View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Institutionelles Repositorium der Leibniz Universitat Hannover

DRUM-II: Efficient Model-based Diagnosis of
Technical Systems

Vom Fachbereich Elektrotechnik und Informationstechnik
der Universitat Hannover

zur Erlangung des akademischen Grades
Doktor—Ingenieur genehmigte

Dissertation
von

Dipl.-Inform. Peter Frohlich
geboren am 12. Februar 1970 in Wiirselen

1998

https://core.ac.uk/display/288114585?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

1. Referent: Prof. Dr. techn. Wolfgang Nejdl
2. Referent: Prof. Dr.-Ing. Claus-E. Liedtke

Tag der Promotion: 23. April 1998

Abstract

Diagnosis is one of the central application areas of artificial intelligence. The compu-
tation of diagnoses for complex technical systems which consist of several thousand
components and exist in many different configurations is a grand challenge. For such
systems it is usually impossible to directly deduce diagnoses from observed symptoms
using empirical knowledge. Instead, the model-based approach to diagnosis uses a
model of the system to simulate the system behaviour given a set of faulty components.
The diagnoses are obtained by comparing the simulation results with the observed be-
haviour of the system.

Since the second half of the 1980’s several model-based diagnosis systems have
been developed. However, the flexibility of current systems is limited, because they
are based on restricted diagnosis definitions and they lack support for reasoning tasks
related to diagnosis like temporal prediction. Furthermore, current diagnosis engines
are often not sufficiently efficient for the diagnosis of complex systems, especially
because of their exponential memory requirements.

In this thesis we describe the new model-based diagnosis system DRUM-II. This
system achieves increased flexibility by embedding diagnosis in a general logical
framework. It computes diagnoses efficiently by exploiting the structure of the sys-
tem model, so that large systems with complex internal structure can be solved.

We start by developing a novel formalization of model-based diagnosis based on
circumscription, a widely used non—monotonic logic. The use of a general circum-
scription approach makes DRUM-II more flexible than previous diagnosis engines.
DRUM-II handles a broad spectrum of diagnosis definitions as well as other forms
of non—monotonic reasoning like temporal reasoning. The implementation of circum-
scription in DRUM-II is based on a new sound and complete search algorithm.

Since model-based diagnosis requires a large number of simulations of the system
under similar assumptions, diagnosis engines need techniques to avoid unnecessary re-
computations. Previous diagnosis engines which are often based on truth maintainance
techniques dynamically record information during the search for diagnoses. In con-
trast to previous systems DRUM-II uses only static precompiled information about
the structure of the system to focus the computation of the diagnoses. The space re-
quired for this precompiled information is quadratic in the size of the system under
consideration, while the dynamic data structures of previous systems require expo-
nential space. We have measured the running times of DRUM-II on the widely used

il

ISCAS-85 benchmark circuits. It turns out that DRUM-II shows better performance
than previous systems on all circuits for nearly all test vectors.

We demonstrate the use of DRUM-II for alarm correlation in cellular networks.
This application is a challenging modeling problem, which can only be solved com-
pletely by applying the powerful spectrum diagnosis concept. We show how the com-
putation of spectrum diagnoses is reduced to circumscription by a new iterative algo-
rithm in DRUM-IL.

Finally, we consider the process aspect of diagnosis. The computation of diagnoses
is a dynamical process during which models on different abstraction levels as well as
different simplyfying assumptions are used and measurements are carried out. We
define the first declarative modeling language which allows to describe application—
specific diagnostic processes. Furthermore we provide an algorithm which executes
the process specifications and show it application to a process for hierarchical circuit
diagnosis.

Zusammenfassung

Diagnose ist eine der Hauptanwendungen der kiinstlichen Intelligenz. Die automa-
tische Berechnung von Diagnosen fiir komplexe technische Systeme, die aus einer
groflen Zahl von Komponenten bestehen und in vielen unterschiedlichen Konfigura-
tion existieren, stellt eine groBe Herausforderung dar. In der Regel ist es bei diesen
Systemen nicht moglich, durch Anwendung empirischen Wissens direkt von den
beobachteten Fehlersymptomen auf die Fehlerursachen zu schlieBen. Stattdessen wird
in der Modellbasierten Diagnose ein Simulationsmodell des zu untersuchenden Sys-
tems verwendet, das es erlaubt, das Systemverhalten unter Annahme einer Menge von
fehlerhaften Komponenten zu simulieren. Die Diagnosen werden dann durch Vergle-
ich von Simulationsergebnis und beobachtetem Fehlverhalten ermittelt.

Seit der zweiten Hilfte der 80Oer Jahre wurden mehrere modellbasierte Di-
agnosesysteme entwickelt. Bisherige Systeme weisen allerdings meist eine
eingeschrinkte Flexibilitit auf, da sie einen eingeschrinkten Diagnosebegriff imple-
mentieren und der Diagnose verwandte Aufgaben, wie z.B. zeitliche Vorhersagen,
nicht unterstiitzen. AuBerdem ist die Effizienz bisheriger Systeme fiir die Diagnose
komplexer technischer Systeme oft nicht ausreichend, insbesondere aufgrund ihres
exponentiellen Speicherplatzbedarfs.

In dieser Dissertation wird das neue modellbasierte Diagnosesystem DRUM-—
IT vorgestellt. Dieses System weist aufgrund der Einbettung des Diagnosebegriffs
in einen allgemeinen logischen Rahmen eine hohe Flexibilitit auf. Dariiberhinaus
ermoglicht es durch Ausnutzung der Struktur des untersuchten Systems die effiziente
Berechnung von Diagnosen und somit die Behandlung groB3er, strukturell komplexer
Systeme.

