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ABSTRACT 

Objective:  This study evaluated the degree to which recommendations for demographic data 

standardization improve patient matching accuracy using real-world datasets. 

Methods:  We used four manually reviewed datasets, containing a random selection of matches 

and non-matches.  Matching datasets included Health Information Exchange (HIE) records, 

public health registry records, Social Security Death Master records, and newborn screening 

records.  Standardized fields including last name (LN), telephone number (TEL), social security 

number (SSN), date of birth (DOB), and address (ADDR).  Matching performance was evaluated 

using four metrics: sensitivity, specificity, positive predictive value, and accuracy. 

Results: Standardizing address was independently associated with improved matching 

sensitivities for both the public health and HIE datasets of approximately 0.6% and 4.5%. 

Overall accuracy was unchanged for both datasets due to reduced match specificity. We 

observed no similar impact for address standardization in the death master file dataset. 

Standardizing last name yielded improved matching sensitivity of 0.6% for the HIE dataset, 

while overall accuracy remained the same due to a decrease in match specificity. We noted no 

similar impact for other datasets. Standardizing other individual fields (telephone, DOB, or SSN) 

showed no matching improvements. Since standardizing address and last name improved 

matching sensitivity, we examined the combined effect of address and last name standardization, 

which showed that standardization improved sensitivity from 81.3% to 91.6% for the HIE 

dataset. 

Conclusion: Data standardization can improve match rates, thus ensuring that patients and 

clinicians have better data on which to make decisions to enhance care quality and safety. 
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INTRODUCTION 

Every time a patient visits a hospital, health system, outpatient provider, clinic, pharmacy, long-

term care provider, or public health agency, new information is generated. This information is 

stored in independent clinical repositories and, critically, no single unique identifier exists to 

easily and definitively combine this disparate information into a single comprehensive patient 

record,[1, 2]. Even within single large institutions, like a health system or hospital, the internal 

billing systems, laboratory information systems, and electronic health records may effectively 

function as independent data silos relying on different patient identifiers to manage information 

(some of which may or may not exist in other systems). Fragmented patient information risks 

patient safety, hinders data aggregation for clinical decision support, prevents physicians from 

having comprehensive medical information, deters effective population health approaches, 

creates inefficiencies by delaying care, limits public health reporting, and severely reduces the 

utility of electronic data for clinical research,[3, 4]. Using transaction volumes among health 

systems exchanging data within the Indiana Health Information Exchange (IHIE),[5], we 

extrapolate a lower-bound estimate of 30 billion HL7 messages transmitted (and requiring 

matching to a patient’s record) for the US health care system annually. Consequently, even a 

small improvement in matching accuracy can potentially improve integration of a significant 

volume of clinical data into the appropriate patient record nationally. 

 

The US is the last industrialized nation without a national unique identification system,[6]. As a 

result, health care organizations must rely on patient matching algorithms driven by varying 

combinations of patient demographics and other identifiers. Matching algorithms can be 

effective, achieving match rates above 90% when implemented properly,[7]. However, 



Grannis                         Evaluating Patient Matching Page 4 of 28 
 

   
 

algorithms must be paired with high quality, standardized data elements to optimize matching 

accuracy. Problematically, patient demographic data are captured in varying formats by health 

care organizations and health information technology systems. This lack of consistent 

approaches to data standardization has generated multiple best-practice recommendations, but no 

consensus on specific standardization approaches. Several organizations, including the Agency 

for Healthcare Research and Quality (AHRQ),[8], the Health Information Management Systems 

Society (HIMSS),[9], the Bipartisan Policy Center,[10], the eHealth Initiative,[11], the Markle 

Foundation,[12], the Sequoia Project,[13], and the Office of the National Coordinator for Health 

IT (ONC),[14-16], have either promoted or published best-practice approaches for optimizing 

patient matching, including data standardization.  

 

While patient record linkage in the US requires effective patient matching algorithms, 

recommendations for patient demographic data standardization have not been formally evaluated 

using real-world demographic data from diverse settings. Patient data generated through actual 

clinical care and business processes contains numerous inherent limitations, errors, and 

variations. Additionally, data generation and collection processes can be idiosyncratic by 

organization or by type of health care provider. Thus, this study seeks to evaluate the degree to 

which recommendations for demographic data standardization improve patient matching 

accuracy in real-world datasets. 

