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AbstrAct
The role played by genetic components in the etiology 
of the Class III phenotype, a class of dental malocclu-
sion, is not yet understood. Regions that may be related 
to the development of Class III malocclusion have 
been suggested previously. The aim of this study was 
to search for genetic linkage with 6 microsatellite 
markers (D1S234, D4S3038, D6S1689, D7S503, 
D10S1483, and D19S566), near previously proposed 
candidate regions for Class III. We performed a two-
point parametric linkage analysis for 42 affected indi-
viduals from 10 Brazilian families with a positive 
Class III malocclusion segregation. Analysis of our 
data indicated that there was no evidence for linkage of 
any of the 6 microsatellite markers to a Class III locus 
at θ = zero, with data supporting exclusion for 5 of the 
6 markers evaluated. The present work reinforces that 
Class III is likely to demonstrate locus heterogeneity, 
and there is a dependency of the genetic background of 
the population in linkage studies.

KEY WOrDs: linkage analysis, Class III malocclu-
sion, microsatellite markers, candidate loci, mandibular 
prognathism, genetic heterogeneity. 

IntrODuctIOn

class III phenotype, a class of skeletal malocclusion also known as man-
dibular prognathism, is a heterogeneous complex trait that is skeletally 

characterized by an overgrowth of the mandible, an undergrowth of the max-
illa, or a combination of both. This phenotype may be noticeable at an early 
age, and generally becomes progressively more evident with growth. It is one 
of the main factors that leads a potential patient to seek orthodontic and surgi-
cal treatment (Singh, 1999). The frequency of Class III malocclusion varies 
among worldwide populations, presenting the lowest frequencies in Euro-
American populations (0.48 to 4%), intermediary frequencies in Sub-Saharan 
African populations (3 to 8%), and higher frequencies in far-eastern Asian 
populations such as Korea, China, and Japan (15 to 23%) (El-Gheriani et al., 
2003; Yamaguchi et al., 2005).

Class III malocclusion has been observed segregating within families, and 
several inheritance patterns have been suggested, including autosomal-recessive 
(Downs, 1927), autosomal-dominant (Bertram et al., 1959; Wolff et al., 
1993), and a polygenic threshold model (Litton et al., 1970). Furthermore, the 
presence of phenotype subtypes, phenocopies, and incomplete penetrance 
was also observed (Bui et al., 2006; Cruz et al., 2008). A previous study in 
Brazilian families estimated the heritability of Class III malocclusion as 
0.316, and also reported the influence of a major gene with a clear sign of 
Mendelian inheritance and a multifactorial component (Cruz et al., 2008). In 
summary, genetic and environmental factors play roles in the etiology of 
Class III malocclusion, but the relative contribution of each of these compo-
nents in the etiology of non-syndromic Class III malocclusion is unclear 
(Singh, 1999).

Few studies have focused on the genomic location of the genes that influ-
ence the development of Class III malocclusion. A genome-wide scan linkage 
analysis detected nominal statistical significance of linkage to Class III mal-
occlusion at loci D1S234, D6S305, and D19S884 in a set of Japanese and 
Korean affected sibling-pairs (Yamaguchi et al., 2005). Another study with a 
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genome-wide scan and linkage analysis in 4 Colombian families 
reported suggestion of linkage in chromosomes 1p, 3q, 11q, and 
12q (Frazier-Bowers et al., 2009). One way to minimize the 
overall cost of investigation is to look for linkage between the 
trait and candidate genes previously related in the literature. 
Since these studies indicated that multiple genomic areas may 
be involved in Class III malocclusion, several genes may be 
suggested as candidate genes. Three markers in this study 
(D1S234, D6S1689, and D19S566) were selected based on the 
investigation by Yamaguchi et al. (2005), being the same 
(D1S234), or relatively near with higher heterozygosity (> 0.8). 
The 3 additional markers (D4S3038, D7S503, and D10S1483) 
were selected based on their proximity to genes related to cra-
niofacial growth, development, and malformation—FGFR3 
(4p16.3), TWIST (7p21.2), and FGFR2 (10q26), respectively—
and on their high values of heterozygosity (> 0.8). Mutations in 
FGFR3 are related to the development of craniosynostosis and 
multiple types of skeletal dysplasia (Jacob et al., 2006; Rump 
et al., 2006), while TWIST and FGFR2 are related to Saethre-
Chotzen and Pfeiffer syndromes, which also present craniosyn-
ostosis and midfacial hypoplasia as clinical features (Freitas 
et al., 2006; Stevens and Roeder, 2006). In addition, there can 
be an interaction between the TWIST and FGFR protein fami-
lies during craniofacial development and malformation (Kress 
et al., 2006).