Zunichst entwickeln wir eine Formalisierung der Modellbasierten Diagnose unter
Verwendung der Zirkumskription, einer weit verbreiteten nicht-monotonen Logik.
Durch die Verwendung eines allgemeinen Zirkumskriptionsansatzes ist DRUM-II
flexibler als bisherige Diagnosesysteme. DRUM-II stellt ein breites Spektrum von
Diagnosedefinitionen zur Verfiigung und unterstiitzt dariiberhinaus allgemeines nicht—
monotones SchluBfolgern, z.B. temporales Schlufolgern. Die Implementierung der
Zirkumskription in DRUM-II basiert auf einem neuen korrekten und vollstindigen
Suchalgorithmus.

Da die Berechnung von Diagnosen eine gro8e Anzahl von Simulationen des Sys-
tems unter dhnlichen Annahmen erfordert, werden in Diagnosemaschinen Techniken

111

v

zur Vermeidung von Mehrfachberechnungen eingesetzt. Bisherige Diagnosemaschi-
nen, die meistens auf Truth Maintainance Techniken basieren, zeichnen wihrend der
Berechnung der Diagnosen dynamisch Informationen auf. Im Gegensatz zu diesen
Systemen verwendet DRUM-II zur Fokussierung ausschlieBlich statisches vorkom-
piliertes Wissen iiber die Struktur des Systems. Der Platzbedarf dieser vorkom-
pilierten Information ist quadratisch in der Gro8e des untersuchten Systems, wihrend
die in bisherigen Systemen verwendeten Datenstrukturen exponentiellen Platzbedarf
aufweisen. Bei Laufzeitmessungen auf Basis der verbreiteten ISCAS—85 Benchmark—
Schaltkreise zeigt DRUM-II bei der Diagnose aller Schaltkreise fiir fast alle Testvek-
toren hohere Effizienz als bisherige Systeme.

Wir demonstrieren den Einsatz von DRUM-II fiir die Alarmkorrelation in Mobil-
funknetzen. Diese Anwendung stellt ein schwieriges Modellierungsproblem dar, das
nur durch Verwendung eines ausdrucksstarken Diagnosekonzeptes, der Spektrum Di-
agnosen, vollstindig zu 10sen ist. Wir zeigen, wie Spektrum Diagnosen in DRUM-II
durch einen neuen iterativen Algorithmus auf die Zirkumskription zuriickgefiihrt wer-
den.

SchlieBlich betrachten wir den ProzeBaspekt der Diagnose. Die Berechnung
von Diagnosen ist ein dynamischer ProzeB, in dessen Verlauf unterschiedlich ab-
strakte Systemmodelle und vereinfachende Annahmen verwendet sowie Messungen
durchgefiihrt werden. Wir definieren die erste deklarative Modellierungssprache, die
es erlaubt, anwendungsspezifische Diagnoseprozesse zu beschreiben. Dariiberhinaus
geben wir einen Algorithmus zur Auswertung dieser ProzeBspezifikationen an und
demonstrieren seine Anwendung am Beispiel der hierarchischen Schaltkreisdiagnose.

Keywords

Diagnosis, Non-monotonic Reasoning, Artificial Intelligence

Schlagworte

Diagnose, Nicht-monotones SchluB3folgern, Kiinstliche Intelligenz

vi

Contents

Abstract

Zusammenfassung

Keywords

Schlagworte

Abbreviations

1 Introduction

1.1
1.2
1.3

Problems Addressed in this Thesis
Solutions Presented in this Thesis
Structure of this Thesis

2 Model-Based Diagnosis

2.1

22
23
24
2.5

BasicConcepts
2.1.1 Consistency—Based Diagnosis
2.1.2 Kernel Diagnoses
2.1.3 Reducing the Number of Diagnoses
Computing Diagnoses o
A Spectrum of Diagnosis Definitions
On the Role of Abductive Diagnosis
Discussion. e

3 The DRUM-II Framework

3.1
3.2

33

Introduction Lo
The Model-based Approach
3.2.1 Definition of Minimal Models
3.2.2 Computing Minimal Models
3.2.3 Deciding Entailment under Circumscription
Variants of Circumscription
3.3.1 Keeping the extensions of certain predicates fixed
3.3.2 Prioritized Circumscription

Vil

il

10
11
12
15
17
20

viii

CONTENTS

3.4 Algorithms for Revision and Filtering 31
34.1 Thelanguage. 31

3.4.2 Repairing Inconsistent Models 33

343 Revision Algorithm, 34

3.4.4 Properties of the Algorithm 35

3.4.5 An Iterative Deepening Algorithm 38

3.4.6 Filtering Algorithm 40

3.5 Non-monotonic Reasoning Applications 42
3.5.1 PMON-Circumscription 42

3.5.2 Baker’s Formalism 44

3.5.3 Kartha’sExtension 45

354 Nixon’sDiamond 47

355 RunningTimes, 48

3.6 Implementing Diagnosis with DRUM-IT 49
3.6.1 Consistency—Based Diagnosis with DRUM-IT 49

3.6.2 Computing Spectrum Diagnoses with DRUM-II 50

37 Discussion. 56
Circuit-Diagnosis with DRUM-II 57
4.1 Diagnosing Digital Circuits at Gate Level 57
4.1.1 System Description L. 58

