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Abstract

C-Mpl is the receptor for thrombopoietin (TPO), the main megakaryocyte (MK) growth factor, and 

c-Mpl is believed to be expressed on cells of the hematopoietic lineage. As MKs have been shown 

to enhance bone formation, it may be expected that mice in which c-Mpl was globally knocked out 

(c-Mpl−/− mice) would have decreased bone mass because they have fewer MKs. Instead, c-Mpl−/

− mice have a higher bone mass than WT controls. Using c-Mpl−/− mice we investigated the basis 

for this discrepancy and discovered that c-Mpl is expressed on both osteoblasts (OBs) and 

osteoclasts (OCs), an unexpected finding that prompted us to examine further how c-Mpl regulates 

bone. Static and dynamic bone histomorphometry parameters suggest that c-Mpl deficiency results 

in a high bone turnover state with a net gain in bone volume. In vitro, a higher percentage of c-Mpl

−/− OBs were in active phases of the cell cycle, leading to an increased number of OBs. No 

difference in OB differentiation was observed in vitro as examined by real-time PCR and 

functional assays. In co-culture systems, which allow for the interaction between OBs and OC 

progenitors, c-Mpl−/− OBs enhanced osteoclastogenesis. Two of the major signaling pathways by 

which OBs regulate osteoclastogenesis, MCSF/OPG/RANKL and EphrinB2-EphB2/B4, were 

unaffected in c-Mpl−/− OBs. These data provide new findings for the role of MKs and c-Mpl 

expression in bone and may provide insight into the homeostatic regulation of bone mass as well 

as bone loss diseases such as osteoporosis.
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INTRODUCTION

Traditionally, skeletal and hematopoietic systems have been studied as separate entities. 

However, given their shared site of origin in the bone marrow cavity, it is broadly accepted 

that the two cell lineages would have the ability to exert local influence on each other. A 

growing body of evidence suggests that MKs and/or their growth factors play a role in 

skeletal homeostasis. Indeed, our group and others have shown that increased levels of MKs 

lead to amplified OB proliferation and phenotypes displaying increased bone mass (Kacena 

et al.,2004; Kacena et al.,2012; Kacena et al.,2005; Miao et al.,2004; Cheng et al.,2013; 

Meijome et al.,2015; Cheng et al.,2015; Ciovacco et al.,2010; Lemieux et al.,2010; Ciovacco 

et al.,2009).

Specifically, our laboratory has previously shown that mice deficient in GATA-1 or NF-E2, 

transcription factors that are necessary for normal MK differentiation, develop a striking 

increase in bone marrow MK number with a concomitant reduction in platelet number and a 

dramatic increase in trabecular bone (Kacena et al.,2004; Shivdasani et al.,1995; Shivdasani 

et al.,1997). Similarly, overexpression of thrombopoietin (TPO), the major MK growth 

factor, in mice results in an approximate 4-fold increase in bone marrow MK number and an 

osteosclerotic bone phenotype (Villeval et al.,1997; Yan et al.,1996). Because of the similar 

increase in bone marrow MK number and high bone mass phenotype, we previously 

postulated TPO acts upon MKs and these MKs subsequently activate OB lineage cells, 

leading to an increase in bone formation. Based in part on this model, Perry et al examined 

whether a reduction in MK number would result in a reduction in bone (Perry et al.,2007). 

To do this they also examined mice deficient in c-Mpl, the receptor for TPO, which is 

thought to be highly restricted to hematopoietic stem cells and cells of the MK lineage. 

Although c-Mpl−/− mice have a significant reduction in MK numbers (>80% reduction) (de 

Sauvage et al.,1996), Perry et al found no difference in bone phenotype between c-Mpl−/− 

mice and wild-type (WT) controls (Perry et al.,2007) when a decrease in bone formation 

may have been expected.

Based on these apparently contradictory findings we examined potential mechanisms 

leading to increased bone mass in c-Mpl−/− mice and investigated new parameters including 

the direct effect of c-Mpl deletion on cells of the bone cell and the enumeration of numbers 

of OB and OC numbers in c-Mpl−/− mice. We report important new findings that cells of the 

OC and OB lineage express c-Mpl, and that c-Mpl expression can impact both OC and OB 

growth and function and may shed light on the direct and indirect effects of c-Mpl in 

regulating skeletal homeostasis.
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METHODS

Mice

For these studies 5 month-old female and male c-Mpl−/− or knockout (on a C57BL/6 

background) and wild-type (WT) C57BL/6 mice were utilized. C-Mpl knockout mice were 

kindly provided by Genentech. Generation and breeding of c-Mpl knockout mice was 

previously described (Gurney et al., 1994; Tong and Lodish, 2004; de Sauvage et al.,1994). 

C57BL/6 mice were obtained from Jackson Laboratories. Three and thirteen days prior to 

sacrifice, mice were injected with 30mg/kg of calcein (IP) for dynamic histomorphometric 

determinations. All procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) of the Indiana University School of Medicine and followed NIH 

guidelines as well as the Guide for the Care and Use of Laboratory Animals.