The aim of this study was to search for genetic linkage with 
highly polymorphic markers in 6 previously identified candidate 
genes/regions with Class III malocclusion in ten Brazilian families.

MAtErIALs & MEthODs

Family Enrollment

The project was approved by the National Ethical Committee in 
Research of Brazil (CONEP 9177). Consent to participate in the 
research was obtained from every adult or legal guardian, in the 
case of minors. Ten families were selected from a previous study 
(Cruz et al., 2008), based on total family size, number of 
affected members, and an autosomal-dominant pattern of inher-
itance (Fig. and Appendix).

clinical Assessment

Class III malocclusion status was demonstrated by lateral 
cephalometric radiographs, dental casts, and/or facial and intra-oral 

photographs. The individuals were diagnosed with Class III 
malocclusion when they presented a negative ANB angle (rela-
tive sagittal position of the maxilla and mandible). The SNGoGn 
(mandibular plane) angle was also taken into account, since a 
high value may suggest a predominant pattern of vertical facial 
growth, and a low value is related to a predominant pattern of 
horizontal facial growth. In an attempt to reduce phenotype 
heterogeneity, we excluded individuals with severe undergrowth 
of the maxilla – evaluated by the ANS-Po (anterior nasal spine-
porion) measurement – and normal mandible (Appendix Table 
1). Also, individuals who presented malformations, such as cleft 
palate, or syndromes were excluded.

DnA Isolation and Genotyping Assay

Venous blood was collected from 42 affected individuals from 
those families. Genomic DNA was isolated by the ‘salting out’ 
method (Miller et al., 1988) and diluted to 20 ng/µL. Six microsat-
ellite markers were selected, as previously described, for analysis: 
D1S234 (1p36.11), D4S3038 (4p16.3), D6S1689 (6p21), D7S503 
(7p21.2), D10S1483 (10q26), and D19S566 (19p13.1). As dis-
cussed above, they were chosen for their high heterozygosity, and 
for their previous linkage to Class III malocclusion (Yamaguchi 
et al., 2005) or proximity to candidate regions to skeletal disorders 
(Stein et al., 2004; Yoshida et al., 2004; Yamaguchi et al., 2005; 
Freitas et al., 2006; Jacob et al., 2006; Kress et al., 2006; Rump 
et al., 2006; Stevens and Roeder, 2006). D1S234 is located rela-
tively close to RUNX3, D6S1689 to RUNX2, D4S3038 to FGFR3, 
D7S503 to TWIST, and D10S1483 to FGFR2.

All primers were purified by a de-salting method and diluted 
to 10 µM. Forward primers were labeled with 6-FAM, HEX, or 
NED according to their polymerase chain reaction (PCR) prod-
uct size, to be distinguished during genotyping procedures. 
Amplification was done separately and then run together in an 
ABI377 (Perkin Elmer, Waltham, MA, USA). PCR was per-
formed in a total volume of 12.5 µL, containing 40 ng of 
genomic DNA, 0.3 µM of forward and reverse primers, 0.250 
mmol dNTPs, 1 mmol MgCl2, 1 U of Taq polymerase, and 1X 
amplification buffer. The amplification process was carried out 
starting with a hot start at 95°C for 5′ out followed by 29 cycles 
of 94°C for 1 min, annealing melting temperature (TM) for 
1 min, and 72°C for 1 min, and the process was finished, after 
the cycles, with one additional step at 72°C for 30 sec. For 
D1S234 and D10S1483, the annealing temperature was 51°C, 
and for D4S3038, D6S1689, D7S503, and D19S566, it was 

table. Overall LOD Score for θ Values for All 10 Brazilian Families with Class III Malocclusion

θ Values

Marker 0.00 0.01 0.05 0.10 0.20 0.30 0.40

D1S234 −15.84 −9.04 −5.12 −3.28 −1.57 −0.73 −0.25
D4S3038 −1.44 −0.17 0.35 0.44 0.31 0.11 −0.01
D6S1689 −7.06 −3.54 −1.15 −0.24 0.34 0.37 0.20
D7S503 −8.94 −3.77 −1.39 −0.51 0.03 0.10 0.05
D10S1483 −7.73 −1.90 −0.63 −0.20 0.07 0.11 0.06
D19S566 −9.21 −4.71 −1.94 −0.89 −0.19 −0.02 0.00
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50°C, 53°C, 53°C, and 52°C, respectively. PCR products were 
run in agarose gel 2%, and bands were evaluated and photo-
graphed through UV light to verify amplification. Amplification 
products were added with Rox markers and evaluated by an ABI 
PRISM® 377 genetic analyzer (Applied Biosystems by Life 
Technologies, Carlsbad, CA, USA). Data from genotyping were 
then analyzed with Genotyper (Applied Biosystems by Life 
Technologies, Carlsbad, CA, USA). Information was analyzed 
independent of pedigree structure, and all genotyped individuals 
were checked for Mendelian segregation in the pedigrees as a 
genotyping control.