4.1.2 Generating the Initial Model 60

4.1.3 Computing Diagnoses 61

4.1.4 Identifying Unnecessary Computations 64

4.2 Exploiting Structural Independence 67
4.2.1 Independence of Literals 68

4.2.2 Applicationto Diagnosis 68

4.3 Combinatorial Benchmark Circuits 69
4.3.1 Why are these Problems so difficult?. 70

43.2 Experimental Results, 71

4.4 DiscusSion e e e e e 73
Model-Based Alarm Correlation 75
5.1 Introduction 75
5.2 Application Area 76
5.3 Problem and Previous Solutions 78
5.3.1 Generationof Alarms 78

5.3.2 Previous Solutions Lo 79

5.4 A Consistency—BasedModel 81
5.4.1 Overview of the Necessary Model 81

542 SpecificModel L. 82

543 Results 86

544 SomeCaseStudies 87

CONTENTS

5.5 AnImproved System Description.
5.5.1 Limitations of the Consistency—Based Model
5.5.2 System Descriptiono oL
5.5.3 Computing Diagnoses
5.6 Discussion.

6 Tableaux for Diagnosis

6.1 Introduction
6.2 Hpyper Tableaux Calculus
6.3 Lessonsfrom DRUM-II
6.4 Formalizing the Diagnosis Task

6.4.1 Initial Interpretations viaCuts

6.4.2 Initial Interpretations via Renaming
6.5 Implementation and Experiments
6.6 DISCUSSION e

7 Strategies for Diagnosis
7.1 Introduction
7.2 Working Hypotheses
7.3 A Formal Language for Strategies
7.3.1 Preliminary Considerations
7.3.2 The MetaLanguage
7.3.3 Syntax of the language
7.3.4 Representation of a Diagnostic Process
7.3.5 Designing Strategies
7.3.6 Consistency of Transition Systems
7.3.7 Results of the Diagnostic Process
7.4 A Strategy Knowledge Base for Circuit Diagnosis
7.5 Operational Semantics oL
7.5.1 Combining Strategies
7.6 AnExample
7.7 Relation to other Formalisms
7.8 DISCUSSION v v vttt e e e e

8 Conclusion
8.1 Contributions
82 Future Work

X

88
88
89
91
94

97
97
98
102
104
104
105
107
110

111
111
112
114
114
114
116
116
117
118
122
123
126
128
131
133
133

CONTENTS

Abbreviations

ATMS
BSC
BTS
CC

CL
DECT
DRUM
GSM
ISCAS
NIHIL
ML
MS
O&M
OMC
OSS
SDH

Assumption—based Truth Maintainance System
Base Station Controller

Base Station Transceiver

Cross Connect System

Cable Link

Digital European Cordless Telecommunications
Dynamic Revision and Update Machine

Global System for Mobile Telecommunication
International Symposium on Circuits and Systems
New Implementation of Hyper in Lisp
Microwave Link

Mobile Station

Operation and Maintenance

Operation and Maintenance Centre

Operation Support System

Synchronous Digital Hierarchy

X1

Chapter 1

Introduction

Diagnosis is one of the central application areas of artificial intelligence. The first
diagnostic expert systems developed in the seventies focused mainly on medical di-
agnosis [BS84, WKAT7S, Pop82]. Their knowledge bases consisted of empirical rules
which deduced diagnoses from symptoms. It was however a hard task to acquire and
maintain the large amount of empirical knowledge necessary. Semantical weaknesses
of early knowledge representation formalisms added to these problems.

Research in the field of model-based diagnosis has initiated the development of a
new generation of diagnostic systems. These systems use declarative logical models
to simulate the behavior of an artifact and compute diagnosis by comparing the pre-
dictions of this simulation with the actual observed behavior. The complex technical
systems, which we encounter today in all areas of everyday life pose challenging ap-
plications for these diagnosers. Large technical systems are developed in organized
processes and their function is usually documented formally. Model-based diagnosers
can exploit these formal descriptions for the simulation of the system’s behavior. In
this way model-based diagnosis overcomes both the knowledge engineering problems
and the semantical problems of rule-based expert systems. They have been success-
fully used in numerous different application areas.

The diagnosis of digital circuits on the gate level has been used as a proof of con-
cept application since the beginning of work on model-based diagnosis [DH88, Rei87,
dKW8T7]. Later, larger combinatorial circuits have served as a means for comparing
the efficiency of diagnostic systems [dK91, RAKS93, FN97]. Recent real-world ap-
plication of model-based diagnosis of circuits include the diagnosis of VHDL designs
[FSWO95] as well as the diagnosis of antilock breaking systems in cars [SMS95].

Within the RACE 2 project [SPBL95, dS95] model-based diagnosis was applied
to telecommunication networks. The topic of this project was to support on-line
maintenance of a network consisting of components from different vendors. Model—
based diagnosis has been used successfully in a real time expert system for diag-
nosing the power distribution network of the Public Utilities Board of Singapore
[BNSS93, PNO3].

Model-based techniques have also been exploited in medical diagnosis. Gamper

1

2 CHAPTER 1. INTRODUCTION

and Nejdl [GN97] have used model-based reasoning for the diagnosis of Hepatitis
B. Other medical applications of model-based diagnosis include the IDUN system for
physiology [Dow92, Dow93], and the KARDIO system [BML89] for model-based
interpretation of electrocardiograms.

Perhaps the most exciting recent application of model-based diagnosis is the Liv-
ingstone system [WN96b] which will be on board of NASA’s first New Millenium
spacecraft heading for Saturn in 1998. Livingstone uses a single system description
in propositional logic for several reasoning tasks, like fault detection, recovery, re-
configuration and tracking of planner goals. In the New Millennium spacecraft the
model-based engine is part of an integrated autonomous architecture, consisting of a
planner, which generates abstract plans for achieving high—level goals, an executive,
which translates these plans into low—level space craft commands and the model-based
diagnosis and reconfiguration component, which tracks the spacecraft’s state and pro-
poses the necessary reconfiguration steps.