Histology/Histomorphometry

The WT and cMpl−/− mice were administered an intraperitioneal injection of the 

fluorochrome calcein (30mg/kg) 13 and 3 days prior to sacrifice to label actively forming 

bone surfaces. Static and dynamic histomorphometric analysis of trabecular bone was 

performed on femurs as previously described (Feher et al.,2010; Warden et al.,2008). 

Histological measurements were made with a semiautomatic analysis system (Bioquant 

OSTEO 7.20.10, Bioquant Image Analysis Co.) attached to a microscope with an ultraviolet 

light source (Nikon Optiphot 2 microscope, Nikon). Measurements were done on one 

stained (static) and one unstained (dynamic) section for each animal.

µCT

Micro-computed tomography or µCT (Skyscan 1172) was used to quantify trabecular bone 

parameters of the distal femur as previously detailed (Feher et al.,2010; Warden et al.,2008; 

Weatherholt et al.,2013). µCT scanning was performed on the femur sequestered for 

histology. In brief, images were binarized, and three-dimensional bone volume parameters 

were calculated: trabecular bone volume fraction (BV/TV, %), trabecular number (Tb.N, 1/

mm), trabecular thickness (Tb.Th, mm), and trabecular separation (Tb.Sp, mm).

Biomechanics

Relative bone strength was determined by performing three-point bending of the left femur 

with a materials testing device (MTS Systems Corporation; Eden Prairie, MN) as previously 

detailed (Warden et al.,2008; Feher et al.,2010; Weatherholt et al.,2013). In brief, femurs 

were thawed to room temperature in a saline bath for two hours. Thereafter, each femur was 

tested in the anterior-posterior direction and stabilized with a static preload of 1 N before 

being loaded to failure with a crosshead speed of 10 mm/min. Force versus displacement 

data was gathered at 100 Hz, and the ultimate force (N), stiffness (N/mm), polar moment of 

inertia, ultimate stress (MPa), modulus (MPa), and toughness (MJ/m3) were derived.

Preparation of Neonatal Calvarial Cells (OB)

Neonatal murine calvarial OB cells were prepared as previously described (Horowitz et al.,

1994) from WT C57BL/6 and c-Mpl −/− mice. Our technique was a modification of the 
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basic method described by Wong (Wong and Cohn, 1975). Briefly, calvaria were dissected 

from neonatal mice and then treated with EDTA in PBS for 30 min. Calvaria were then 

subjected to sequential collagenase digestions (200U/mL). Fractions 3–5 (digestions 

incubated at 37°C for 20–35, 35–50, and 50–65 min, respectively) were collected and used 

as the OB starting population. These cells were ~90% OB or OB precursors based on 

previously reported established criteria (Horowitz et al.,1994; Simmons et al.,1982; Jilka and 

Cohn, 1981). OBs were seeded at 2x104 cells/ml (optimal pre-tested). OB in culture were 

maintained in αMEM supplemented with 10% fetal bovine serum and were further 

supplemented with ascorbic acid (50 µg/ml added on day 0 and at all feedings) and β-

glycerophosphate (5mM added starting on day 7 and all subsequent feedings). Cells were 

fed twice per week. Thrombopoietin (TPO) was added to some cultures. Multiple doses of 

TPO were tested (1–1000 ng/ml) and none of these doses resulted in an appreciable 

difference in OB proliferation (data not shown). Therefore, we selected the TPO dosage our 

group and others have utilized for stimulation of MKs (100 ng/ml).

In Vitro Osteoclast-like Cell Formation Models

OC-like cells were generated as previously described (Kacena et al.,2004). In brief, 2×106 

bone marrow (BM) cells/ml and 20,000 primary calvarial OB/ml were grown in α-MEM 

supplemented with 10% FCS and 10−8 M 1,25(OH)2D3 (Bruzzaniti et al.,2009). The media 

was changed every other day for 6–8 days (until OC were formed). Once OC formed, the 

cells were fixed with 2.5% glutaraldehyde in phosphate buffered saline for 30 minutes at 

room temperature and stained for TRAP. Only TRAP+ multinucleated cells (>3 nuclei) were 

quantified.

Immunoprecipitation Assays

For immunoprecipitation (IP) analyses, OB were rinsed with ice-cold PBS and lysed in 

modified RIPA (mRIPA) buffer (50 mM Tris-HCl, pH 7.4), 150 mM NaCl, 5 mM EDTA, 

1% NP40, 1% sodium deoxycholate, 0.1% SDS, 50 mM NaF, 1% aprotinin and 0.1mM 

Na3VO4). After a brief sonication, lysed cells were centrifuged at 13,000 rpm for 5 min at 

4°C to obtain soluble cell extracts. For immunoprecipitation (IP), approximately 150 µg of 

lysates were incubated with 3 µg of Anti-TpoR/c-Mpl antibody (Millipore) for 2 h at 4°C. 

