
Proximity-based differential single cell analysis of the niche to 
identify stem/progenitor cell regulators

Lev Silberstein1,2,3, Kevin A Goncalves4,5, Peter V Kharchenko2,6, Raphael Turcotte2,7, 
Youmna Kfoury1,2,3, Francois Mercier1,2,3, Ninib Baryawno1,2,3, Nicolas Severe1,2,3, 
Jacqueline Bachand1,2,3, Joel Spencer1,2,3, Ani Papazian1,2,3, Dongjun Lee1,2,3, 
Brahmananda Reddy Chitteti8, Edward F Srour8, Jonathan Hoggatt1,2,3, Tiffany Tate1,2,3, 
Cristina Lo Celso9, Noriaki Ono10, Stephen Nutt11, Jyrki Heino12, Kalle Sipilä12, Toshihiro 
Shioda13, Masatake Osawa14, Charles P Lin2,7, Guo-fu Hu4,5,*, and David T Scadden1,2,3,*

1Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02445, USA 
2Harvard Stem Cell Institute, Cambridge, MA 02138, USA 3Department of Stem Cell and 
Regenerative Biology, Harvard University, Cambridge, MA 02138, USA 4Graduate Program in 
Cellular and Molecular Physiology, Sackler School of Graduate Biomedical Sciences, Tufts 
University, Boston, MA 02111, USA 5Molecular Oncology Research Institute, Tufts Medical 
Center, Boston, MA 02111, USA 6Department for Biomedical Informatics, Harvard Medical 
School, Boston, MA 02115, USA 7Wellman Center for Photomedicine, Massachusetts General 
Hospital, Boston, MA 02445, USA 8Indiana University, Indianapolis, IN 46202, USA 9Imperial 
College London, London SW7 2AZ, United Kingdom 10University of Michigan School of Dentistry, 
Ann Arbor, MI 48109, USA 11Walter and Eliza Hall Research Institute, Parkville Victoria 3052, 
Australia 12University of Turku, Finland 13Cancer Center, Massachusetts General Hospital, 
Boston, MA 02114, USA 14Gifu University, Gifu, 501-1193, Japan

SUMMARY

Physiological stem cell function is regulated by secreted factors produced by niche cells. In this 

study, we describe an unbiased approach based on differential single-cell gene expression analysis 

of mesenchymal osteolineage cells close to and further removed from hematopoietic stem/

progenitor cells to identify candidate niche factors. Mesenchymal cells displayed distinct 

molecular profiles based on their relative location. Amongst the genes which were preferentially 

expressed in proximal cells, we functionally examined three secreted or cell surface molecules not 
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previously connected to HSPC biology: the secreted RNase Angiogenin, the cytokine IL18 and the 

adhesion molecule Embigin and discovered that all of these factors are HSPC quiescence 

regulators. Our proximity-based differential single cell approach therefore reveals molecular 

heterogeneity within niche cells and can be used to identify novel extrinsic stem/progenitor cell 

regulators. Similar approaches could also be applied to other stem cell/niche pairs to advance 

understanding of microenvironmental regulation of stem cell function.
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INTRODUCTION

Inter-cellular communications are essential for maintenance of tissue homeostasis and 

response to injury, as exemplified by functional relationship between stem/progenitor cells 

and their microenvironment, or niche. Studies first experimentally validating the niche 

concept leveraged proximity of heterologous cells (Xie and Spradling, 2000). Subsequent 

studies in multiple species and tissues have convincingly demonstrated that the niche serves 

as a critical regulatory unit to ensure preservation and optimal functioning of the stem cell 

pool (Moore and Lemischka, 2006) (Hsu et al., 2014) (Chakkalakal et al., 2012) (Li and 

Clevers, 2010) (Byrd and Kimble, 2009) (Fuentealba et al., 2012).

Hematopoietic stem cell and progenitor cell (HSPC) bone marrow niche has been 

extensively studied (Mendelson and Frenette, 2014) using cell ablation or cell type-specific 

gene deletion experiments (Morrison and Scadden, 2014). Niche participants have been 

defined as including endothelial cells, multiple mesenchymal types: adipocytes, CXCL12+ 

adventitial reticular (CAR) cells, osteolineage cells (OLC), LeptinR+ and nestin+ cells, 

NG2+ arteriolar sheath cells; non-myelinated Schwann cells and hematopoietic cells: 

macrophages and megakaryocytes (Mendelson and Frenette, 2014). The molecular 

regulators defined, however, are limited and most recent studies have focused on CXCL12 

and stem cell factor (Ding and Morrison, 2013; Ding et al., 2012; Greenbaum et al., 2013). 

We sought to seek novel regulators by reverting back to basic principles of niches, that cells 

in close proximity form an interactive physiologic unit. To experimentally exploit that 

principle, we used the microanatomy of HSPC in bone marrow to guide single cell sampling 

and analysis.

