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Abstract
For a long time, a single grid layer, such as isogrid, have been utilized to strengthen a shell or plate or as an
independent structural member for various applications. Laminated grid structures consist of several grid layers, that can
have different in-plane orientations or can be made from different materials. Therefore, using laminated configuration
instead of conventional grids yields to an extensive variety of configurations with different coupling effects and cost.
In the current paper, to evaluate the appropriateness of laminated isogrids, the vibration and stability behaviors of a
conventional isogrid are compared with corresponding laminated isogrid plate. The first-order shear deformation plate
theory as well as the Ritz theorem is utilized to achieve the critical buckling loads and free vibration frequencies of
the plates. The influence of increasing the number of isogrid plies and changing pattern geometries on mechanical
behaviors of the laminated isogrid plate are also investigated. The results imply, utilization of the laminated isogrids
remarkably enhances the buckling load and free vibration frequency values of the plates.
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angles along with the various orientation of each anglegrid
layer. Ehsani and Dalir22 studied the effectiveness of using
laminated isogrid structures as a trunk floor in automotive
industry. They showed employing a suitable laminated grid
plate as a stiffener can reduce the lateral deflection of a
hypothetical trunk floor.
Despite the diverse studies on conventional grid structures,
there has been insufficient focus to date in the literature on
the laminated grid structures. Resembling to typical lami-
nated composite structures, laminated grids are composed
from multiple grid plies which each grid ply may has differ-
ent orientation or even different pattern. Figure 1a illustrates
a laminated grid that consists of three isogrid plies with
(0◦/45◦/0◦) lay-up. Figure 1b shows a conventional isogrid
plate with identical thickness to the laminated isogrid.

Among different grid patterns, the isogrid is extensively
used in different industries. However, there is no published
studies about effects of using laminated isogrid instead
of conventional isogrid structures. Therefore, to evaluate
this new class of isogrid structures, in the present study,
the critical axial and shear buckling loads, and two
first free vibration frequencies of the laminated and
conventional isogrid structures are obtained using First-order
Shear Deformation Plate Theory (FSDT). The influence
of increasing the number of isogrid plies on mechanical
responses is studied employing several laminated isogrids
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Introduction

Grid or lattice structures are extensively employed in abun-
dant structures that for most of them weight is a crucial factor 
to design and use, such as airplanes, ships, vehicles, and 
buildings. There are many grid patterns to use in different 
applications in industries, namely isogrid, orthogrid, and 
anglegrid, etc. Due to resistance to environmental exposure, 
low weight and manufacturing expenses, the grids are mostly 
produced by fiber reinforced composites.
Up to now, majority of investigations have been focused on 
modeling, prediction of mechanical behavior, manufactur-
ing, and optimization of conventional grid or lattice struc-
tures. Several earlier works have been studied free vibration 
of the stiffened structures employing different methods such 
as isoparametric finite e lements, s pline c ompound strip, 
etc.1–8. In multiple previous studies buckling and post-
buckling behaviors of grid stiffened shells and plates have 
been investigated employing various analytical, numerical 
and experimental methods such as smeared stiffener, equiva-
lent stiffness, finite e lement, e tc.9–17. Ehsani and Rezaeep-
azhand18 presented a new class of grid structures which 
are known as “laminated grid structures”. They investigated 
lamination effects on stiffness and mechanical behavior of 
grid structures. Ehsani et al.19,20 studied the influence of 
the stacking sequence and pattern arrangement on buckling 
load of laminated composite grid plates and also conducted 
studies on the buckling load and natural vibration of lami-
nated orthogrid plates. Their results showed that, there are 
proper stacking sequences, which considerably improves 
the mechanical behaviors of the grid structures. Ehsani and 
Dalir21 investigated the axial buckling load and maximum 
lateral deformation of laminated and conventional anglegrid 
plates. They evaluated the effectiveness of using different tip
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Figure 1. A three-ply isogrid plate (laminated isogrid), with
(0◦/45◦/0◦) stacking sequence (a), a conventional isogrid plate
with similar total thickness and geometry(b)

with different number of plies. Moreover, to investigate the
effects of the pattern’s geometry, two different isogrid plates
with identical weight and thickness and dissimilar rib’s space
and width are considered and compared.