In [WNO6a] Williams and Nayak point out a huge potential potential for model-
based systems due to the advent of large autonomous technical systems like chemical
plant control systems, building energy systems, autonomous space probes and recon-
figurable traffic control systems.

To make model-based diagnosis useful for these complex time—critical applica-
tions model-based diagnosis engines must meet the following requirements:

Flexibility: As we pointed out in the spacecraft application, the model-based reason-
ing engine must be capable of solving many different reasoning tasks based on
a uniform description of the system. Thus, a specialized diagnoser is less useful
for future applications than a general-purpose reasoner, which can solve a broad
range of problems.

Efficiency: Successful model-based engines must be efficient regarding both time
and space complexity. Short response times are important because many realis-
tic applications demand reaction in real time. Moreover, diagnosers should be
efficient with regards to memory requirements to make them useful for on-board
diagnosis.

1.1 Problems Addressed in this Thesis

The central goal of this thesis is to develop a flexible and efficient implementation of
model-based diagnosis.

Flexibility means on the one hand that a wide range of diagnostic definitions has
to be covered. On the other hand, diagnosis is not the only task, which has to be
supported by a model-based reasoning system. Therefore, other forms of reasoning,
like temporal reasoning or abductive reasoning should be possible with the engine.

1.2. SOLUTIONS PRESENTED IN THIS THESIS 3

Problem 1. Can we integrate a sufficiently general diagnostic concept in a general
framework for reasoning?

In most Al formalisms there is a tradeoff between expressiveness and efficiency.
Thus, the reasoning framework must be carefully selected to allow for efficient al-
gorithms. Specialized systems will only be replaced by more general approaches in
practice, if the running time of the general system is competitive.

Problem 2. Can we provide an implementation for our reasoner which is competi-
tive with specialized diagnostic systems?

Often it is not enough to have an efficient reasoner. For example, there will often
exist multiple explanations for the symptoms observed. Measurements are neccessary
to discriminate among competing explanations. Furthermore, there are often different
models for one device. In electronics structural, physical and functional models are
used on each level of abstraction. A diagnostic system should dynamically decide,
which model is best suited for the current situation. Struss [Str92] has pointed out
that diagnosis is a dynamical process during which assumptions/models change and
actions have to be taken. While the system models used in model-based diagnosis are
already declarative, there is great need for declarative descriptions of the diagnostic
process.

Problem 3. Can we declaratively specify diagnostic processes, so that the diagnostic
system can exploit them efficiently?

A solution to this problem directly contributes to the flexibility and the efficiency
of the diagnostic system, because the dynamical choice of assumptions and models in-
creases its flexibility and the use of simplifications and abstractions reduces its running
time.

1.2 Solutions Presented in this Thesis

The DRUM-system [Ned93, NG94], the predecessor of DRUM-II, was based on min-
imal change semantics [Win88, CW91, CW94], which is not fully coherent with the
semantics of model-based diagnosis. Due to this semantical problem, DRUM had to
use a redundant algorithm, whose performance degraded quickly on large problems.
The first contribution of this thesis is the identification of a logical framework,
which directly supports the model-based diagnosis semantics. Several authors have
recently chosen monotonic propositional logics as the foundation of their reasoners
[WNO96b, Lar92, KS96]. Most diagnostic definitions however include some kind of
minimization, which is not expressible in monotonic logics. Therefore, we chose
circumscription [McC80, McC86], a widely used non—monotonic formalism, as the

4 CHAPTER 1. INTRODUCTION

logical basis of the DRUM-II system. We will show how all relevant diagnostic defi-
nitions can be implemented using circumscriptive reasoning. Since circumscription is
also the foundation of many formalisms for temporal reasoning, DRUM-II is capable
of solving a broader range of reasoning tasks than previous diagnosis engines.

Since its first definition [McC80] several different implementations of circumscrip-
tion have been proposed [Lif85, Gin89, Prz89]. Most implementations reduce the cir-
cumscriptive reasoning to monotonic logics using symbolic manipulations, which are
only applicable to theories with certain structural properties. We present a complete
implementation of propositional circumscription based on a simple local search proce-
dure. It turns out that the efficiency of our general implementation of circumscription
is already sufficient to solve realistic diagnosis problems.

If a technical system is working properly, its output should be a function of its
inputs and its environmental parameters. The logical model of this correct behavior
is usually a horn theory. We define a technique for automatically exploiting structural
information in horn theories, and integrate it into the DRUM-II algorithm. This opti-
mized version of DRUM-II is more efficient than all previous model-based diagnosers
in nearly all cases on a widely used benchmark suites of circuit diagnosis problems.
Thus, on horn theories we have succeeded in providing a general system for circum-
scriptive reasoning which handles diagnosis problems more efficiently than specialized
diagnosis systems.

While digital circuits are relatively easy to describe in logic, the diagnosis of a
cellular network posed a difficult modeling problem. We will show that the widely
used consistency—based diagnosis approach is not suitable for this application, because
it leads to counter—intuitive models. Through the use of a more general diagnostic
concept (spectrum diagnoses) in DRUM-II, we are able to provide a declarative model
of this domain.

Propositional circumscription is well suited as a general framework for diagnosis.
However, several different reasoning mechanisms with a different focus are used in
other areas of Al. To exploit the techniques used in DRUM-II for a wider range of
systems, we identify the main ideas underlying the efficiency of DRUM-II and study
their integration in a reasoner with different technology. The result is a tableaux—based
theorem prover (NIHIL), which is able to solve realistic diagnosis problems. Thus, we
combine the expressive power of a first—order logic tableaux calculus with the efficient
model-based reasoning techniques in DRUM-II.