We focused on the post-transplant bone marrow niche because of its direct relevance to the 

clinical setting of HSPC recovery following transplantation. We emphasize that the post-

transplant niche critically differs from the homeostatic niche in two major aspects. First, the 

niche functions to support HSPC during regeneration and expansion as opposed to steady 

state when most HSPCs remain dormant. Second, the molecular and cellular composition of 

the post-transplant niche is markedly distinct due to the toxic effect of irradiation 

conditioning on the niche constituents. In particular, perivascular and endothelial cells, 

known to serve as a major source of critical niche factors such as CXCL12 and stem cell 

factor, are destroyed (Zhou et al, 2015) while the osteolineage cells (OLCs), also shown to 
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play a regulatory role in HSPC niche (Calvi et al., 2003; Sugimura et al., 2012; Zhang et al., 

2003), not only survive irradiation but transiently expand (Dominici et al., 2009) thus 

making it feasible to study these cells in the post-transplant setting.

Prior in vivo imaging studies of the post-transplant niche by our group and others 

demonstrated that in irradiated animals, some transplanted HSPC are found in close 

proximity to the endosteal surface and OLCs labeled by col2.3GFP transgene (Lo Celso et 

al., 2009; Xie et al., 2009), as defined by their location within two cell diameters from 

individual OLC. Given that spatial proximity between niche cells and primitive cells governs 

functional organization of stem cell niches from nematodes to mammals (Moore and 

Lemischka, 2006), we reasoned that HSPC-OLC co-localization in the post-transplant bone 

marrow niche may be similarly indicative of a regulatory relationship. If this is the case, it 

implies that OLCs may be heterogeneous: those which are located in close proximity to 

single transplanted HSPC (“proximal OLCs”) are most intimately involved in HSPC control 

while those at the distance (“distal OLCs”) are less likely to be engaged in the niche-related 

function. Therefore, proximal OLC signature, as defined by transcriptional comparison to 

the distal OLC cell subset, could serve as a valuable resource for unbiased identification of 

HSPC regulatory molecules in vivo.

RESULTS

Experimental platform for proximity-based study of HSPC niche

In order to undertake proximity-based analysis of post-transplant bone marrow niche, we 

adapted the same experimental platform as used in the above-mentioned in vivo imaging 

studies (Lo Celso et al., 2009) except for performing the experiments in neonatal col2.3GFP

+ recipients, which offered access to fresh bone tissue without decalcification.

Histological examination of bone sections from newborn animals transplanted with adult 

bone marrow LT-HSCs (lineage-negative (lin-) kit+ Sca1+ [LKS] CD34−Flk2−) fluorescently 

labeled with a lipophilic membrane-bound dye, DiI, demonstrated that at 48 hours, some 

single DiI-labeled cells were found in close proximity to individual OLCs (Figure 1A). For 

the subsequent experiments, proximal OLC was defined as the nearest cell within two cell 

diameters from a single DiI+ cell, while distal OLCs were harvested from the remaining 

OLC pool based on their location at least five HSPC cell diameters away from transplanted 

cells (Figure 1A). We also observed some transplanted DiI+ cells forming clusters, but these 

were usually located away from the OLC-covered endosteal surface and were not part of a 

definition of either proximal or distal OLCs (Figure S1).

Following transplantation, we extracted individual proximal and distal OLCs from fresh 

sections of femoral bones, performed single cell RNA-Seq analysis and validated 

differentially expressed genes as niche-derived HSPC regulators in vivo (Figure 1B). In 

order to retrieve OLCs directly from a section of neonatal trabecular bone, we modified the 

standard patch clamp microscopy platform by introducing additional steps for tissue 

immobilization and in situ enzymatic digestion under direct visual control followed by 

micropipette aspiration (Figure 1C).
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Proximal OLCs have a distinct transcriptional signature

In total, sixteen proximal OLCs and sixteen distal OLCs were retrieved. Following quality 

control assessment of single cell cDNA amplification [see Methods], eight cells from each 

group were selected for single cell RNA-Seq analysis.

To test whether proximal and distal OLCs could be distinguished in an unbiased manner 

based on a genome-wide transcriptional signature, we performed cross-validation tests using 

the “leave-two-out” strategy. Specifically, transcriptional signatures of one proximal and one 

distal OLC were “left out” from the dataset, a machine-learning classifier was trained on the 

remaining cells, and the ability of the classifier to correctly assign the transcriptomes of the 

“left-out” cells to either proximal or distal group was evaluated (Rizzo, 2007). The process 

was repeated for all proximal-distal cell pairs (64 possible combinations in total). Despite a 

small sample size, the majority of “left-out” samples were correctly classified (Figure 2A, 

area under the curve AUC=0.854, p<10−5) indicating that the proximal and distal OLCs 

displayed stable genome-wide transcriptional differences and that the molecular signature 

was reliable even though derived from a modest number of cells.