Problem Description

Laminated Isogrid Configuration
A rectangular plate of length a, width b, and thickness H, as
depicted in Figure 2, is considered in this study. The plate
is assumed to be simply supported along all its sides and
is under an uniaxial compression or a shear load. The plate
is composed of N perfectly bonded composite isogrid plies
which are symmetrically stacked related to mid-plane.
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Figure 2. The schematic laminated isogrid plates under
uni-axial compressive force

To evaluate the geometry effects on mechanical behavior
of the laminated and conventional isogrid plates, two
different isogrid geometries are designed for this study.
Both have identical weight and thickness. However, the ribs’
spaces (d1, d2, dα ), ribs’ widths (t1, tα ) and tip angle (α) are
dissimilar in geometries. Figure 3 illustrates both geometries.
The dimensional parameters are considered according to the

following conditions: (d1)1 = 25mm, (d1)2 = 15mm, (d2)1 =
37.5mm, (d2)2 = 75mm, α1 = 33◦, α2 = 11◦, (t1)1 = (tα)1
and (t1)2 = (tα)2.

Figure 3. Two considered geometry configurations

In a laminated isogrid, each isogrid ply may have a
different orientation related to the plate’s sides. Figure 4
depicts a specially isogrid and a generally isogrid plate, that
is oriented at an angle θ with respect to the x-axis

Figure 4. A specially isogrid plate (θ = 0◦) (left). A generally
isogrid plate which is oriented at an angle θ◦ with respect to the
x-axis (right)

In addition to the mentioned geometries, two cases of
isogrid structures are studied in the present work. The first
case is related to laminated isogrids. This case consists of
five laminated isogrid plates with (±θ)ns configuration,
where n = 1,2, ...,5. The subscripts ”s” and ”n” indicate
symmetry and number of the (±θ) in the half of the plate
thickness, respectively. For example, if n = 1, the laminated
isogrid will consist of four plies.
The second case is a single conventional isogrid plate. Its
geometry, dimensions, weight, and thickness are analogous
to the laminated isogrids. It is worth noting that the total
thickness is constant for all defined cases even have various
number of the plies. Thus, for the overall thickness, H, each
ply thickness can be achieved by H = N ×h, where N and h
are the number of plies and the plies thickness, respectively.
Table 1 expresses the cases and their configurations.

Case
No.

Type of
isogrid structure Lay-up Stacking sequence Number of

layers (N)
Each grid

layer thickness

1 Laminated
isogrid Sub-laminate (±θ)ns

4n,
n=1, 2,...,5 h=H/4n

2 Conventional
isogrid isogrid (θ) 1 h=H

Table 1. Specifications of the defined cases (laminated isogrids
and conventional isogrid )

It is assumed that, T300/5208 Carbon-Epoxy material
with the following elastic properties is used to fabricate
the isogrid structures: E1 = 162× 109 Pa, E2 = 14.9× 109

Pa, ν12 = 0.283, G12 = 5.7 × 109 Pa,G13 = 5.7 × 109 Pa,
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G23 = 5.4×109 Pa, and ρ = 1583 kg/m3. Where E1 and E2
are the composite modulus in fiber direction and transverse
to the fiber direction, respectively. G12, ν12 and ρ are
shear modules, Poisson’s ratio and density of the employed
composite material, respectively. G13, and G23 are the out-
of-plane shear modules of assumed material.23

Constitutive Equations

In this study, the First-order Shear Deformation Plate Theory
(FSDT) together with Ritz theorem is employed to achieve
the axial and shear buckling loads as well as free vibration
frequencies of the isogrid plates. According to FSDT, the
displacement field for a plate are calculated as:

u = u0(x,y)+ zφx(x,y) (1)
v = v0(x,y)+ zφy(x,y) (2)

w = w(x,y) (3)

Where u, v and w are the displacements in the x, y
and z directions. The subscript ”0” implies the mid-plane
deflection. The φy and φx represent rotation angles of
transverse normal in the mid-surface along x and y directions
(see Figure 2). A grid layer has the directional properties
which is engendered by the ribs’ position and geometry.
In this way, similar to a composite lamina, the stress-strain
equation for an isogrid ply can be given by:


σx
σy
τxy
τyz
τxz

=


Q11 Q12 Q16 0 0
Q12 Q22 Q26 0 0
Q16 Q26 Q66 0 0

0 0 0 Q44 Q45
0 0 0 Q45 Q55




εx
εy
γxy
γyz
γxz

 (4)

Where the elements of the strain matrix can be expressed
as the following forms18:


εx
εy
γxy
γyz
γxz

=


u0,x
v0,y

u0,y + v0,x
φy +w,y
φx +w,x

+ z


φx,x
φy,y

φx,y +φy,x
0
0

 (5)

The [Q] is the transformed reduced stiffness matrix and
can be given by:

[Q] = [T ]−1[Q][T ]−T (6)

Where [T ] and [Q] are the transformation and reduced
stiffness matrices24.
Depending on the isogrid geometry, the elements of reduced
stiffness matrix can be achieved using the following
equations19,25:

Q11 =
E1t1
d1

+
2E1tα

dα

cos4
θ +

8G12tα
dα

cos2
α sin2

α (7)

Q12 = Q21 = 2(
E1tα
dα

− 4G12tα
dα

)cos2
α sin2

α (8)

Q22 =
2E1tα

dα

sin4
α +

8G12tα
dα

cos2
α sin2

α (9)

Q44 = G23(
2bα

dα

sin2
α) (10)

Q55 = G13(
b1

d1
+

2bα

dα

cos2
α) (11)

Q66 =
G12t1

d1
+

2E1tα
dα

cos2
α sin2

α

+
2G12tα

dα

(cos2
α − sin2

α)2 (12)

Where t1 and tα are the width of the horizontal and
diagonal ribs, respectively. The d1, d2, and dα are the
dimensional parameters (See Figure 3).
The Ritz method is used to obtain the shear and axial
buckling loads and free vibration frequencies of the grid
plates. Therefore, the total potential energy of the plate is
calculated by the following equation:

π =U −V (13)

Where U is the strain energy and V is loss in the potential
energy and considering FSDT for a laminated plate, U and V
can be given by26,27:

U =
1
2

∫ a

0

∫ b

0
(D11(

∂φx

∂x
)2 +D22(

∂φy

∂y
)2 +2D12

∂φy

∂y
∂φx

∂x

+D66(
∂φy

∂x
+

∂φx

∂y
)2 +2D16

∂φx

∂x
(

∂φy

∂x
+

∂φx

∂y
)

+2D26
∂φy

∂y
(

∂φy

∂x
+

∂φx

∂y
)+A44(φ

2
y +2φy

∂w
∂y

+(
∂w
∂y

)2+

A55(φ
2
x +2φx

∂w
∂x

+(
∂w
∂x

)2 +2A45φxφy +φx
∂w
∂y

+φy
∂w
∂x

+
∂w
∂y

∂w
∂x

)dxdy (14)

V =
1
2

∫ a

0

∫ b

0
(Nx(

∂w
∂x

)2 +Ny(
∂w
∂y

)2 +2Nxy(
∂w
∂x

∂w
∂y

)+

h2

12
(Nx((

∂φx

∂x
)2 +(

∂φy

∂x
)2)+Ny((

∂φx

∂y
)2 +(

∂φy

∂y
)2)

+2Nxy(
∂φx

∂x
∂φx

∂y
+

∂φy

∂y
∂φy

∂x
)dxdy (15)

In the above equation Ai j are extensional and Di j are
bending stiffness matrix elements of the laminated isogrid
plates and are achieved using following equations24:

Ai j,Di j =
N

∑
k=1

(Qi j)k[(zk − zk−1),
1
3
(z3

k − z3
k−1)],

i = j = 1,2,4,5,6 (16)
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Where k is the ply number, zk is the distance of kth ply
from the mid-plane, and N is the number of the isogrid plies
in laminated isogrids.
In the current study, it is assumed that, the plates are simply
supported along all edges. The trigonometric functions
which satisfy the geometrical boundary conditions for
Equations (1, 2, 3) can be expressed as:

w(x,y) =
M

∑
m=1

N

∑
n=1

Wmn sin(
mπ

a
x)sin(

nπ

b
y) (17)

φx(x,y) =
M

∑
m=1

N

∑
n=1

Rmn cos(
mπ

a
x)sin(

nπ

b
y) (18)

φy(x,y) =
M

∑
m=1

N

∑
n=1

Smn sin(
mπ

a
x)cos(

nπ

b
y) (19)

Where Wmn, Rmn and Smn are constant coefficients.
Performing a minimization operation of the total potential
energy (Equation 13) with respect to the constant
coefficients, an eigenvalue equation is obtained:

([K]−λ [KG])d̃ = 0 (20)