Two ingredients are necessary for efficient and flexible diagnosis: the diagnosis
system, which interprets the system models and a description of the diagnosis process,
which defines suitable system models and actions for the current situation. Although
some authors have addressed the problem of integrating process support in diagnostic
systems [Str92, BD94] most previous solutions have encoded the diagnostic process
in the implementation of the reasoner. In this thesis we present a language for defining
the diagnostic process as declaratively as the system description itself. We provide
algorithms for efficiently exploiting these process descriptions and give guidelines for
designing diagnostic processes.

1.3. STRUCTURE OF THIS THESIS 5

1.3 Structure of this Thesis

Chapter 2 discusses diagnosis concepts used in model-based diagnosis and their rela-
tionships. It also introduces the main ideas underlying the implementations of previous
diagnosis engines.

In chapter 3 we introduce the DRUM-II system. First, we describe how DRUM-II
implements different variants of propositional circumscription. We demonstrate the
use of this implementation by solving some recent temporal reasoning applications.
Then, we show how a wide range of diagnosis concepts is handled by DRUM-II.

In chapter 4 we study the diagnosis of combinatorial circuits. We show how circuits
can be declaratively described in logics and we compute diagnoses with DRUM-II.
Then, we introduce a more efficient version of DRUM-II which exploits the structure
of the device under consideration. Finally, we compare the running time of DRUM-
IT to the running times of previous systems using the ISCAS-85 benchmark suite of
combinatorial circuits.

Chapter 5 describes the use of DRUM-II for alarm correlation in cellular networks.
Different logical descriptions of a cellular network are developed. The performance of
the system on noisy data is assessed.

Chapter 6 shows that the techniques from DRUM-II are also useful for reason-
ers with different technology. The integration of techniques from DRUM-II into a
tableaux—based theorem prover yields a very expressive diagnosis system.

Finally, in chapter 7 we define a language for describing diagnostic processes. We
use this language to set up a catalogue of diagnostic strategies for circuit diagnosis. We
introduce an efficient algorithm for evaluating these process specifications and evaluate
it on a hierarchical circuit problem.

CHAPTER 1. INTRODUCTION

Chapter 2

Model-Based Diagnosis

Early diagnostic expert systems depended largely on a domain expert, whose knowl-
edge about inferring diagnoses from symptoms was expressed by heuristic rules. In
contrast to this heuristic approach model-based diagnosis systems compute diagnoses
by simulating the behavior of a device and comparing the prediction with the observed
behavior. Reiter’s seminal paper [Rei87] was the motivation for a broad variety of
works on model-based diagnosis, both on the theoretical foundations as well as on
efficient algorithms.

While the expressiveness and flexibility of model-based diagnosis is superior to
previous approaches, early systems suffered from efficiency problems. Model-based
reasoning systems have to partially simulate the device under consideration several
times under slightly changing assumptions about the faulty components. We will dis-
cuss the most influential model-based diagnosers and their techniques for efficient
reasoning.

In the theory of diagnosis several notions of explanation have been studied. While
Reiter’s definition regards a diagnosis as a set of assumptions consistent with the ob-
servations, the abductive diagnosis approach postulates that diagnoses must entail the
observations logically. Console and Torasso have defined a spectrum of diagnostic
definitions, whose extremes are Reiter’s consistency—based diagnosis and abductive
diagnosis. The DRUM-II system implements this complete spectrum of definitions to
provide a flexible diagnosis concept.

We will conclude this chapter with a critical examination of Console and Torasso’s
statements about the relationship between abductive and consistency—based reasoning.

2.1 Basic Concepts

In model-based diagnosis a model of the device under consideration is used to predict
its behavior. Since the goal of model-based diagnosis is to identify faulty components,
this model must explicitly take into account the components of the device and their
modes (i.e. if they are working properly or they are faulty). In the logical approach

7

8 CHAPTER 2. MODEL-BASED DIAGNOSIS

to diagnosis the device is described by a set of logical axioms SD, called the system
description. To avoid confusion, we will always use the term system description for
the model of the device. The term model will from now on only be used in the logical
sense, i.e. to denote an interpretation of a set of formulas.

Comp is a set of constants denoting the components of the device. We distinguish at
least two modes for each component: A component ¢ € Comp can be working properly,
which is denoted by the proposition Ok(c), or it can be faulty, which is denoted by
Ab(c). A set of propositions Obs encodes the observed behavior of the system. A
diagnosis problem arises, if the observation is inconsistent with the assumption that all
components are working properly, i.e. SDU{Ok(c)|c € Comp} UObs = L.

2.1.1 Consistency—Based Diagnosis

A diagnosis identifies a set of faulty components, so that logical consistency is re-
stored.

Definition 2.1 Diagnosis
A Diagnosis of SDU Obs is a set A C Comp with the property:

SDUObsU{Ab(c)|c € A} U{—Ab(c)|c € Comp\A} |~ L

Reiter’s original definition of diagnosis appeals to the principle of parsimony: Only
a minimal set of components is assumed abnormal. We will follow [dMR92] and refer
to this concept as minimal diagnosis.

Definition 2.2 Minimal Diagnosis

A diagnosis A of SDU Obs is called a Minimal Diagnosis is there is no diagnosis A’ of
SDU Obs, such that A' C A.