Single-cell RNA-Seq data exhibits higher levels of technical noise than the bulk 

measurements, as was also the case with our samples. In order to accommodate for 

biological and technical noise and improve the resolution of expression differences at the 

level of individual genes, we developed a probabilistic method, which uses Bayesian 

approach to estimate the likelihood of expression magnitude based on the observed reads for 

a gene in question and the overall error characteristics within the transcriptome of a 

particular single cell sample – Single Cell Differential Expression (SCDE)(Kharchenko et 

al., 2014). By evaluating posterior probability of expression magnitude for a given gene in 

each cell, the method is able to assess the overall likelihood that expression of a gene differs 

between proximal and distal OLCs (Vcam-1 gene shown as a representative example, Figure 

2B, the list of top differentially expressed genes in Table 1). The complete proximal/distal 

OLC database can be accessed via the URL http://pklab.med.harvard.edu/sde/

viewpost.html?dataset=olc

Using the top 200 differentially expressed genes, we found that profiles of proximal OLCs 

are clustered separately from the profiles of distal OLCs (Figure 2C). In particular, gene set 

enrichment analysis showed that proximal OLCs displayed a significant up-regulation of 

genes encoding cell surface proteins (p-value 6.8×10−4, Q-value 0.048; top genes: Vcam1, 

Adam9, Amot) and those involved in immune response (p-value 3.1×10−6, Q-value 0.0090; 

top genes: Map3k14, Cxcl12, Il18), supporting their role in intercellular communications 

(Figure S2). At the level of individual genes, we found that with the exception of c-kit, 

proximal OLCs had significantly higher expression levels of niche-associated molecules 

(most notably Cxcl12 and Vcam-1) as compared to distal OLCs. Further, in accordance with 

prior studies of a regulatory OLC phenotype, proximal OLCs were lineage-committed 

(Runx2+ , Sp7/osterix+, col1a1+) but less mature (Spp1/osteopontinlow, Bglap/

osteocalcinlow, Dmp1low) than distal OLCs (Figure 2D,E). To emphasize, the proximal OLC 

were immature cells of osteolineage, not mature osteoblasts.
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To verify whether proximity-associated OLC heterogeneity revealed by single cell RNA-Seq 

experiments can be also demonstrated within the tissue, we performed fluorescent in situ 
hybridization experiments (RNA Scope), a recently developed method that allows for 

quantitative measures of gene expression (Wang et al., 2012). We focused on one of the 

factors that we also tested for function in vivo, interleukin 18 (IL18). Bone sections from 

newborn col2.3GFP+ animals 48 hours after transplantation with DiI-labeled LT-HSC (the 

identical experimental setting as for cell-harvesting) were examined. We focused on IL 18 

expression in GFP-labeled OLCs, although the IL18 signal was not restricted to these cells, 

as previously reported (Novick et al., 2013). We defined “proximal” (within two cell 

diameters) and distal (greater than five cell diameters) areas as shown and quantified the 

amount of target RNA molecules as a number of dots per GFP+ cell (Figure 2F). We found 

that GFP+ OLCs in the proximal area contain a higher number of IL18 transcripts per cell as 

compared to those located further away (P<2.2×10−4).

Taken together, these data demonstrate that micro-anatomical proximity to a heterologous 

cell acts as a powerful and reliable discriminator between molecularly distinct subset within 

an apparently homogeneous, lineage-restricted cell population and identifies a subset of 

immature OLCs whose signature is consistent with an HSPC regulatory function.

In light of these findings, we set out to test whether the proximal OLC signature could be 

used as a resource for identification of novel non cell-autonomous HSPC regulators in vivo. 

Based on availability of in vivo models for functional testing, we chose three membrane-

bound and secreted factors for further validation: secreted RNase angiogenin (ANG), pro-

inflammatory cytokine interleukin 18 (IL18), and cell adhesion molecule Embigin.

ANG regulates LT-HSC quiescence and self-renewal

ANG is a secreted ribonuclease with established roles in promoting tumor angiogenesis and 

cellular proliferation (Kishimoto et al., 2005). It also acts as a neuronal pro-survival factor in 

amyotrophic lateral sclerosis (ALS) (Greenway et al., 2006).

We found that Ang was expressed at a higher level in proximal OLCs (Figure 3A) and 

undertook a functional evaluation of its role in the bone marrow niche by conditionally 

deleting Ang from distinct niche cell subsets. We crossed Ang “floxed” mice with animals in 

which tamoxifen-inducible Cre-recombinase was driven by the promoters targeting specific 

mesenchymal cells – osteolineage committed progenitors (Osx) (Mizoguchi et al., 2014), 

mesenchymal progenitors (nestin) (Mendez-Ferrer et al., 2010), periarteriolar sheath cells 

(NG2) (Zhu et al., 2011) and mature osteoblasts (Col1a1) (Kim et al., 2004). Ang expression 

in these niche cell subsets has been previously documented (Kunisaki et al., 2013) (Paic et 

al., 2009).

All conditional knock-outs demonstrated no significant changes in peripheral blood or bone 

marrow, apart from mild lymphocytosis (Table 2). However, immunophenotypic analysis of 

primitive hematopoietic cells (Figure S3A) revealed that deletion of Ang from Osx+, Nes+ 

and NG2+ cells resulted in an increase of the number of LT-HSC and more active cycling of 

LT-HSC, short-term HSC (ST-HSC) and multi-potent progenitors (MPP) (Figure 3B,C and 

Figure S3Bi,ii, C, Di,ii). In contrast, Ang deletion in mature osteoblasts by col1a1Cre had no 
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effect on these cell populations, but was associated with an increase in number and more 

active cycling of common lymphoid progenitors (CLP), as was also seen upon Ang deletion 

from Nes+ and NG2+ cells (Figure 3D,E). The number and cell cycle status of the myeloid 

progenitors in any of the above strains were unaffected by the Ang deletion (Figure S3 Biii, 

Diii).