Where [K] and [KG] are the elastic and geometric stiffness
matrices, and d̃ is the vector of coefficients (Wmn, Rmn and
Smn) that can be presented as below18:

d̃ =

 Wmn
Rmn
Smn

 (21)

Achieving the λ from Equation (20), the buckling loads
can be calculated.
To calculate the free vibration frequencies, the energy
function of the plate’s vibration based on FSDT can be
presented as18:

π =U −Tmax (22)

In the above equation, Tmax is the maximum kinetic energy
of the plate and can be obtained by28:

Tmax =
ω2

2

∫ a

0

∫ b

0
(ρHw2 +

1
12

ρH3(φ 2x+φ
2y))dxdy

(23)

Similar to calculation the buckling loads, minimizing
of Equation (22) with respect to the constant coefficients,
results in an eigenvalue equation as below:

([K]−ω
2[M])d̃ = 0 (24)

Where [M] and ω are consistent mass matrix and free
vibration frequency, respectively.

Results and Discussion
In the current section the analytical results for axial
and shear buckling loads and also first and second free

vibration frequencies are presented. Results are obtained
for the two defined geometries (see Figure 3) and the two
considered cases (see Table 1). The results are represented
in non-dimensional form. The non-dimensional critical
buckling loads are obtained using N = (Ncrb2)/(E1H3)
and non-dimensional frequencies are defined as ω =

(ωb2

π2 )
√
(ρ/D11). To investigate the influence of layer’s

orientation, θ , on the buckling loads and free vibration
frequencies, the layer’s orientation has been varied from 0◦

to 90◦. Due to the proximity of values, the corresponding
graphs for n= 2–4 are not graphically shown in the following
figures.
Figure 5 depicts the first non-dimensional axial buckling
load for the defined geometries and cases versus layer’s
orientation, θ . Extracting the maximum values from Figure
5 for each case and geometry, result in Figure 6.
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Figure 5. First non-dimensional axial buckling load, Nxcr
for the defined geometries and cases at different layer’s
orientation, θ
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Figure 6. Maximum first axial buckling load for the two
defined geometries versus number of layers

Several crucial points can be comprehended from these
later figures. Firstly, as can be seen in Figure 5, in both
geometries the critical buckling loads’ values of laminated
isogrid plates are more than the corresponding conventional
plates. For example, for Geometry 1 at θ = 45◦, the first
axial buckling load of the laminated isogrid is about 23%
more than corresponding conventional isogrid. Similarly,
this value is about 33% for Geometry 2. This point
indicates the importance of using laminated isogrid instead
of conventional isogrids in various applications.
Secondly, maximum value of the first axial buckling loads
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is achieved at θ = 45◦. Therefore, the applied orientation of
an isogrid layer (whether conventional or in the laminated
isogrid) can considerably affect the stability of a structure.
For instance, consider the conventional isogrid which is
made by Geometry 2. As can be seen, the buckling load
value for generally isogrid at θ = 45◦ is about 39% more
than specially isogrid at θ = 0◦ and 3.87 times the specially
isogrid at θ = 90◦.
Thirdly, despite the fact that, the two defined geometries have
identical weight and thickness, but the buckling load values
of Geometry 2 is significantly more than corresponding ones
from Geometry 1. It can be concluded that the design of an
isogrid regardless of weight or thickness plays an important
role on buckling behavior of an isogrid plate.
Fourthly, according to Figure 6, for constant weight and
thickness, the buckling load has a clear direct relationship
with number of layers. Increasing the number of isogrid
layers, increases the buckling load of the panel. However, for
n≥ 2 (N ≥ 8) the buckling loads yield to a final value and are
not substantially affected by increasing the number of isogrid
layers. Thus, increasing the number of layers for N ≥ 8 will
not be an affordable choice to improve the stability of a
laminated isogrid structure.

Figure 7 illustrates the non-dimensional critical shear
buckling loads for the defined geometries and cases. Similar
to axial buckling loads, the laminated isogrids decisively
have greater values than conventional isogrids. At θ =
45◦ the shear buckling load of the geometries 1 and 2
laminated grids, are 36% and 56% more than corresponding
conventional isogrids, respectively. Moreover, despite the
limited areas, the laminated isogrid which is made by
Geometry 2 reaches to the greater load values than Geometry
1. However, for conventional isogrid, Geometry 2 shows no
superiority over Geometry 1. Figure 8 shows the maximum
shear buckling loads for conventional and laminated isogrid
cases. As can be seen, for both geometries between N = 1 to
8 the shear buckling load increases drastically. After n = 2
(N = 8) the load growth is reduced and the graph moves
toward a specific value. Therefore, similar to axial buckling
load, after n = 2, increasing the number of layers has no
considerable effect on shear buckling load.