After incubation, 20 µl of Protein G-agarose beads were added to individual tubes for 1 h at 

4°C. The beads were washed four times with mRIPA and once with 10 mM Tris-HCl, pH 

7.4. The IPs were eluted by boiling for 10 min with 40 µl of 2X Laemmli’s sample buffer 

with β-mercaptoethanol. Immunoblotting was carried out with anti-rabbit secondary 

antibody (Promega).

Cell Cycle Analysis

WT C57BL/6 and cmp-l −/− calvarial OBs were assessed on days 1, 3, 5, and 7 of culture. 

Cells were stained with equal volumes of staining buffer (0.1mg/ml propidium iodide 

+ 0.6% Nonidet P40 in PBS) and 2 mg/ml RNase as described previously (Srour et al.,

1992). The cells were mixed well and incubated on ice for 30 minutes. Data were collected 

on a FACS caliber flow cytometer (BDIS) and the percentage of cells in G0/G1 and S/G2+M 

phases were determined.
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Apoptosis Analysis

WT C57BL/6 and cmp-l −/− calvarial OBs were assessed for apoptosis on days 1, 3, 5, and 

7 of culture. Cells were washed once in DMEM followed by the addition of Annexin-V 

conjugated with Aallophycocyanin (APC). Cells were incubated on ice for 15 minutes. Cells 

were washed and resuspended in DMEM followed by the addition of 10µl of 10ng/ml 

propidium iodide. Cells were incubated at room temperature for another 10 minutes and data 

were collected on a FACS caliber flow cytometer.

Alkaline Phosphatase Activity

Alkaline phosphatase activity was determined by the colorimetric conversion of p-

nitrophenol phosphate to p-nitrophenol (Sigma) and normalized to total protein (BCA, 

Pierce) (Hughes and Aubin, 1998). Briefly, 2 day-old calvarial OB that had been cultured for 

14 days were washed 2x with PBS, subsequently lysed with 0.1% (vol/vol) Triton X-100 

supplemented with a cocktail of broad-range protease inhibitors (Pierce), subjected to two 

freeze-thaw cycles, and cleared via centrifugation. Lysates were incubated with 3 mg/ml p-

nitrophenol phosphate in an alkaline buffer, pH 8.0, (Sigma) for 30 min at 37°C. The 

reaction was stopped by the addition of 20 mM NaOH and read at 395 nM (GENios Plus, 

Tecan). The enzymatic activity of alkaline phosphatase was determined by comparison with 

known p-nitrophenol standards (Sigma).

Quantitative Analysis of Calcium Deposition

Calcium deposition was assessed by eluting Alizarin Red S from monolayers of neonatal 

calvarial OBs grown for 14 days in culture as previously described (Stanford et al.,1995). 

Briefly, monolayers were washed 2X with PBS, subsequently fixed in ice cold 70% (v/v) 

ethanol for 1 hr, then washed 2X with water. Monolayers were stained with 40mM Alizarin 

Red S (pH 4.2) for 10 min (room temperature, shaking), unbound dye was removed by 

washing with water (5X) and with PBS (1X for 15 minutes, room temperature, shaking). 

Bound Alizarin Red was eluted by incubating monolayers with 1% (v/v) cetylpyridinium 

chloride in 10mM sodium phosphate (pH 7.0) for 15 min (room temperature, shaking). 

Absorbance from aliquots was measured at 562 nm (GENios Plus, Tecan), and Alizarin Red 

concentrations were calculated from measured standards (Ca/mol of dye in solution).

Quantitative Real-Time PCR

Total RNA was isolated using Trizol Reagent as directed by the manufacturer (Invitrogen 

Corporation). 1ug of RNA isolated using Trizol Reagent was used to generate cDNA by 

reverse transcription according to the manufacturer’s instructions (First Strand cDNA 

Synthesis Kit for RT-PCR; Roche Applied Science). Quantitative Real-Time PCR (qRT-

PCR) reactions were performed in an ABI Prism 7900HT sequence detection system 

(Applied Biosystems) using Power SYBR Green PCR Master Mix reagent following the 

manufacturer’s instructions for relative quantification (Applied Biosystems).

For each gene analyzed, a calibration curve was performed and all the oligonucleotides were 

tested to ensure specificity and sensitivity. For each sample, arbitrary units were obtained 

using the standard curve and relative mRNA expression of GAPDH was used to normalize 

the amount of the investigated mRNA transcript. For each target gene, the corresponding 

Meijome et al. Page 5

J Cell Biochem. Author manuscript; available in PMC 2017 April 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



WT sample was used as the calibrator for relative expression. Primer pair sequences used 

were:

Alkaline phosphatase forward primer: 5’ GCTGATCATTCCCACGTTTT

Alkaline phosphatase reverse primer: 5’ CTGGGCCTGGTAGTTGTTGT

Osteocalcin forward primer: 5’ AAGCAGGAGGGCAATAAGGT

Osteocalcin reverse primer: 5’ TTTGTAGGCGGTCTTCAAGC

Type I collagen forward primer: 5’ CAGGGAAGCCTCTTTCTCCT

Type I collagen reverse primer: 5’ ACGTCCTGGTGAAGTTGGTC

GAPDH forward primer: 5’ CGTGGGGCTGCCCAGAACAT

GAPDH reverse primer: 5’ TCTCCAGGCGGCACGTCAGA

MCSF forward primer: 5’ CCCATATTGCGACACCGAA

MCSF reverse primer: 5’ AAGCAGTAACTGAGCAACGGG

OPG forward primer: 5’ CCGAGTGTGTGAGTGTGAGG

OPG reverse primer 5’ TGCAAACTGTGTTTTGCTCTG

RANKL forward primer: 5’ CATTTGCACACCTCACCATC

RANKL reverse primer: 5’ TCCGTTGCTTAACGTCATGT

EphB2 forward primer: 5’ GATGGTACATCCCCCATCAG

EphB2 reverse primer: 5’ ACGCACCGAGAACTTCATCT

EphB4 forward primer: 5’ CAACTGGATGAGAGCGAGAG

EphB4 reverse primer: 5’ GAGGCAGAGAACTGCAATGA

Statistics

Unless otherwise stated, all data are presented as the Mean ± 1 SD. All experiments were 

performed at least three times with duplicate or triplicate samples in each experiment. For in 

vivo studies, the sample size is presented in the corresponding figure legends. Student’s t-

test were performed when only two groups were compared. As male and female mouse 

bones exhibited virtually identical properties, for ease of reporting and to increase the 

sample size, data from male and female mice were combined for all of the in vivo data 

analysis. One-way factorial analyses of variances with LSD were used to make multiple 

group comparisons.

Two-way factorial analyses of variances were used to determine significant main effect 

contribution in cell co-culture groups, with BM genotype and OB genotype being the 

independent variables, as well as significant interaction effect between these independent 

variables. All analyses were performed with the Statistical Package for Social Sciences 

(IBM SPSS 19; SPSS Inc., Armonk, NY) software and were two tailed with a level of 

significance set at 0.05.

RESULTS

Trabecular Bone Phenotype of 20 Week-Old C-Mpl−/− Mice

Bones were assessed from male and female c-Mpl−/− and WT mice at 20 weeks. It should 

be noted that no significant differences were observed in body weights between C57BL/6 
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and c-Mpl−/− mice (25.8±3.1g vs. 24.1±2.9g, respectively). µCT and static 

histomorphometry data (trabecular bone) are reported in Table 1. As detailed in Table 1 and 

illustrated in Figure 1, unexpectedly, bone volume/total volume (BV/TV) was elevated 2.2 

fold in c-Mpl−/− mice compared to WT controls as measured by static histomorphometry 

(p=0.005) and 3.4 fold in c-Mpl−/− mice compared to WT controls as measured by µCT 

(p<0.001). C-Mpl−/− femurs exhibited a significant increase in trabecular number (Tb.N, 3.8 

fold increase, p<0.001) with a concomitant decrease in trabecular spacing (Tb.Sp, 1.8 fold 

decrease, p<0.001) compared to WT controls as measured by µCT. No difference was 

detected in trabecular thickness (Tb.Th). Of interest, the structural model index or SMI, 

measured by µCT, was 2.00±0.005 for c-Mpl−/− femurs and 2.69±0.05 for WT control 

femurs and (p<0.001). As an SMI of 3 signifies a more rod-like bone architecture whereas 

an SMI of 0 signifies a more plate-like structure, c-Mpl deficiency resulted in a more plate-

like trabecular architecture.

As shown in Table 1 and Figure 1, examination of static bone histomorphometry parameters 

illustrated a significant increase in both the number of OBs/tissue area (N.Ob/TAR, 1.6 fold 

increase, p=0.05) and the number of OCs/tissue area (N.Oc/TAR, 2 fold increase, p=0.003) 

from the distal femur of the c-Mpl−/− mice when compared to the WT controls. This finding 

is not surprising given that OBs and OCs are typically coupled. Thus, it is not unusual to 

observe a significant increase in both OB and OC numbers. Dynamic bone 

histomorphometric analyses revealed no significant differences for the distal femur between 

c-Mpl−/− and WT with respect to bone formation rate/total volume (BFR/TV) or mineral 

apposition rate (MAR). These data, combined with the bone volume data from µCT and 

static histomorphometry, suggest c-Mpl−/− mice to have increased numbers of OBs that are 

similarly active/functional to that of WT mice. However, the increased number of OBs 

formed more total trabecular bone. As OC numbers were also elevated in c-Mpl−/− mice c-

Mpl deficiency produced a high bone mass phenotype, appearing by five months of age, as a 

result of a high turnover state; similar to what was observed in growing mice.

Anthropometrics, Cortical Bone, Biomechanical and Biomaterial Properties

Anthropometrics and cortical bone histomorphometry are reported in Table 2. 