 

METHODS   

Using patient demographic data from four health datasets, we compared baseline matching 

accuracy to matching results after implementing best-practice recommendations. Matching 
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represented four distinct use cases: hospital-to-hospital linkage, deduplicating a public health 

registration file, linking death records to clinical data, and matching newborn screening 

laboratory data to health information exchange (HIE) registration data.    

 

Datasets & Use cases 

This analysis used four manually curated gold-standard analytic datasets, which contained a 

random selection of true-positive and true-negative matches,[17-23]. Through the manual 

curation process, we know the true match status for each record, which is a significant advantage 

over databases where the true matches are unknown. 

 

HIE for hospital-to-hospital record matching. This dataset reflected demographic records from 

two geographically proximal hospital systems participating in an HIE. The data contained 50,000 

sampled gold-standard pairs with 35,152 (70.3%) true positives and 14,858 (29.7%) true 

negatives,[19, 20]. Patients from hospitals in close proximity cross over to other nearby 

institutions at significant rates,[24], thereby creating the need to identify common records. The 

need to identify and capture information on patients seeking care from other institutions is 

dramatically increased by new value-based purchasing models like Accountable Care 

Organizations (ACO),[25-27].  

 

Public health registry for de-duplicating. This dataset comes from the Marion County Health 

Department (MCHD), Indiana’s largest public health department. The registry contains a master 

list of demographic information for clients who receive public health services such as 

immunizations, Women, Infants and Children (WIC) nutrition support, and laboratory 
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testing,[21, 22].  The registry also tracks health trends of populations and supports other public 

health activities, and duplicate patients can be unintentionally added. This dataset contained 

33,005 sample pairs with 1,950 (5.9%) true positives and 31,055 (94.1%) true negatives. We de-

duplicated the complete patient registry. De-duplication is a process for identifying multiple 

copies of the same person in a single patient registry.  

 

HIE and vital records for ascertaining death status. These data reflect a combination of the Social 

Security Death Master file and HIE data. This dataset contained 20,000 pairs with 16,873 

(84.3%) true positives and 3,127 (15.7%) true negatives.  Accurately and comprehensively 

updating health records with patients’ accurate death status is critical to robust clinical quality 

measurement, public health reporting requirements, and high quality clinical research,[7, 23].  

 

Laboratory results and HIE for newborn screening (NBS). This dataset included demographic 

data for newborns screened for congenital diseases (e.g., sickle cell anemia, congenital 

hypothyroidism, etc.) as reported by multiple hospitals and private laboratories across these state 

and clinical records from the HIE. These data are limited to patients less than 1 month of age,[17, 

18]. This dataset contained 15,000 sampled gold-standard pairs with 13,456 (89.7%) true 

positives and 1,544 (10.3%) true negatives. Not all infants are appropriately screened for harmful 

or potentially fatal disorders that are otherwise unapparent at birth,[28]. Although public health 

authorities can link vital records data with newborn screening results to identify unscreened 

infants, such processes may be delayed and some cases may remain undetected by this 

process,[29].  
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All four datasets contained subsets of the following fields: Medical Record Number (MRN), 

Social Security Number (SSN), Last name (LN), First name (FN), Middle name (MN), Gender 

(G), Birth Month (MB), Day of Birth (DB), Birth Year (YB), Street name (STR), Zip code (ZIP), 

City (CITY), State (ST), Telephone number (TEL). 

Data preparation & standardization 

We standardized patient demographic data following the recommendations outlined in a 2014 

report to ONC,[16]. We selected the recommendations from the report to ONC given the 

comprehensiveness of the evaluation as well as the agency’s responsibility to advance health 

data interoperability and ability to enforce or encourage standardization of data. 

Figure 1 illustrates the data preparation process. First, we created a uniform analytical format for 

all datasets, with each dataset containing record pairs representing potentially matching patient 

records. To prevent an unmanageable and unnecessary number of record pairs from being 

created, we used a commonly applied technique in record linkage called “blocking.”,[30]  

Blocking refers to the process of grouping similar records together to form candidate matches. It 

is analogous to sorting socks by color before pairing them. Candidate matches are then evaluated 

to identify true matches. Fields suitable for use as blocking fields ideally have high variety of 

values and a low missing value rate. Blocking increases the proportion of true matches among 

possible pairs while decreasing the number of pairs to be evaluated. 