Invl

L
InvOZ—,i

Figure 2.1: A simple digital circuit

Example 2.3 Consider the simple digital circuit in figure 2.1 consisting of an or—gate
(Or1) and two inverters (Invl and Inv2). The system description SD is given by the
following formulas.

2.1. BASIC CONCEPTS 9

(R1) Vc Type(c,0r) N—Ab(c)
— (High(c,0) <> High(c,I1) Vv High(c,12))
(R2) Ve Type(c,Inv) AN—Ab(c) — (High(c,O) <> —High(c,I))
(R3) Ver, p1,c2, p2 Conn(cy, pa,ca, p2) — (High(c1,p1) <> High(cy, p2))
(Fi <F3) Type(Orl,0r), Type(Invl,Inv), Type(Inv2,Inv)
(Fy<Fs) Conn(Invl,0,0r1,11), Conn(Inv2,0,0r1,12)

In this system description we have separated general knowledge about the compo-
nents involved (R, R, and R3) from the knowledge about the topology of the actual
device (Fy, ..., F5). This separation is typical for model-based diagnosis and keeps
system descriptions maintainable. The first rule Ry describes the behavior of a com-
ponent ¢, which is an Or-gate (Type(c, Or)). If an Or-gate is behaving according to its
specification, the output has high voltage, if and only if one of its inputs has high volt-
age. R, denotes that a correctly functioning inverter inverts its input value. R3 states
that two connected ports have the same voltage. The facts Fy, F>, and F3 introduce the
components of the given circuit while the facts F4 and F5 describe their connections.
We observe that both inputs of the circuit have low voltage and the output also has low
voltage.

Obs = {—High(Inv1,I),—~High(Inv2,1),—~High(Or1,0)}
Under these observations two minimal diagnoses exist:

A = {Ab(Or1)}
Ay = {Ab(Imv1),Ab(Inv2)}

The low voltage at the output of the or-gate can only be explained if either the or-
gate itself is behaving abnormally or both of its inputs are low and thus both inverters
are faulty. Of course, {Ab(Orl),Ab(Inv1),Ab(Inv2)} is also a diagnosis but it is not
minimal and therefore not considered by Reiter’s definition. #

From definition 2.1 it is obvious that computing diagnoses requires deciding sat-
isfiability for the language used. Thus, using full first—order logic as the underlying
language will inevitably lead to an incomplete diagnosis algorithm. We therefore use
a restricted language throughout this book, which does not include function symbols.
This language is formally defined in section 3.4.1.

One motivation for computing only the minimal diagnoses is that minimal diag-
noses are often sufficient to characterize the space of all diagnoses: Usually, every
superset of a minimal diagnosis is also a diagnosis. De Kleer, Mackworth and Reiter
have critically examined this intuition in [dMR92] and qualified it as summarized in
the following theorem.

10 CHAPTER 2. MODEL-BASED DIAGNOSIS

Theorem 2.4 Let (SD,Comp,Obs) be a representation of a diagnosis problem, such
that Ab occurs only positively in the clause form of SD.

For every set of A components: If AD A for a minimal diagnosis A, then A is itself
a diagnosis.

Extending our previous example we can easily construct a case where a superset
of a diagnosis is not itself a diagnosis.

Example 2.5 Let us extend the system description from example 2.3 by
Ry : Ve Type(c,Or) NAb(c) — High(c,O)

The clause corresponding to this formula is {—=Type(c,Or),—Ab(c),High(c,0)},
in which Ab occurs negatively so that the preconditions of theorem 2.4 are not sat-
isfied. In fact, for the observation from example 2.3 we obtain only one diagnosis
Ay = {Ab(Inv1),Ab(Inv2)}. Comp D A, is no diagnosis. #

2.1.2 Kernel Diagnoses

In diagnosis vocabulary a formula like R4 in above example, which describes the be-
havior of a faulty component, is called a fault model. De Kleer, Mackworth and Reiter
have coined the concept of a kernel diagnosis [dMR92] to characterize the diagnosis
space in the presence of fault models. They define a diagnosis as a conjunction of
Ab-literals (positive or negative), which is consistent with SD and Obs.

Definition 2.6 Diagnosis (following [dMR92])
A conjunction D of Ab-literals is a Diagnosis of (SD,Comp, Obs), iff

SDUObsUD = L

While Reiter has used set inclusion as minimality criterion, de Kleer, Mackworth,
and Reiter use the concept of Covering.

Definition 2.7 covers
A conjunction C of literals covers a conjunction D of literals, iff every literal in C
occurs in D.

A Fartial Diagnosis helps characterizing the space of all diagnoses, because all
conjunctions of Ab-literals, which cover it, are diagnoses.

Definition 2.8 Partial Diagnosis
A Partial Diagnosis is a diagnosis, such that all conjunctions of Ab-literals covered by
it are diagnoses.

2.1. BASIC CONCEPTS 11

The partial diagnoses which are minimal wrt. covering are called Kernel Diag-
noses.

Definition 2.9 Kernel Diagnosis
A Partial Diagnosis is called a Kernel Diagnosis, if no other diagnosis covers it.

Although kernel diagnoses thoroughly characterize the space of all diagnoses this
concept had no strong influence on diagnostic systems. The reason is that computing
kernel diagnoses is a very expensive task and the set of all kernel diagnoses is too large
for complex devices.

2.1.3 Reducing the Number of Diagnoses

For large systems even the set of all minimal diagnosis is too big to allow efficient com-
putation. Furthermore, the user of a diagnostic system wants a small set of diagnoses,
which directs him to the faulty components. In this section we discuss diagnosis con-
cepts which omit less likely minimal diagnoses. The best way to discriminate among
diagnoses is to execute measurements [dKW87, dK90b]. However, measurements re-
quire taking possibly costly actions in the real world.