Biomechanical and biomaterial property data are reported in Tables 2 and 3. With respect to 

femoral geometry, no significant differences were detected between c-Mpl−/− and WT mice 

for femoral length, mid-shaft width (medial to lateral), or mid-shaft height (ventral to 

dorsal). Consistent with the mid-shaft width and height, polar moment of inertia, calculated 

via µCT, also revealed no significant difference between c-Mpl−/−and WT femurs. Next, 

static and dynamic bone histomorphometric data was collected on cross-sectional femur 

specimens at the mid-shaft. As would be expected based on the gross femur width and 

height measurements, the cross-sectional area (CSA) was not different between WT and c-

Mpl−/− femurs (1.72±0.04 vs. 1.74±0.05, p=0.8) as assed by µCT. However, the bone area 

(BA) was significantly higher in WT femurs compared to c-Mpl−/− femurs (0.86±0.05 vs. 

0.72±0.02, p=0.005). As might be predicted based on the similar CSA, no difference in 

periosteal bone formation rate was detected. The increased BA observed in WT mice is 

likely due to the increased endocortical bone formation rate observed compared to c-Mpl−/− 

mice (p=0.03). With a similar outer geometry but a striking increase in bone area, it would 
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be predicted that the WT bones would be stronger and stiffer than c-Mpl−/− bones. 

Specifically, the WT femurs were 18.6% stronger than c-Mpl femurs (p<0.001) as 

determined by examining the peak load. Similarly, the WT femurs were 15.0% stiffer than c-

Mpl femurs (p=0.02).

C-Mpl is expressed on both Osteoblast and Osteoclast Lineage Cells

Since global deficiency of c-Mpl resulted in a high bone mass phenotype by 5 months of age 

with changes in both OB and OC parameters observed in vivo, we investigated possible 

mechanisms leading to this phenotype. First, we determined whether cells of the OB lineage 

express c-Mpl. As shown in Figure 2A, immunoprecipitation studies demonstrated the 

expression of c-Mpl in MKs (positive control) and in WT OBs, but not in c-Mpl−/− OBs 

(negative control). With respect to expression in OC lineage cells, we recently reported that 

primary bone marrow macrophages (OC progenitors) as well as two OC-like cell lines 

(RAW264.7 and a PAX5 Spleen Cell Line generated by M. Horowitz) all expressed c-Mpl 

albeit at lower levels than that observed in MKs (Bethel et al.,2015).

C-Mpl Negatively Regulates Osteoblast Proliferation

To begin to understand the role of c-Mpl expression in OB function, we next sought to 

determine whether c-Mpl expression affected OB number or cell cycle regulation. To 

accomplish this, equal numbers of WT and c-Mpl−/− OBs were cultured and assessed every 

other day (days 1, 3, 5 and 7) for the total number of viable OBs (trypan blue exclusion) 

produced in culture as well as cell cycle status. As demonstrated in Figure 2, c-Mpl−/− OB 

cultures produced significantly more cells than their WT counterparts (Figure 2B) and c-Mpl

−/− OBs entered active phases of cell cycle at a higher rate than WT OBs (Figure 2C). Of 

interest, we also cultured OBs in the presence or absence of TPO (kindly provided by 

Genentech). Supplementation with 100 ng/ml of TPO did not have an effect on total number 

of OB progeny or their cell cycle. Finally, we also assessed apoptosis by examining the 

expression of Annexin V. In all cases, less than 2% of the OBs were Annexin V positive, 

suggesting that apoptosis did not alter proliferation or cell cycle status of OBs in culture.

C-Mpl Expression Does Not Affect Osteoblast Differentiation In Vitro

To understand the effects of c-Mpl expression and signaling on OB differentiation, we 

examined the following 4 groups of cells: WT OB, WT OB + TPO, c-Mpl−/− OB, and c-

Mpl−/− OB + TPO. Cells were cultured under osteogenic conditions as detailed above. As 

shown in Figures 2D and 2E, we assessed alkaline phosphatase activity and measured bound 

calcium as a functional measure of mineralization after 14 days. No significant differences 

were detected between WT and c-Mpl−/− OBs. Furthermore, the addition of 100 ng/ml of 

TPO did not have a notable effect on WT or c-Mpl−/− OBs.