We standardized fields from across each dataset as follows,[16]: 
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Last (LN): We applied the last name normalization rule defined by CAQH,[31]￼￼, 

which requires the removal of special characters such as apostrophes “ ‘ ”, hyphens “-” , 

etc., and suffixes such as "Jr.", "III", "MD", etc. Examples include: 

“O’BRIEN”“OBRIEN”, “SMITH JR.”“SMITH”, and “JONES-

THOMAS”“JONESTHOMAS”. 

 

Telephone number (TEL): Telephone numbers were standardized in adherence to 

International Telecommunications Union Recommendation E.123,[32]. This required 

converting raw telephone numbers into the standard format (123) 456-7890. Examples 

include:  232 832-5555(232) 832 5555, 2328325555(232) 832 5555, 

0002863866286 3866, and 832-5555832 5555. 

 

Social Security Number (SSN): Invalid SSN numbers were identified based on rules 

provided by the Social Security Administration (SSA) and replaced with null values,[33].  

For example, if the first three digits were "000" or if the last four digits were "0000", or 

the SSN lacked 9 digits, then the SSN was deemed invalid. Examples include: 

000004197(null), 111220000(null). The standardization method also removed 

hyphens: 123-45-6789123456789. Additionally, SSNs that appeared in advertisements 

were deemed invalid and were thus replaced with null values. For example, 

078051120(null). 

 

Birth date (DOB):  All dates were converted to the format MM/DD/YYYY. Incorrect 

date values such as February 30 and September 31 were replaced with blank values. 
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Month values greater than 12 and day of month values greater than 31 were nullified. 

Dates earlier than January 1, 1850 were also invalidated, because our data source records 

do not include patients born before such a date. Examples include: 2/15/197(null), 

9/28/(null). 

  

Addresses (ADDR): We applied US Postal Service certified address standardization 

rules,[34] to correct and standardize address data including individual components (e.g., 

standardizing “Boulevard” to “Blvd”, “Drive” to “Dr”, etc.) as well other formatting 

errors that would render the addresses undeliverable by the postal service. Examples 

include: 6275 E WILSON CRK DR6725 WILSON CREEK DR E, and 1902 N 

MARKET #3121902 MARKET ST APT 312. Because street address and Zip code 

fields are strongly correlated with city and state fields, we used only street and zip code 

in our analysis. 

 

To both identify as many true positive matches as possible and eliminate many obvious non-

matches, we created multiple blocking schemes,[35] for each dataset with up to 32 (25) possible 

field standardization combinations. We used the Expectation Maximization algorithm,[36] to 

configure the matching algorithm for each combination of (a) dataset, (b) blocking fields, and (c) 

standardization fields. Finally, we used the Fellegi-Sunter (FS) probabilistic matching algorithm 

to identify matches for all datasets. The FS algorithm assigns a match score to each record pair 

based on the number and type of agreeing fields, producing algorithm-determined matches and 

non-matches. 
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Analyses 

The matching performance was evaluated using four metrics: sensitivity, specificity, positive 

predictive value (PPV), and overall accuracy, as indicated by the percent correctly classified as 

either true matches (sensitivity) or non-matches (specificity), along with accurately identified 

pairs. These metrics were established based on the selection of match-score thresholds, defined 

in the algorithm as the likelihood of a correct match, where record pairs with a match-score at or 

above the threshold were classified as matches and those with a matching score below the 

threshold were classified as non-matches. Because match accuracy measurements will vary by 

the choice of matching score threshold, we elected to use two different match thresholds based 

on independent criteria: (1) optimizing the Youden’s J-statistic,[37], which is the sum of 

sensitivity and specificity minus 1, and (2) optimizing the F-score, which is a weighted harmonic 

mean of the sensitivity and positive predictive value. The use of these measures to optimize 

algorithm performance is well documented in the literature,[38, 39]. 