To assess the effect of the above-noted changes on long-term hematopoietic reconstitution, 

we competitively transplanted the bone marrow from Angfl/flOsxCre, Angfl/flNesCre, 

Angfl/flNG2Cre, and Angfl/flCol1a1Cre mice and corresponding controls into congenic WT 

recipients (Figure 3F). We observed significantly reduced long-term multi-lineage 

reconstitution in the recipients of the bone marrow from Angfl/flOsxCre osteoolineage 

progenitors, Angfl/flNesCre, Angfl/flNG2Cre mice while the animals which were 

transplanted with Angfl/flCol1a1Cre mature osteoblast bone marrow displayed only a 

lymphoid reconstitution defect. Taken together, our observations reveal the role of ANG as a 

niche-derived regulator of quiescence and long-term reconstitution LT-HSC, ST-HSC, MPP 

and CLP and highlight differences in the target cell populations depending on a cellular 

source: ANG produced by mesenchymal progenitors, osteolineage committed progenitors 

and peri-arteriolar sheath cells regulates quiescence and repopulating ability of LT-HSC, 

while ANG derived from mature osteoblasts regulates lymphoid progenitors. Our findings 

that the absence of ANG in the microenvironment results in a long-term reconstitution 

defect raised a possibility that exposure to recombinant ANG may activate HSPC self-

renewal program under the conditions of proliferative stress. This hypothesis was tested in a 

follow-up study by us (Goncalves et al, accepted in Cell), which showed that ex-vivo 

treatment of LT-HSC with recombinant ANG prior to transplant or in vivo administration 

post-irradiation significantly enhances the regenerative capacity of HSPC.

IL 18 regulates quiescence of short-term hematopoietic progenitors

IL18 is a component of inflammasome, which is expressed by multiple cell types within and 

outside the bone marrow and stimulates interferon-gamma production by T-cells (Okamura 

et al., 1995), but has no known regulatory effect on HSPCs. We tested it in that setting given 

that our proximity-based analysis revealed IL18 expression in proximal OLCs: none of the 

distal OLCs had detectable IL18 transcripts (Figure 4A).

Notably, we found IL18R1 on the cell surface of short-term progenitors, but not LT-HSC 

(Figure 4B). To determine a functional role for IL18, we evaluated IL18 knock-out 

(IL18KO) mice and while no abnormalities in mature cell number were noted in the bone 

marrow and in peripheral blood at baseline (apart from modest neutrophilia) (Figure S4 A-

C), cell cycle and BrdU incorporation studies revealed increased proliferative rate in short-

term hematopoietic progenitors - ST-HSC and MPP - but not in LT-HSC (Figure 4C and 

Figure S4D). These observations are consistent with IL18 regulating the quiescence of short-

term progenitors.

Because IL18 is a stress-response molecule, we wondered if its effect on HSPC would be 

greater in the setting of recovery from bone marrow injury, such as exposure to the cell 

cycle-specific genotoxin 5-fluorouracil (5-FU). Quantification of progenitor cell subsets 7 

days post-exposure to 5-FU (Broxmeyer et al., 2012) showed a significantly increased 

Silberstein et al. Page 6

Cell Stem Cell. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



frequency of LKS cells, lin− kit+Sca1− myeloid progenitors and CLPs in IL18KO mice, as 

compared to 5-FU-treated WT controls (Figure 4D). In newborn IL18KO animals, loss of 

HSPC quiescence at baseline and exaggerated response to genotoxic injury (busulphan 

exposure in utero) (Bruscia et al., 2006) were also observed (Figure S5E). Taken together, 

these data suggest that IL18 constrains progenitor proliferation.

To further evaluate this function, we treated animals with recombinant IL18 and found that it 

protected LKS cells from 5-FU-induced apoptosis (Figure 4E) but limited the vigor of 

marrow recovery, as evidenced by decreased frequency of lineage-negative cells (Figure 4E). 

The specificity of these findings was confirmed by performing an identical experiment in 

IL18R1KO mice, which were unresponsive to exogenously administered IL18 (Figure S4F). 

Therefore, IL18 can protect progenitors from cell cycle specific genotoxins, but in so doing 

suppresses progenitor response to injury, restraining hematopoietic recovery.

To test if the quiescence-inducing effect of IL18 on short-term progenitors is exerted in a 

non cell-autonomous fashion, we transplanted WT (CD45.1) bone marrow cells into lethally 

irradiated IL18KO or WT recipients (CD45.2). We found that the IL18-deficient 

environment in the recipient animals conferred a significantly faster short-term 

hematopoietic recovery without affecting long-term reconstitution in both primary and 

secondary transplants (Figure S5A). In keeping with this, transplantation of the progenitor-

enriched WT bone marrow fraction (LKS cells) into IL18KO hosts was accompanied by 

approximately 2-fold increase in both myeloid (week 2) and lymphoid (week 4) cells in 

peripheral blood of the recipient animals (Figure 4F). The finding of enhanced early post-

transplant reconstitution in the absence of IL18 signaling was recapitulated in a reciprocal 

experiment, when sorted LKS cells from IL18 receptor knock-out animals were transplanted 

into WT hosts (Figure 4G), indicating that the effect of IL18 on short-term progenitors is 

likely to be direct. In both sets of experiments, enhanced reconstitution was multi-lineage 

but did not persist long-term, consistent with the predominant effect of IL18 on multi-potent 

short-term progenitors (Figure S5B,C). Interestingly, faster proliferation of transplanted LKS 

cells in IL18KO recipients was already evident at 24 hours, as shown by intra-vital imaging 

studies, and was associated with homing further away from the endosteal surface indicating 

that IL18 also regulates progenitor localization in the niche (Figure S5D).