Linkage Analysis

A two-point parametric linkage analysis was performed, with 
the penetrance set at 90% for an autosomal-dominant inheri-
tance pattern, according to the results of segregation analysis 
(Cruz et al., 2008). Allele frequency was assumed to be 1%, 
which corresponds to about a 2% prevalence of Class III maloc-
clusion in the Brazilian population.

Data were analyzed over an array of θ values, with MLINK 
(Lathrop and Lalouel, 1984) software, as implemented in the 
FASTLINK package, version 3.0 (Cottingham et al., 1993). 
Theoretically, the families and samples should be sufficient to 
show significant linkage (LOD = 3.4) to the major locus for 
Class III malocclusion in these families if the polymorphic 
marker is essentially in the same location as the locus (θ = zero), 
and they should be sufficient to show a suggestion of linkage 
(LOD = 2.3) if θ is 0.05. Evaluation of the power of the study, 
used to evaluate whether the families collected were likely to be 
informative for linkage to the set of pedigrees, was accessed by 
a simulation performed with the SIMLINK software package 
(Botstein and Risch, 2003). This evaluation is indicated for gen-
eral likelihood calculations.

rEsuLts

The Table summarizes the LOD score obtained for all families. 
There was no evidence or suggestion of linkage observed. In 
contrast, analysis of our data supports evidence of exclusion in 
5 of the 6 markers evaluated here. A LOD score of -15.8 (θ = 0) 

was estimated for D1S234, with evi-
dence of exclusion up to a θ of 0.1 
(LOD = -3.28). For D4S3038, a LOD 
of -1.44 was estimated at θ = 0 and of 
0.44 at θ = 0.1; therefore, no linkage or 
exclusion could be determined, 
although there is an apparent trend to 
exclusion of this region as well. A LOD 
score of -7.06 (θ = 0) was estimated for 
D6S1689, with no evidence of linkage 
up to a θ of 0.01. Concerning D7S503, 
a LOD score of -8.94 (θ = 0) was esti-
mated, and there was evidence of 
exclusion up to a θ of 0.01. In relation 
to D10S1483, a LOD score of -7.73 (θ 
= 0) was estimated. Finally, D19S566 

presented a LOD score of -9.21 (θ = 0), with evidence of exclu-
sion up to a θ of 0.01. The values of LOD score for each marker 
in each family can be observed in Appendix Tables 2 through 7.

DIscussIOn

Evidence suggestive of linkage in chromosomes 1p, 6p, and 19p 
with Class III malocclusion was observed in a set of Japanese 
and Korean sib-pairs (Yamaguchi et al., 2005). Contradictory 
evidence of exclusion of these regions was observed in our set 
of Brazilian families. This finding may be explained because of 
different genetic backgrounds in these populations and the fact 
that Class III malocclusion is likely to be a heterogeneous and, 
to some degree, polygenic trait. The present Brazilian popula-
tion, as well as most populations present in America, was 
formed with the admixture and genetic contribution of major 
parental groups—European, African, and Amerindian (Godinho 
et al., 2008; Wang et al., 2008)—while the Asian contribution to 
the genetic pool of the Brazilian population is very recent and 
could be disregarded. Therefore, it can be thought that popula-
tions with different genetic backgrounds – such as Brazil and 
Japan/Korea – may present different gene(s) implicated in Class 
III malocclusion etiology.

As previously mentioned, Class III malocclusion can be the result 
of an overgrowth of the mandible and/or maxillary retrognathism. 
The genes FGFR3 (4p16.3) and FGFR2 (10q26), as well as the 
TWIST gene (7p21.2)—located near D4S3038, D10S1483, and 
D7S503 markers, respectively—may be related more to maxillary 
retrognathism/hypoplasia, as evidenced by their involvement in 
cranial suture biology and craniosynostosis. The observed absence 
of evidence for linkage to these genes in the Brazilian families 
may be explained by most of the families evaluated presenting a 
phenotype of mainly mandibular overgrowth.

In conclusion, no evidence of linkage in 6 previously sug-
gested region/genes with Class III malocclusion was observed 
in a set of 10 Brazilian families. An exclusion region was delim-
ited in either direction for all markers, except D4S3038. Our 
results strongly reinforce locus heterogeneity in the develop-
ment of Class III malocclusion, and the genes implicated in the 
etiology of this trait may be correlated with the ethnicity of the 
population.

Figure. Pedigree of a Brazilian family with Class III malocclusion showing an autosomal 
dominant inheritance based upon multiple generations and approximately equal occurrence in 
males and females, although there is no male to male transmission.
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