 

Using both criteria for selecting matching score thresholds, we evaluated whether standardizing 

fields individually or collectively resulted in differences in each matching accuracy metric using 

the generalized estimating equations approach with logistic regression. Estimated mean 

differences as well as 95% confidence intervals were calculated based on the model to evaluate 

the changes. This evaluation was performed for every blocking scheme and dataset since the 

samples of record pairs were randomly selected within each blocking scheme. Data from 

multiple blocking schemes were then pooled together for a dataset to examine the overall effect 

of field standardization. 
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RESULTS  

HIE for hospital-to-hospital record matching  

The HIE record pairs were created using five blocking combinations, including SSN; LN FN 

DOB; TEL; LN G DB YB ZIP; and FN G DB YB ZIP. Blocking fields are not used as matching 

fields. Consequently, when day and birth year are used as blocking fields, only birth month is 

used as a matching field in that particular blocking combination. Similarly, when the zip code is 

used as a blocking field, street address will be used as a matching field in that particular blocking 

combination. 

 

Table 1 lists the proportion of records standardized for demographic fields in each dataset. Note 

address and telephone fields exhibited the highest proportion of transformed records, while last 

name exhibited a small amount of change within the newborn dataset. Standardization had little 

impact on birth date and social security number. While telephone number underwent significant 

transformation, the changes largely altered formatting rather than content, and thus did not result 

in improved match accuracy. 

 

Table 1: Proportion of records standardized for demographic fields in each dataset 
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The SSN block contains 27,083 record pairs with 26,591 (98.18%) true matches. In this block, 

the only noticeable difference in matching accuracy occurs with address standardization. When 

thresholds are chosen to maximize the Youden’s J-statistic, there is a 1.3% (95%CI = 1.2%-

1.5%) increase in sensitivity and a 3.5% (95%CI = 1.9%-5.1%) decrease in specificity. This 

results in a 1.3% (95%CI = 1.1%-1.4%) improvement in the overall accuracy, where the percent 

of record pairs correctly classified increases from 90.7% without address standardization to 92% 

with address standardization.  

 

The LN FN DOB block contains 32,171 record pairs with 64,778 (88.20%) true matches. Again, 

in this block, address standardization makes the only noticeable difference in matching accuracy 

when thresholds are chosen to maximize the Youden’s J-statistic. There is a 3.3% (95%CI = 

3.1%-3.5%) increase in sensitivity and an 8.2% (95%CI = 6.9%-9.4%) decrease in specificity. 

The overall accuracy is improved from 84.9% without address standardization to 87.6% with 

address standardization, indicating a 2.7% (95%CI = 2.5%-2.9%) absolute improvement.  

 

The TEL block captured 21,415 record pairs with 11,604 (54.19%) true matches. Field 

standardization does not result in meaningful changes in any matching accuracy metrics, 

regardless of how the matching score thresholds are selected.  

 

The LN G DB YB ZIP block contains 24,406 record pairs with 23,064 (94.5%) true matches. 

Again, in this block, address standardization has the only noticeable effect when thresholds are 

chosen to maximize the Youden’s J-statistic. Sensitivity increases by 3.2% (95%CI = 2.9%-

3.5%) and specificity decreases by 9.5% (95%CI = 8%-11.1%) after address is standardized. The 
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overall accuracy is improved from 77.7% without address standardization to 80.2% with address 

standardization, indicating a 2.5% (95%CI = 2.2%-2.8%) improvement.  

 

In the FN G DB YB ZIP block, there are 25,569 record pairs with 23,158 (90.6%) true matches. 

Standardizing the address again shows a large effect when thresholds are chosen to maximize the 

Youden’s J-statistic. Sensitivity increases by 8.3% (95%CI = 8%-8.6%) and specificity decreases 

by 11.6% (95%CI = 10.5%-12.6%) after address is standardized. The overall accuracy is 

improved from 82% without address standardization to 88.3% with address standardization, 

indicating a 6.3% (95%CI = 6.1%-6.6%) improvement. In addition, last name standardization 

increases the sensitivity by 2.9% (95%CI = 2.8%-3%) and decreases the specificity by 1.9% 

(95%CI = 1.7%-2.1%), leading to a 2.2% (95%CI = 2.1%-2.3%) improvement of the overall 

accuracy.  