To test if the effect of IL18 on post-transplant progenitor expansion can be exploited 

therapeutically, we transplanted lethally irradiated IL18KO and WT recipients with a 

limiting dose of WT bone marrow and found improved survival in the IL18KO group 

(Figure S5E). Given that IL18R is expressed in human HSPC (Fig. S5F), our results create a 

rationale for further translational studies to test whether that IL18 neutralization might be a 

means of reducing post-transplant cytopenias – a major cause of morbidity and mortality in 

patients.

Embigin regulates HSPC localization and quiescence and defines niche-factor enriched 
OLC subset

Embigin is a cell adhesion molecule of immunoglobulin superfamily (Huang et al., 1990, 

1993). Embigin is thought to enhance integrin-dependent cell substrate adhesion and was 

also shown to promote neuromuscular synapse formation (Lain et al., 2009). Embigin is 
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widely expressed within the hematopoietic system, including primitive hematopoietic cells 

(Pridans et al., 2008), but its function remains obscure.

Our proximity-based analysis showed that proximal OLCs had a significantly higher level of 

Embigin expression compared to distal OLCs (Figure 5A), and we undertook in vivo 
functional studies to evaluate its role as a hematopoietic regulator using anti-Embigin 

monoclonal antibody (Pridans et al., 2008).

We found that injection of WT animals with anti-Embigin is associated with approximately 

2-fold increase in the frequency of LT-HSCs, ST-HSCs, MPP and colony-forming cells as 

compared to those treated with isotype control antibody (Figure 5B,C). Further, there was a 

reduction in the proportion of cells in G0 phase of the cell cycle (Figure 5D) with a 

corresponding increase in S/G2/M phase and increased BrdU incorporation by primitive 

hematopoietic cells (Figure S6A), overall indicating the loss of HSPC quiescence upon anti-

Embigin treatment.

Given that Embigin is a cell adhesion molecule, we tested the effect of anti-Embigin on 

HSPC localization. We found that injection of anti-Embigin resulted in mobilization of 

lineage–negative kit+ progenitors and colony-forming cells (CFC), but not LKS cells, into 

the blood (Figure 5E). On the other hand, intra-vital microscopy studies revealed that either 

in vitro incubation of LKS cells [known to express Embigin] (Forsberg et al., 2010) with 

anti-Embigin or injection of anti-Embigin into lethally irradiated hosts resulted in a 

significantly lower number of transplanted LKS cells reaching calvarial bone marrow as 

compared to an isotype control (Figure 5F,G, left panels, Figure S6B,C), thus consistent with 

Embigin functioning as a homing molecule.

Notably, we observed that WT LKS cells transplanted into anti-Embigin pre-treated 

recipients or those pre-treated with anti-Embigin antibody displayed a higher proliferation 

rate (Figure 5F,G, right panels), measured as a ratio of cell number per calvarial bone 

marrow between 48 hours and 24 hours post-transplant. We verified the imaging data on 

homing and proliferation data by flow cytometric assessment of frequency and cell cycle 

status of transplanted cells (Figure S6 D,E). These results demonstrated that the effect of 

anti-Embigin on HSPC is direct and not primarily driven by depletion of mature leucocytes 

which was previously reported following anti-Embigin administration (Pridans et al., 2008). 

Consistent with the effect of anti-Embigin on HSPC quiescence and homing, bone marrow 

from anti-Embigin treated animals reconstituted poorly when competitively transplanted into 

irradiated recipients as compared to isotype-control treated marrow (Figure S6F). A 

quiescence-inducing effect of Embigin was further confirmed by intra-vital imaging 

experiments using Embigin KO mice which were made available in a limited number 

through collaboration: irradiated WT and Embigin KO animals were transplanted with WT 

LKS cells fluorescently labeled wit DiI, and the number of DiI+ singlets and clusters in the 

calvarial bone marrow were quantified 24 hours post-injection. We observed a significantly 

higher cluster/singlet ratio in Embigin KO recipients, indicative of greater proliferation in 

the absence of niche-derived Embigin (Figure S6G). No homing defect was detectable 

suggesting that the effects of anti-Embigin antibody on HSPC localization may be due to 
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acute Embigin blockade (as opposed to constitutive absence) or downstream signaling upon 

antibody binding which need to be further investigated.

Taken together, our results with are consistent with Embigin function as a regulator of HSPC 

localization and quiescence and provide the rationale for future mechanistic studies to 

examine the role of Embigin in HSPC regeneration.