To further examine the effects of c-Mpl expression in OB differentiation we cultured WT 

and c-Mpl−/− OBs under osteogenic conditions as above and on day 14 examined mRNA 

expression of the following genes: alkaline phosphatase, type I collagen, and osteocalcin. As 

illustrated in Figure 2F, no significant differences in mRNA expression of these genes were 

observed between WT and c-Mpl−/− OBs.
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The Effects of c-Mpl Expression on Osteoclasts

We recently demonstrated that TPO significantly enhanced osteoclastogenesis when bone 

marrow marcophages (BMMs) were used as a source of OC progenitors, and that fewer OCs 

were generated from c-Mpl−/− BMMs as compared to those generated from WT BMMs 

(Taylor et al.,2008). As fewer OCs were generated from c-Mpl−/− BMMs in vitro but higher 

numbers of OCs were observed in c-Mpl−/− mice in vivo, and because we found that OBs 

also express c-Mpl, we sought to determine whether c-Mpl−/− OBs promote 

osteoclastogenesis. To accomplish this, we performed mix-and-match experiments in which 

OCs were generated by co-culturing of OB and BM supplemented with PGE2 and Vitamin 

D3. Specifically, WT or c-Mpl−/− OBs were co-cultured with BM generated from WT or c-

Mpl−/− mice. TRAP+ multinucleated (≥3 nuclei) cells from the 4 experimental groups were 

analyzed for three parameters: OC number, average nuclei/OC, and average OC surface area. 

As shown in Figure 3, significant main effect differences were found for both OB and BM 

genotype with respect to OC number (Figure 3A), number of nuclei/OC (Figure 3B), and 

OC surface area (Figure 3C). Specifically, c-Mpl−/− OBs supported osteoclastogenesis 

better than WT OBs, while WT BM cells supported osteoclastogenesis more effectively than 

c-Mpl−/− BM cells. Notably, a significant interaction was observed between c-Mpl−/− OB 

genotype and WT BM genotype with increased OC surface area (Figure 3) and increased 

OC nuclei number (Figure 3B), but not for total OC number (Figure 3A). Finally, as detailed 

above, our previous independent studies culturing BMMs in the presence of M-CSF and 

RANKL confirmed co-culture statistical analyses showing that WT BM cells better support 

osteoclastogenesis than c-Mpl−/− BM cells (Taylor et al.,2008).

C-Mpl Expression Does Not Affect M-CSF, OPG, RANKL, Eph B2, or Eph B4 expression in 
Osteoblasts

To further understand the mechanism by which expression of c-Mpl on OBs regulates 

osteoclastogenesis we cultured WT OBs and c-Mpl−/− OBs under osteogenic conditions and 

examined mRNA expression of the following genes: RANKL, OPG, and M-CSF. As shown 

in Figure 4, no significant differences were detected suggesting that c-Mpl expression on 

OBs does not affect OB expression of these known regulators of osteoclastogenesis. The 

EphrinB2-EphB2/B4 signaling pathway has also been implicated in OB-mediated 

osteoclastogenesis. Thus, we also determined whether c-Mpl expression altered OB-specific 

expression of EphB2 or EphB4. No significant differences were detected (Figure 4). 

Although c-Mpl−/− OBs were able to better support osteoclastogenesis than their WT 

counterpart, the exact mechanism for this enhanced support remains to be determined.

DISCUSSION

C-Mpl is a member of the type I cytokine receptor family. The receptor along with its ligand, 

TPO, were first proposed to play a role in megakaryopoiesis when experiments showed that 

antisense oligonucleotides to c-Mpl reduced MK colony formation (Methia et al.,1993). 

Upon binding to c-Mpl, TPO has been shown to promote the proliferation and differentiation 

of MK progenitor cells (Broudy et al.,1995; Kaushansky et al.,1994). The roles of TPO and 

c-Mpl were further clarified when a mouse model deficient in the gene for TPO exhibited a 

greater than 80% decrease in MK and platelet numbers (de Sauvage et al.,1996). In their 
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original study of c-Mpl−/− mice, Gurney et al. noted a marked decrease in MK number, but 

found no change in the number of mature red blood cells, white blood cells, neutrophils, or 

eosinophils. The role of TPO and c-Mpl in other hematopoietic lineages was later 

elucidated. Solar et al found that c-Mpl is expressed in early hematopoietic cells and that 

TPO is able to activate quiescent progenitors (Solar et al.,1998). This is consistent with the 

observation that c-Mpl−/− and TPO−/− mice display diminished levels of erythroid, 

myeloid, and multipotential progenitor cells (Carver-Moore et al.,1996). Indeed, subsequent 

studies by Carver-Moore et al. showed a significant decrease in all hematopoietic 

progenitors, including myeloid lineage cells. As OCs are known descendents of myeloid 

progenitors, it would be understandable if OCs were altered in the c-Mpl deficient mice. 

Furthermore, our laboratory recently showed that OC progenitors express c-Mpl, that 

stimulation of OC progenitors with TPO enhances OC formation in vitro, and that binding of 

TPO to c-Mpl is required for TPO to enhance OC formation in vitro (Taylor et al.,2008). 

Thus, like MK lineage cells, OC numbers may be expected to be decreased in c-Mpl−/− 

mice, in part because with the loss of c-Mpl, the ability of TPO to enhance 

osteoclastogenesis would be largely suppressed and because of the defect observed in 

myeloid lineage cells. Interestingly, as detailed in Table 1, OC number was significantly 

higher in c-Mpl−/− mice compared to WT controls. These in vivo findings along with in 

vitro studies are discussed in further detail below.