A widely used approach to discriminate further among the minimal diagnoses is
to rank them according to their prior probability. Assuming statistical independence
among the possible failures of a system (which may be a too strong assumption for
some domains), the prior probability that a given diagnosis is correct is ([dK90b])

PAY=]]re-] =vpe), (2.1)

ccA c€Comp\A

where p, is the probability, that component c fails.

Definition 2.10 Maximally Probable Diagnosis
For a diagnosis A let P(A) be defined by equation 2.1. A diagnosis A is called a
Maximally Probable Diagnosis, iff there is no diagnosis A’ such that P(A') > P(A).

If all probabilities p. are equal (or assumed to be equal due to lack of information),
i.e. p. = p for all c € Comp we have

P(A) = p\A| (1 @p)\COmﬂ—\N (2.2)

In this case, the probability of a diagnosis depends only on its cardinality and we
can rank the diagnoses simply by their cardinality.

Definition 2.11 Minimal Cardinality Diagnosis
For a diagnosis A let |A| denote the number of components in A.

A diagnosis A is called minimal cardinality diagnosis, iff there is no diagnosis A
so that |A'| < |A|.

12 CHAPTER 2. MODEL-BASED DIAGNOSIS

Restrictions on the cardinality of diagnoses are very common. Many (non—-model-
based) diagnosis systems have implicit restrictions on the cardinality of diagnoses:
Often they can only compute single fault diagnoses, i.e. diagnoses with cardinality 1.

2.2 Computing Diagnoses

An obvious way to compute diagnoses following definition 2.2 is to enumerate diag-
nosis candidates A (i.e. sets of components considered faulty) and check if SDU Obs U
{=Ab(c)|c € Comp\A} U{Ab(c)|c € A} is logically consistent. If so, A is a diagnosis.

Reiter’s Framework. Reiter motivates his diagnosis algorithm [Rei87] by the state-
ment that a generate and test approach is too inefficient for computing diagnoses with
large cardinality because a large number of candidates has to be checked. Instead of
enumerating candidates Reiter takes up an idea proposed by de Kleer [dK76] and uses
conflict recognition as a preliminary stage to candidate generation.

Definition 2.12 Conflict Set.
A Conflict Set for (SD,Comp, Obs) is a set {cy,...,c,} € Comp such that

SDUObsU{=Ab(c1),...,mAb(cp)} = L

Conflict sets can be generated using a theorem prover by computing a refutation for
SDUObs\U{—Ab(c)|c € Comp}. Every set of Ab-literals used in such a refutation is a
conflict (set). A candidate has to take every conflict into account. This is formalized
by the notion of a Hitting Set.

Definition 2.13 Hitting Set
A Hitting Set for a collection C of sets is a set H C |J S such that HN S # 0 for every

SeC
Sec.
A hitting set is called minimal, if it is the smallest set with the above property.

Reiter proves that the minimal diagnoses correspond to the minimal hitting sets of
the set of conflicts. To compute hitting sets systematically, Reiter uses a data structure
called hitting set tree. In a hitting set tree internal nodes are labeled by conflicts.
For every component in the conflict, an outgoing edge labeled with this component is
added to the node as shown in figure 2.2. The hitting sets correspond to the sets of edge
labels on a path. A branch is extended as long as there is a conflict not yet covered by
the set of literals on the branch.

Since only the minimal hitting sets correspond to minimal diagnoses, Reiter pro-
poses techniques for eliminating nodes from the HS-tree, which provably do not lead
to minimal hitting sets. All nodes, which correspond to a superset of an already found
hitting set are eliminated. Reiter defined an additional optimization concerning the

2.2. COMPUTING DIAGNOSES 13

{1,2,3}
1 5 3

(2,4,5) v (2,4,5)
2,/ 1N 2) 5
A vo(1,2,5) v
1 5

2

Y

Figure 2.2: Hitting Set Tree for {{1,2,3},{2,4,5},{1,2,5}}. The branches
(1,2),(3,2),(3,4,1),(3,4,2), and (3,4,5) correspond to non—minimal hitting set and
could be pruned.

nodes labeled by non-minimal conflicts. This technique however contained an error
which was later corrected in the HS-DAG algorithm by Greiner, Smith, and Wilkerson
in [GSWE&9].

It should be noted that the techniques in the HS-tree/HS-DAG lead to a consider-
able overhead due to the large number of costly subset checks involved. We know of
no experimental or theoretical evaluation of the benefits of these methods. Moreover,
it is sometimes seen as an advantage of Reiter’s algorithm, that non-minimal conflicts
can be used [GSW89]. Since however a relatively complex algorithm is needed for
deleting them from the HS-DAG (again using a large number of subset checks), this
advantage is questionable.

GDE. In their GDE system [dKW87] de Kleer and Williams also divide the compu-
tation of diagnoses into the phases conflict generation and candidate generation. The
candidate generator in GDE maintains the set of currently minimal candidates and up-
dates it accordingly for each new minimal conflict. In contrast to Reiter, who makes
only some general statements on conflict generation, de Kleer and Williams carefully
design an efficient conflict recognition algorithm. This algorithm is based on the notion
of an Environment. An environment is a set of components considered OK. The sys-
tem description together with an environment causes a set of predictions. If any of the
predictions contradicts the observations, the environment is a conflict. GDE finds all
minimal conflicts by systematically enumerating environments starting with the empty
environment and moving up the subset/superset lattice of components successively.
Since most values do not depend on the complete environment but rather only on
a subset thereof, a large number of predictions (and thus inference operations) would
be repeated for the different environments, if a straightforward inference architecture
were used. De Kleer and Williams therefore use truth maintenance techniques to avoid

14 CHAPTER 2. MODEL-BASED DIAGNOSIS

such recomputations. With each value a minimal supporting environment is stored.
The value can be assumed in every environment which includes its supporting envi-
ronment as a subset.