In addition to identifying the functional role of Embigin in the niche, we asked if Embigin 

can be used as a cell surface marker for prospective isolation of a niche factor-enriched OLC 

subset. We therefore performed flow cytometric analysis of single cell suspensions isolated 

from bones of adult col2.3GFP mice using antibodies against Embigin in combination with 

VCAM1-another cell surface molecule which was preferentially expressed in proximal 

OLCs and easily detectable with commercially available antibody. These experiments 

revealed the presence of a distinct Embigin high VCAM1+population which we termed “VE 

cells” (for VCAM and Embigin)(Figure 6A). Transcriptome comparison of VE and non-VE 

(remaining col2.3GFP+ OLCs) cells demonstrated that VE cells are immature and enriched 

for known HSPC niche factors, thus resembling proximal OLCs (Figure 6B). VE cells had a 

distinct transcriptional profile compared to other niche populations such as nestin-GFPhigh 

and nestin-GFPlow cells, as revealed by PCA analysis (Figure 6C). Since the proximal OLC 

analysis had defined an immunophenotypic method of prospectively isolating similar cells, 

we reasoned that we could now perform flow based isolation and characterization of the VE 

subset under different conditions.

Testing this strategy, we first exposed animals to lethal irradiation to assess the impact of 

conditioning on a specific niche subset. Notably, VE cells increased in frequency and 

displayed up-regulation of two major HSPC retention molecules, CXCL12 and VCAM1, 

while the expression of these molecules in non-VE cells remained unchanged (Figure 6D,E). 

We also then asked whether niche cells ‘see’ and respond to the hematopoietic cells they 

support by examining VE cell gene expression after infusion of either cells or saline post-

irradiation conditioning. Intriguingly, VE cells differentially changed their gene expression 

when LT-HSCs versus saline were injected into lethally irradiated col2.3GFP+ mice. 

Specifically a cell-cell adhesion gene set, as determined by gene set enrichment analysis 

(GSEA), was upregulated (P-value 7.8×10−5, Q-value 0.019, top genes Nrcam, Icam2, 

Esam) whereas non-VE cells did not display consistent changes in this or other GSEA 

pathways tested (Figure 6F and data not shown). Thus, using Embigin as a cell surface 

marker defined a subset of immature OLCs which is enriched in niche factors and displays 

differential responsiveness to local and environmental cues. These data indicate that 

hematopoietic cells regulate their niche: a concept complementing the well-defined notion 

that the niche regulates hematopoietic cells.

DISCUSSION

These studies illustrate several methodological and biological principles. First, we show that 

while single cell analysis has frequently been used to define heterogeneity among admixed 

cells, applied to reveal differential gene expression between cells of specific micro-anatomic 

position can be uniquely powerful in identifying cell subsets and molecules of functional 
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importance. We demonstrate that utilizing the key principle of niche organization – 

mesenchymal-parenchymal proximity – as an upfront biological filter one can define 

otherwise indistinguishable stromal mesenchymal cell subsets. Given that proximity 

between a niche cell and a stem/progenitor cell is a common feature of normal and 

malignant niches, we believe that our approach - possibly in conjunction with other in-situ 

transcriptome analysis platforms such as MER FISH (Chen et al., 2015), FISSEQ (Lee et al., 

2014) or TEVA (Lovatt et al., 2014) – can be more generally applied in other tissue contexts.

Second, we show that combining proximity and single cell analysis can define novel factors 

that regulate neighboring cells. Our approach to regulatory factor identification was unbiased 

since we had no the prior knowledge of the cells which we interrogated (proximal OCLs) 

and the molecules which they produce as being involved in HSPC regulation. We focused on 

signaling molecules that were on the cell surface or secreted and could therefore act in a 

paracrine manner without necessitating direct cell-cell contact, and performed our 

experiments in the setting of transplantation because of our interest in defining molecular 

regulators that may be of relevance to medicine. All three niche factors demonstrated 

potential value in animal models relevant to clinical settings such as sensitivity to 

chemotherapy, recovery from genotoxic insult or hematopoietic regeneration following 

myeloablative transplantation. Perhaps most promisingly from a translational standpoint, our 

follow-up studies (Goncalves et al, accepted in Cell) revealed that ex-vivo exposure of 

mouse or human HSPC to recombinant Angiogenin or systemic administration of ANG 

post-irradiation in mice significantly boosts hematopoietic reconstitution. Thus, our 

discovery platform led to development of novel approaches to enhance hematopoietic 

regeneration in clinic.

Third, we demonstrate that our approach can reveal a subset of proximal-like cells (VE cells) 

that can be subsequently isolated by flow cytometry and molecularly analyzed. Doing so in 

the context of hematopoietic stem cell transplantation, we demonstrate that VE cells display 

a different pattern of gene expression in the presence of transplanted HSPC. These data 

indicate that niche cells are affected by the presence of the stem/progenitor cells they 

support. Therefore, there is bi-directional communication between specific niche stromal 

cells and stem/progenitor cells in the bone marrow. Similar, reciprocally modulating 

functional units may exist in other tissue niches.