 

When data from all five blocking schemes are pooled, the estimated matching accuracies are 

shown in Figure 2. It is obvious that standardizing DOB, SSN, or TEL does not improve any 

matching accuracy metrics. Standardizing the address appears to have a larger effect, while last 

name standardization shows a relatively smaller effect when matching thresholds are chosen to 

maximize the Youden’s J-statistic. When using the F-score to select matching score thresholds, 

no field standardizations show a difference in accuracy metrics. These findings suggest that 

address and last name standardization improve matching performance, but the magnitude of 

improvement will be influenced by the choice of score threshold. 
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Combined Field Standardization 

In the FN G DB YB ZIP block, since standardizing address and last name improved matching 

sensitivity, we further examine the combined effect of address and last name standardization. 

Estimated matching accuracies when both address and last name are standardized, compared to 

when only one field is standardized or no field is standardized, are shown in Figure 3. 

Standardizing both address and last name improves the sensitivity to 91.6% from 81.3% 

(increase = 10.3%, 95%CI = 10%-10.6%) when only last name is standardized or 87.1% 

(increase = 4.5%, 95%CI = 4.4%-4.7%) when only address is standardized. The dual 

standardization decreases the specificity to 75.8% from 89.9% (decrease = 14.1%, 95%CI = 

13.2%-15.6%) when only last name is standardized or 81.4% (decrease = 5.6%, 95%CI = 4.8%-

5.8%) when only address is standardized. The increased sensitivity has greater importance as 

vast majority of the record pairs in the data are true matches. As a result, the overall accuracy 

improves to 90% with dual standardization from 82.1% (increase = 7.9%, 95%CI = 7.6%-8.3%) 

when only last name is standardized or 86.5% (increase = 3.5%, 95%CI = 3.4%-3.8%) when 

only address is standardized.  

Laboratory results and HIE for newborn screening 

The NBS data was blocked using three schemes, with TEL, LN FN, and MRN as blocking 

variables. The TEL block contains 11,029 record pairs with 9,739 (88.3%) true matches. In this 

block, neither LN nor DOB standardization results in changes in matching accuracy, regardless 

of the criteria used for the selecting the matching score thresholds. The LN FN block contained 

2,716 record pairs with 2,583 (95.1%) true matches. None of the four matching accuracy 

measures are changed by the standardizing the fields, regardless of how matching score 
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thresholds are selected. The MRN block contained 9,179 record pairs with 9,038 (98.46%) true 

matches. Field standardization again does not result in improved matching accuracy. The 

matching accuracies estimated based on pooling all three blocking schemes together are shown 

in Figure 4. Standardizing DOB, LN, or TEL does not improve any of the four matching 

accuracy metrics. 

Public health registry for de-duplicating 

The MCHD data was blocked using two schemes, one with SSN and the other with last name 

and LN FN as blocking variables. The SSN block contains 2,141 record pairs with 1,508 

(70.43%) true matches. In this block, the only observed difference in matching accuracy occurs 

with address standardization when thresholds are chosen to maximize the Youden’s J-statistic. 

There is a 0.3% (95%CI = -0.1%-0.7%) increase in sensitivity and a 2.4% (95%CI = 1.1%-3.6%) 

decrease in specificity. This, however, does not change the overall accuracy due to the fact that 

very few record pairs are non-matches. Standardizing other fields or using the F measure for 

threshold selection does not lead to changes in any matching accuracy metrics.  

The LN FN block contained 31,420 record pairs with 978 (3.11%) true matches. Standardizing 

address appears to slightly increase the sensitivity and decrease the specificity by less than half-

percent changes, regardless of how matching score thresholds are selected. The leads to a 4% 

(95%CI = 3.3%-4.9%) and 1% (95%CI = 0.4%-1.7%) reduction in positive predictive value 

when selecting matching score thresholds by optimizing the Youden’s J-statistic and F-score, 

respectively. However, these did not change the overall percent of correctly classified pairs due 

to the vast majority of record pairs being non-matches.  
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When data from both blocking schemes are pooled, the estimated matching accuracies are shown 

in Figure 5. Standardizing DOB, LN, SSN, or TEL does not improve any of the four matching 

accuracy metrics. Standardizing address appears to have some effect, but this is negligible. 