As mentioned above, we have demonstrated that increased levels of bone marrow MKs can 

promote bone formation (Kacena et al.,2005; Kacena et al.,2004). In light of c-Mpl’s role in 

megakaryopoiesis and osteoclastogenesis, we aimed to further understand the c-Mpl−/− 

bone phenotype. Perry et al previously examined the bone phenotype of 12 week-old c-Mpl 

deficient mice (Perry et al.,2007). However, we have previously found that the high bone 

mass phenotype observed in mice with upregulated numbers of MKs (e.g. GATA-1 and NF-

E2 deficient mice) was not present until approximately 4 months of age (personal 

observation MAK and (Kacena et al.,2004; Kacena et al.,2005)). Therefore, here we have 

examined the bone phenotype of 20 week-old c-Mpl−/− and WT control mice.

Although Perry et al observed no difference in bone phenotype in 12 week-old mice, they 

predicted a decrease would be observed based on a reduction in the number of MKs (Perry 

et al.,2007). We report 20-week-old c-Mpl−/− mice to have a high bone mass phenotype 

(~2–3 fold increase) compared to WT controls. Examining biomechanical properties, femurs 

from WT mice are stronger and stiffer than those of c-Mpl−/− mice. Of importance, using 

static and dynamic bone histomorphometry we demonstrated that c-Mpl−/− mice had 

increased numbers of OBs (N.Ob/TAR), although OB activity appeared unchanged (BFR 

and MAR). In addition, OC number (N.Oc/TAR) was significantly elevated with c-Mpl 

deficiency. These findings, in combination with the increased number of OBs and high bone 

mass phenotype, suggest that c-Mpl deficiency results in a high bone turnover state with a 

net gain in bone volume.

How this could occur in light of previous postulations that MKs stimulate OB number and 

bone formation requires some historical background as well as new data. While establishing 

the role of c-Mpl in MKs and primitive hematopoietic cells, early papers speculated that the 

receptor is mainly restricted to hematopoietic lineages (Alexander et al.,1996; Mignotte et 
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al.,1994; de Sauvage et al.,1998). To our knowledge, c-Mpl has never been identified in 

mesenchymal lineage cells. We present the new observation that c-Mpl is expressed in cells 

of the OB lineage (Figure 2) in addition to our previous finding that c-Mpl is expressed in 

OC progenitors (Bethel et al.,2015). With respect to OB lineage cells, c-Mpl−/− OB cultures 

contained significantly more OBs over a 7 day time period and a larger percentage of 

cultured c-Mpl−/− OBs were in active phases of the cell cycle between days 3 and 7 

compared to WT OBs (Figure 2). Despite significant effects on OB proliferation, our data 

show no significant difference in differentiation between c-Mpl−/− and WT OBs, as 

assessed by functional alkaline phosphatase and mineralization assays, and mRNA 

expression of alkaline phosphatase, type I collagen, and osteocalcin as markers of OB 

differentiation. Thus, our in vitro data demonstrate that the loss of c-Mpl expression 

increases OB proliferation, yet does not appear to affect OB differentiation, which is 

consistent with an increase in OB number but no change in BFR in vivo.

With respect to in vitro osteoclastogenesis we found OC progenitors express c-Mpl (Bethel 

et al.,2015), WT BM cells respond to OB mediated regulation of osteoclastogenesis to a 

higher degree than c-Mpl−/− BM cells (Figure 3), and c-Mpl−/− OBs supported 

osteoclastogenesis better than WT OBs (Figure 3). Next, in an attempt to further understand 

how c-Mpl deficient OBs better support osteoclastogenesis, we examined OB expression of 

known regulators of osteoclastogenesis (Figure 4). As no differences were detected in the 

RANKL/OPG/MCSF or EphrinB2-EphB2/B4 axes, these data suggest that c-Mpl−/− OBs 

promote osteoclastogenesis through yet an unidentified pathway(s).

In summation, global deficiency of c-Mpl results in a high bone mass phenotype that 

develops with age. Complex interactions between MKs, OBs, OCs, TPO signaling, and c-

Mpl expression in OB and OC progenitors regulate skeletal homeostasis. Figure 5 presents a 

model summarizing our current understanding of these complex regulations based on our 

present findings and previously published data. The multiple and varied direct and indirect 

effects of TPO, c-Mpl, and MKs must be teased out to fully understand their impact on 

skeletal homeostasis. Use of tissue specific knockout and tissue specific overexpressing mice 

will be important in clarifying these issues and determining whether therapies targeting MKs 

and/or TPO/c-Mpl may prove beneficial for treatment of bone loss disorders such as 

osteoporosis.
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Figure 1. 
Representative images of distal femurs from 20 week-old WT and c-Mpl−/− mice. A) µCT 

reconstructions show the high bone mass phenotype in c-Mpl−/− mice compared to WT 

controls. B) Histological sections stained with Von Kossa show the significant increase in 

mineralized bone matrix in c-Mpl−/− femurs compared to that observed in WT femurs 

