” is when 

more than one knee appears in the 0.01–12.5 Hz range. The knee frequencies of living tissue 

range from 0.01 to 1 Hz, corresponding to speeds from 3 nm/s (cellular shape changes) to 

300 nm/s (nuclear and membrane motions).
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Fig. 7. 
(a) Theoretical calculations (solid curves) and Monte Carlo simulations (markers) of three-

dimensional isotropic transport versus one-dimensional isotropically averaged transport. The 

theoretical calculation is from the Fourier transform of the autocorrelation function. The 

three-dimensional isotropic transport has a higher knee (0.8 Hz) than the one-dimensional 

isotropic transport (0.05 Hz). The autocorrelation functions are an exponential and an error 

function, respectively. In the 3D case, the low-frequency limit is flat, and the high frequency 

has a −2 slope, which agrees with limits in Eq. (22). The high-frequency discrepancy in the 

calculated curve is a numerical artifact originating from the finite sampling of the 

autocorrelation function. (b) Monte Carlo simulation of 1D isotropic persistent walk in three 

regimes and theoretical results in the ballistic regime from the autocorrelation function. (c), 

(d) Monte Carlo simulation and numerical calculation of persistent walks in the intermediate 

regime: (c) with fixed Doppler frequency fD. (d) with fixed Doppler number ND = 1.
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Fig. 8. 
Examples of fluctuation power spectra. Markers are experimental data and solid curves are 

guiding lines. Knee and slope values are approximate numbers from curve fitting. (a) PaCa2-

derived spheroids form a loose aggregate of cells and display a higher Doppler knee 

frequency than HT29-derived spheroids that form compact spheroids with tight and dense 

cellular adhesions. (b) DLD-1 spheroid responding to 50 μM paclitaxel. (c) The effect of 

valinomycin, a mitochondrial drug, on a DLD-1 spheroid. The baseline (pre-drug) spectrum 

shows a strong Doppler knee that is suppressed under the application of 50 μM valinomycin. 

(d) The relative change in spectral content in a spectrogram (time-frequency) format for the 

case of valinomycin. The drug is applied at t = 0, suppressing the Doppler knee.
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Fig. 9. 
Examples of spectral responses for living biopsy samples treated with anti-cancer drugs. (a) 

Canine B-cell lymphoma biopsies responding to 60 nM vincristine from dogs that are 

resistant to chemotherapy. The final spectrum is 10 h after application of the drug compared 

against baseline. (b) A time-frequency spectrogram response associated with (a) shows 

enhancement in mid frequency. The spectrogram displays the net effect compared against 

control medium DMSO. (c) Effect of 25 μM carboplatin drug on two ex vivo biopsy samples 

for esophageal cancer from different patients, plus the baseline spectrum of a third sample. 

The spectral shape for sample 1 is almost linear at low-mid frequency, while samples 2 and 3 

have a spectrum with a sharp Doppler edge. (d) Time-frequency spectrogram of sample 2 

from (c) showing the emergence of a sharper Doppler edge.
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