It was striking that the three molecules we identified by differential single cell gene 

expression all regulate HSPC quiescence, despite the molecules representing very distinct 

functional classes (a secreted RNAase, a cytokine and an adhesion regulator). This may be 

coincidence, but it does pose the question of whether there are niches in the marrow 

microenvironment that are particularly abundant in quiescence-inducing or activation-

inducing molecules and may therefore serve as function-specific niches.

In summary, we show that reverting to the basic principle of niches that heterologous cells in 

proximity can regulate each other and combining that with differential single cell analysis 

can be a powerful means of identifying new biologically relevant molecular regulators and 

defining concepts like reciprocal interaction. Our proximity-based differential single cell 
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analysis platform can serve as a discovery approach to identify new molecular and cellular 

aspects of niche biology.

METHODS

For the details of animal models, data analysis, flow cytometry, transplantation, 5-FU 

treatment, BrdU incorporation, mobilization experiments and gene expression studies please 

see Extended Experimental Procedures.

Single OLC harvesting and single cell RNA-Seq

Newborn col2.3GFP animals were injected with DiI- labeled LKS CD34−Flk2− adult bone 

marrow cells and sacrificed 48 hours after transplantation. Femurs were dissected, embedded 

in 10% low melting temperature agarose (Lonza) and sectioned at 100μ using a vibratome 

(Leica). Single OLC harvesting was performed using a physiology microscope BX51 

(Olympus) equipped with filters to detect GFP and DiI fluorescence, DIC optics, 

micromanipulators (Eppendorff), real-time imaging camera, peristaltic pump, in-line heater, 

perfusion chamber (Harvard Apparatus) and SAS Air Syringe (Research Instruments). 

Sections were pre-screened for the presence of rare GFP-labeled OLCs located next to single 

DiI-positive transplanted HSCPs, which were found in 1-2 out of 15 sections per animal. 

The section was secured against the bottom of the perfusion chamber with holding pipette 

(Humagen) and was perfused with warm (37°C) cell dissociation solution (Liberase TM, 

Roche) for 8-10 minutes while the target cell was visually monitored. Then, applying 

positive pressure from the micropipette using Air Syringe, hematopoietic cells surrounding 

the target OLC were dislodged to create a 20-30 μ clearing. Finally, the aspiration pipette 

was lowered onto the target OLC, the cell was gently detached from the endosteal surface 

and aspirated. The presence of GFP fluorescence in the aspirated cell inside the aspiration 

pipette was confirmed, and the contents of the pipette was ejected into a PCR tube with the 

lysis buffer for the single cell RNA-Seq (Tang et al., 2009) and frozen immediately at 

−80°C.

Bioinformatics and single cell RNA-Seq data analysis

The differential expression estimates were obtained from single-cell RNA-seq data using the 

approach described in Supplementary Experimental Procedures. The single cell and bulk 

analysis RNA-Seq data has been deposited in GEO under accession number GSE52359. The 

full differential expression analysis can be viewed via the following URL http://

pklab.med.harvard.edu/sde/viewpost.html?dataset=olc

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Proximity-based single cell analysis of the bone marrow niche
(A) Fluorescent microscopy image of femoral bone section from newborn col2.3GFP+ 

animal injected with DiI-labeled adult bone marrow LT-HSCs 48 hours after transplantation. 

Proximal OLC (circled) is defined as the nearest GFP+ cell within two cell diameters (red 

square) from HSPC (arrowhead). Distal cells are GFP+ cells located outside of this area at 

least five cell diameters away from transplanted HSPC (white arrows). Scale bar 10 microne. 

(B) Experimental workflow. (C) Example of micropipette aspiration of proximal OLC. 

Shown are overlaid single color (GFP and DiI) images before and after retrieval of proximal 

OLC (i) The proximal GFP+ OLC (green) was identified based on proximity to the DiI-

labeled HSPC (red). (ii, iii) Following in-situ enzymatic dissociation, HSPC was dislodged 

from its original location and proximal OLC was aspirated into a micropipette. Scale bar 10 

microne.

Silberstein et al. Page 15

Cell Stem Cell. Author manuscript; available in PMC 2017 April 24.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Transcriptional profiling of proximal and distal OLCs by single cell RNA-Seq
(A) An unbiased genome-wide classification of proximal and distal OLCs. The receiver-

operator characteristic curve for the Support Vector Machine classification where all 

successive pairs of cells (one proximal and one distal) were classified based on the training 

data provided by other cells (P<0.005). (B) The use of SCDE to estimate the posterior 

distribution of expression levels based on the observations from each cell (colored lines, top 

and bottom panels). Analysis of the Vcam-1 gene is shown as an example. The joint 

posteriors (black lines) describe the overall estimation of likely expression levels within the 

proximal (top) and distal (bottom) OLCs, and are used to estimate the posterior of the 

expression fold difference (middle plot). The shaded area under the fold-difference posterior 

shows 95% confidence region.(C) Classification of individual OLCs based on the top 200 

differentially expressed genes. Each row represents a gene, with the most likely gene 

expression levels indicated by color (blue – high, white – low/absent). (D,E) Expression 

analysis of known niche-derived HSPC regulators and OLC maturation genes. The violin 

plots show the posterior distribution of the expression fold-difference (y-axis, log2 scale) for 

each gene, with the shaded area marking the 95% confidence region (equivalent to the 

middle plot in B). The horizontal solid red lines show the most likely fold-change value. (F) 