 

HIE and vital records for ascertaining death status  

The SSDMF data was blocked using two schemes, one with SSN, and the other with LN FN 

DOB as blocking variables. The SSN block contains 18,615 record pairs with 16,758 (90%) true 

matches, while the LN FN DOB block contained 16,798 record pairs with 15,527 (92.4%) true 

matches. Standardization results in no changes for any matching accuracy metrics, regardless of 

how matching score thresholds are selected. This is shown by the same matching accuracy 

before and after field standardization for every field and every threshold selection criterion in 

Figure 6.  

 

DISCUSSION 

Our research found that standardizing certain individual demographic data fields yields 

incremental improvements in match performance among hospital-to-hospital exchange, while 

combined standardization can produce more meaningful improvements, which would further 

ensure that patient data can be linked across organizations to improve care coordination and 

lower costs. Specifically, using a database of 100,000 records that represents hospital to hospital 

data exchange, we found sensitivity increases of up to 10%, which reduces the number of 

unlinked records in the dataset by nearly half. 
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Several limitations exist. First, while we observed increased false positive matches (decreased 

specificity) associated with data standardization, this is not unexpected. False positive matches 

can be mitigated by introducing deterministic exclusion criteria specific to the offending match 

pattern (e.g., declare a non-match if corresponding dates of birth disagree), an approach 

commonly taken when optimizing match performance for specific data sources. Second, our 

results are specific to the blocking schemes we selected. Other blocking schemes may yield 

different results. Third, while we used only one algorithm, the Felligi-Sunter (FS) model, this 

model is a common component of many patient matching systems. Fourth, we limited our 

analysis to datasets specific to Indiana. However, the data included in this study represent a 

broad spectrum of health care settings from rural to urban, hospital and clinic settings, and 

therefore the findings likely are to have applicability to hospital to hospital exchange on a 

nationwide scale.  

 

Ultimately, we found that the recommendation by many policy organizations for enhanced 

standardization of certain data elements can yield matching improvements. Because last name 

and address information are commonly entered as unstructured text, they can exhibit meaningful 

variation. We hypothesize that last name and address standardization is associated with match 

rate improvement because it minimizes this variation. Consequently, we found utility in 

standardizing address and last name in combination, which can significantly reduce the number 

of unmatched records. Conversely, we did not find evidence for standardizing birth date and 

telephone. Given the limited degrees of freedom for information for these fields, we hypothesize 

that these fields require little standardization.  
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We also sought information on the costs needed to implement standardization by hospitals or 

health information technology vendors. While we could not find clear cost data, standardization 

and deployment of those standards in to their products by electronic health record (EHR) 

developers would help consolidate costs as opposed to having every healthcare facility conduct 

the standardization. We also note that the costs for standardizing the data as part of this project 

were limited, which may provide some context for nationwide standardization among vendors.   

 

With an incomplete evidence base to more firmly support standardization, healthcare 

organizations, health IT developers and policymakers may be less inclined to pursue approaches 

with unclear value or they may implement methods that, upon further study, prove to be less 

effective and generalizable than initially perceived. 

 

Given that accurate patient matching is essential for maximizing health data quality, where 

opportunities exist, health IT vendors should prioritize incorporating address standardization—

which we found in this study can decrease the number of unlinked records by up to 20 percent—

functionality into their patient registration products. Relying solely on individual vendors may 

result in incomplete implementation across the industry because some may elect not to 

implement address standardization. Little information exists on the degree to which 

organizations currently standardize data, though informal discussions and recommendations 

made by many groups suggest that there is not widespread use of the same standards. While data 

standardization would yield partial benefit even if only one party in a transaction standardizes the 

data, maximal benefit requires that all systems adopt the same standardization rules. 

Consequently, health IT policy makers, including ONC, should explore strategies for expanding 
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the evidence base for the value of data consistency and encouraging broad deployment of address 

standardization. These strategies may include updates to its certification criteria for electronic 

health records, issuing guidance to encourage the voluntary standardization of data, or 

incorporating standardization in to its plans to create a nationwide interoperability framework. 

Similarly, vendors and ONC should further examine the utility of last name standardization so 

that the increased match rates when used in conjunction with last name can be realized. 

 

CONCLUSION 

Standardizing certain demographic data on a broader scale can improve match rates, ensuring 

that patients and clinicians have better data on which to make decisions to enhance care quality 

and safety.  
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