(original magnification 5X). C) TRAP staining illustrates the significant increase in OCs in 

c-Mpl−/− mice compared to WT controls (original magnification 20X).
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Figure 2. 
A) Neonatal calvarial OB lineage cells express c-Mpl as shown by immunoprecipitation of 

protein lysates from 2 day WT and c-Mpl−/− calvarial OBs and MKs, probed with 

antibodies raised against c-Mpl, shows that WT OBs express c-Mpl. B–F) Proliferation and 

differentiation of WT and c-Mpl−/− OBs. B&C) WT and c-Mpl−/− OBs were cultured and 

OB number (B) and cell cycle status (C) was assessed every other day by counting the 

number of cells excluding trypan blue and by staining OBs with propidium iodide, 

respectively. Annexin V expression was also determined. In all cases, less than 2% of the 
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OBs were Annexin V positive, suggesting that apoptosis was not detected. Data shown in 

Figure B reveal that the c-Mpl−/− OB cultures have more cells than do their WT 

counterparts. Data in Figure C illustrates that the c-Mpl−/− OBs enter active phases of cell 

cycle at a higher rate than WT OBs. These data suggest that the loss of c-Mpl most likely 

alters the rate at which c-Mpl−/− OBs enter S-G2M and therefore increases the total number 

of cells. D–F) To analyze the role of c-Mpl in OB differentiation, two day calvarial OBs 

were generated from WT and c-Mpl−/− mice. OBs were cultured under osteogenic 

conditions (ascorbic acid and and β-glycerophosphate supplementation) for 14 days in the 

presence or absence of TPO (100ng/ml) and alkaline phosphatase activity (D) and bound 

calcium as a marker of mineralization was measured (E). F) Real-time PCR was used to 

determine mRNA expression of alkaline phosphatase, type I collagen, and osteocalcin. No 

significant differences were detected suggesting that c-Mpl expression does not affect OB 

differentiation or expression of the genes examined.
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Figure 3. 
Histomorphometric analysis of OCs generated by co-culture of WT and c-Mpl−/− OBs with 

WT and c-Mpl−/− bone marrow (BM) supplemented with PGE2 and Vitamin D3 (A–C). 
Representative micrographs (original magnification 40X) from each of the 4 experimental 

groups are shown (D). Once OCs were visible (~7 days for co-cultures), cells were fixed and 

stained for tartrate resistant acid phosphatase (TRAP), and the TRAP+ multinucleated (≥3 

nuclei) cells from the 4 experimental groups were analyzed as follows: 1) OC number (A); 
2) Average nuclei/OC (B); and 3) Average OC surface area (C). Significant main effect 
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differences were found for both OB genotype and BM genotype for OC number, number of 

nuclei/OC, and OC surface area. Specifically c-Mpl−/− OBs better support 

osteoclastogenesis than do WT OBs, while WT BM better supports osteoclastogenesis than 

does c-Mpl−/− BM. Importantly, a significant interaction was observed between OB 

genotype and BM genotype for OC surface area and nuclei number, but not for total OC 

number. *Indicates significant interaction was found between OB genotype and BM 

genotype. †Indicates a significant main effect for OB genotype. ‡Indicates a significant main 

effect for BM genotype.
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Figure 4. 
mRNA expression in WT and c-Mpl−/− OBs. OBs were cultured under osteogenic 

conditions as before for 7 days. Real-time PCR was used to determine mRNA expression of 

M-CSF, OPG, RANKL, Eph B2, and Eph B4. GAPDH was used to normalize the amount of 

the investigated transcript. No significant differences were detected suggesting that c-Mpl 

expression does not affect OB expression of these known regulators of osteoclastogenesis.
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Figure 5. 
Working model depicting the direct and indirect effects of TPO/c-Mpl on skeletal 

homeostasis. In the bone marrow cavity, TPO binds to its receptor c-Mpl on MK/MK 

progenitors and activation of c-Mpl signaling results in proliferation and differentiation of 

MKs. MKs enhance OB proliferation by a direct cell-cell contact mechanism. With 

increased numbers of OBs there is also a net increase in RANKL expression which enhances 

OC differentiation/activation. At the same time, TPO binds to its receptor c-Mpl on OC 

progenitors, stimulating a significant increase in mature OC number. However, increased 

numbers of MKs also inhibit OC formation. Together these actions result in coupled 
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remodeling in WT mice and a net gain in bone mass in TPO overexpressing mice. With c-

Mpl deficiency the opposite is observed with respect to TPO-mediated effects (e.g. effects of 

TPO on MKs and OC progenitors and associated downstream effects). However, an 

important difference is noted; C-Mpl−/− OBs proliferate more than do their WT counterpart 

in vitro and in vivo. Additionally, c-Mpl−/− OBs promote osteoclastogenesis by a yet 

undetermined mechanism. Combined c-Mpl deficiency results in a high turnover state with a 

net gain in bone mass.
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