Quantification of IL18 expression in neonatal post-transplant bone marrow niche by 

fluorescent in-situ hybridization (RNA Scope). Newborn col2.3GFP+ animals were 

transplanted with DiI-labeled long-term HSCs and sacrificed at 48 hours, as for cell 

harvesting experiments. Frozen sections of fixed undecalcified femoral bones were 
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hybridized with fluorescently-labeled IL18 probe. Maximal intensity projections over 12 

micrones are displayed. Top panel: Lower magnification images illustrating spatial 

definition of “proximal” (within two cell diameters from transplanted HSPC, arrowhead) 

and “distal” (greater than five cell diameters from transplanted HSPC) areas. Bottom panel: 
higher magnification images displaying DAPI stain (blue) and the RNA scope signal (red 

dots). The nuclei of GFP+ cells are circled. IL18 mRNA was quantified by comparing the 

intensity of the RNA scope signal (expressed as the average number of dots per cell) 

between GFP+ cells within proximal and distal areas, and the results are displayed in (E) 

(p<2.2×10−4, 95% confidence intervals are shown, based on the Poisson model of the dot 

occurrences per cell. P-value was estimated using Poisson rate ratio test).
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Figure 3. Conditional deletion of Ang from niche cell subsets leads to the loss of quiescence in LT-
HSCs and CLPs
(A) Comparison of Ang expression in proximal and distal OLCs. (B) LT-HSC number per 

femur and (C) LT-HSC cell cycle status following conditional deletion of Ang from distinct 

niche cell subsets, as per the color-coded legend (n=4-10). Non-shaded graphs: control 

animals, shaded graphs: Ang-deleted animals. (D) CLP number per femur and (E) CLP cell 

cycle status following conditional deletion of Ang from distinct niche cell subsets (n=4-10). 

(F) Long-term reconstitution following competitive (1:1) transplantation of bone marrow 

from control animals (solid lines) and animals with conditional deletion of Ang (broken 

lines) into WT congenic recipients (n=8). *P<0.05, **P<0.01, ***P<0.001. Data are 

presented as mean+/− SEM.
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Figure 4. In vivo analysis of IL18 function in HSPC regulation
(A) Comparison of IL18 expression in proximal and distal OLC. (B) IL18 receptor 

expression in HSPC. Representative histograms are shown (n=3). A comparable cell 

population from IL18R KO mouse was used as a negative control (shaded histogram). (C) 

BrdU incorporation by HSPC in IL18KO mice (n=5). (D) Flow cytometric assessment of 

multi-lineage response to 5-FU in IL18KO mice. The statistical significance was assessed by 

ANOVA. Boxplots illustrating log ratios of cell numbers between 5- FU-treated and vehicle-

treated animals in WT and IL18 groups are shown (n=7). (E) Enumeration of apoptotic LKS 

cells and lin-negative cells in WT animals pre-treated with rIL18 prior to 5-FU exposure 

(n=5). (F) Myeloid and lymphoid reconstitution in IL18KO mice following transplantation 

of (WT) LKS cells (n=7). (G) Myeloid and lymphoid reconstitution following 

transplantation of LKS cells from IL18R1KO or WT animals into WT hosts (n=8 per 

group). *P<0.05, **P<0.01. Data are presented as mean+/− SEM.
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Figure 5. Identification of Embigin as a hematopoietic regulator
(A) Comparison of Embigin expression in proximal and distal OLC. (B) Quantification of 

primitive hematopoietic cells, (C) colony-forming cells and (D) cell cycle status following 

treatment with anti-Embigin or isotype control antibody (n=5). (E) The effect of anti-

Embigin treatment on mobilization of lin−kit+ cells, lin−kit+Sca1+ cells and colony-forming 

cells into peripheral blood (n=4). (F,G) Quantification of homing and proliferation by intra-

vital microscopy following transplantation of WT LKS cells into anti-Embigin-treated host 

or anti-Embigin-treated LKS cells into WT host (n=4). Cell number per calvarial marrow at 

24 hours and calculated proliferation rate based on assessment of cell number by repeat 

imaging at 48 hours comparing are shown. Green – transplanted GFP+ cells, blue – second 

harmonic generation (bone signal). * p<0.05, ** p<0.01. Data are presented as mean+/− 

SEM.
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Figure 6. Isolation and characterization of VCAM+Embiginhigh subset of osteolineage cells (VE 
cells)
(A) Flow cytometric strategy for isolation of VE cells. (B) Expression of known niche 

factors and OLC maturation genes in VE cells from col2.3GFP mice (n=3). (C) Principal 

component analysis of transcriptomes from VE cells, nesitn-GFPhigh and nestin-GFPlow 

cells (n=3). (D) Assessment of VE cell frequency after irradiation (n=4). (E) Changes in 

niche factor expression in VE cells following irradiation. (F) Results of GSEA analysis (cell-

cell adhesion) in VE cells and non-VE cells from LT-HSC-versus saline-injected animals 

(n=3). Data are presented as mean+/− SEM.
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