Figure 9 shows the first non-dimensional free vibration
frequencies for the defined geometries and cases. As can be
seen, in contrast with the buckling load graphs, Geometry 1
cases (laminated and conventional) have an overwhelming
advantage over Geometry 2 and their free vibration
frequency values are completely more than corresponding
ones. Therefore, in addition to the weight, thickness and
material, the isogrid design has significant impact on the free
vibration frequencies of isogrid structures.

Moreover, the figure illustrates, for Geometry 1 at θ = 45◦

the frequency value is about 15% more than corresponding
value of conventional isogrid . Similarly, for Geometry 2 this
value is about 12.5%. Considering the both geometries, it can
be concluded that the laminated isogrids effectively boost up
the vibratory behavior of the structure.
Figure 10 depicts the free vibration frequency values at θ =
45◦ for different number of layers. Similar to the buckling
loads, this value dramatically increases with increasing the
number of layers up to n = 2 (N = 8) and then its growth
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orientation, θ
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Figure 8. Maximum first shear buckling load for the two
defined geometries versus number of layers

suddenly decreases. This manner is common in different
analysis (stability and vibration) and also in both geometries.

Figure 11 illustrates the second free vibration frequencies
for the defined geometries and cases at different layer’s
orientation, θ .

As can be seen, similar to the Figure 9, Geometry 1
frequency values are completely over the corresponding
values of Geometry 2. Therefore, despite the identical weight
and thickness, the geometry is a crucial parameter to evaluate
the vibration responses of an isogrid structure. Moreover,
the figure shows, for Geometry 1 at θ = 45◦ the frequency
value is about 21.5% more than corresponding value of
conventional isogrid . Similarly, for Geometry 2 this value
is about 20%.
Figure 12 depicts the second free vibration frequencies at
θ = 45◦ for different cases. Similar to the previous figures,
two distinguished phases can be seen in the graphs. First, a
rapid growth in frequency value along with increasing the
number of layers and second tending toward a constant value
despite the increase of number of layers.

Conclusion

The current paper investigates the buckling load and natural
frequencies of laminated and conventional isogrid structures
with constant weight and thickness. Therefore, two different
geometries and several laminated isogrids with various

Prepared using sagej.cls



6 Journal Title XX(X)

0.30

0.35

0.40

0.45

0 10 20 30 40 50 60 70 80 90

1st
n

o
n

-d
im

e
n

si
o

n
a
l 

fr
e
e
 v

ib
ra

ti
o

n
fr

e
q

u
e
n

cy

θ (Deg.)

Geometry 1, (±θ)₅ₛ

Geometry 1, Isogrid

Geometry 2, (±θ)₅ₛ

Geometry 2, Isogrid

Figure 9. First non-dimensional free vibration frequency,
ω1, for the defined geometries and cases

0.39

0.40

0.41

0.42

0.43

0.44

0.45

0.46

0.47

1s
t
fr

e
e
 v

ib
ra

ti
o

n
 f

re
q

u
e
n

ci
e
s 

a
t 

θ
=

4
5֯

Number of Layers

Geometry 1

Geometry 2

Figure 10. First free vibration frequencies at θ = 45◦ for
the two defined geometries versus number of layers

number of layers and identical weight and thickness are
considered. The axial and shear buckling loads along with
first and second free vibration frequencies are obtained
for the samples. The results show, using laminated isogrid
instead of conventional one considerably improves the
mechanical behavior of the isogrid structures. Moreover, the
results depict, the layer’s orientation plays an important role
in mechanical responses of a grid structure. As shown in
the figures, generally the defined structures show their best
response at θ = 45◦. Investigating the effects of increasing
the number of layers shows, there is an optimum value for the
number of layers in a laminated isogrid structure. After the
optimum value, increasing the number of layers will not be
an affordable choice to enhance the mechanical behaviors of
the laminated isogrid structures. According to results, despite
the identical weight and thickness the mechanical responses
of a laminated isogrid structure completely depends on the
geometry design.
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for the two defined geometries versus number of layers
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