Sherlock. The original GDE was limited to descriptions of the correct behavior only.
In [dKW89] de Kleer and Williams introduced fault models into GDE and called the
resulting system Sherlock. They found that the additional combinatorics of using fault
models made the system too inefficient to solve even small problems. To deal with
this complexity de Kleer and Williams abandon the idea of computing all minimal
diagnoses and introduce the notion of Leading Diagnoses. Leading diagnoses are the
most probable diagnoses of the system. Heuristic criteria define the probability up to
which a diagnosis is considered a leading diagnosis. The set of leading diagnoses is
usually small (e.g. five diagnoses).

AAAI91. The ideas and algorithms concerning the computation of diagnoses pre-
sented so far were either of theoretical nature [Rei87] or checked only on small ex-
amples [dKW87], [dKW89]. When de Kleer started working on large combinato-
rial benchmark circuits [Isc85] and large circuits consisting of cascaded elements he
found that both GDE and Sherlock were too inefficient to handle large examples. In
[dK91] de Kleer shows that all three phases of computation (prediction, conflict gen-
eration, candidate generation) in GDE and Sherlock exhibit combinatorial explosion.
De Kleer’s next diagnosis engine reduces the combinatorial explosion by focusing the
diagnosis engine on the leading diagnoses. On the one hand this is achieved by incor-
porating the estimation of probabilities into an incremental candidate generator, which
returns only the single most probable candidate not considered so far. On the other
hand the truth maintenance system used in GDE and Sherlock (ATMS) is replaced
by a more efficient technology (HTMS) which reduces the combinatorial explosion of
conflicts and predictions.

IMPLODE. Even the system from [dK91] did not solve all combinatorial bench-
mark circuits from the ISCAS-85 suite. In [RAKS93] Raiman, de Kleer and Saraswat
introduce the IMPLODE system, which reduces the number of environments and con-
flicts drastically by exploiting the concept of criticality. The Critical Environment for a
literal [is the intersection of all environments, under which [is entailed. Let us denote
the critical environment for a literal / by CE([). The basic idea behind critical reason-

ing is the (unsound) abstraction (AxecE() x) — [. When this abstraction is applicable,

it focuses the reasoning dramatically, because all the alternative environments, under
which [is entailed, do not have to be considered.

Example 2.14 Let us assume that the atom High(C5, O) is entailed under the minimal
environments { Ok(C1), 0k(C2)} and {Ok(C1),0k(C4)}. The critical environment for

2.3. A SPECTRUM OF DIAGNOSIS DEFINITIONS 15

High(C5, 0) is the intersection of these environments, i.e. {Ok(C1)}. The abstraction
Ok(C1) — High(C5,0) is introduced. #

Although the abstractions computed in critical reasoning are unsound in general,
Raiman, de Kleer and Saraswat show that they are valid under certain conditions.
For example, if we are interested in single faults, the above abstraction is consis-
tent: If C1 is assumed abnormal, High(C5,0) will not be assumed. If any other
component is considered abnormal, then either the environment {Ok(C1), Ok(C4)}
or {Ok(C1),0k(C2)} remains intact and the value can be deduced. Set covering tech-
niques, which however have not been considered in depth in [RAKS93] can be used to
generalize the applicability of these abstractions in a multiple fault scenario.

2.3 A Spectrum of Diagnosis Definitions

Diagnosis following definition 2.1 is often referred to as consistency-based diagnosis.
This is a natural concept, if the system description only describes the correct behavior
of the components. If we additionally have fault models, we may want a stronger
diagnosis concept, which does not only postulate consistency but explanation (in the
sense of logical entailment) of the observed misbehavior. To formalize such a stronger
notion of diagnosis, let us first introduce some additional notation. From now on,
we assume that each component ¢ has one correct mode Ok and several fault modes
Fmei,...Fmg,.. By Mode(c,m) we denote that component ¢ is in mode m. We define

Ve (Ok(c) <» Mode(c, Ok))
Ve (Ab(c) <= Im (Mode(c,m) Am # Ok))

so that we can still use our previous definitions. Furthermore we postulate, that
every component is in exactly one mode at a given time point, i.e.

Ycam (Mode(c,m) ANYm' (m' #m — —Mode(c,m’))

Further we partition the observations Obs into a set Obsy, of parameters (input
observations) and a set Obs(,, of output observations, such that Obs = Obs,JObs¢,;.
In the presence of multiple fault modes, a diagnosis can no longer be denoted as a set
of components. We now need the concept of a Mode Assignment.

Definition 2.15 Mode Assignment.
A set D of atoms is called a Mode Assignment, iff

1. D contains exactly one atom of the form Mode(c,m) for every component ¢ €
Comp and

2. D contains no other atoms.

16 CHAPTER 2. MODEL-BASED DIAGNOSIS

When working with mode assignments, we still want to minimize abnormality.
Therefore, we introduce an ordering <4” on the mode assignments, similar to the
ordering on models.

Definition 2.16 <A?
For mode assignments D\ and D, we define

Dy < Dy, iff {c|Mode(c,Ab) € D1} C {c|Mode(c,Ab) € D>}

An Abductive Diagnosis is a mode assignment consistent with system description
and observations, which entails all output observations.

Definition 2.17 Abductive Diagnosis.
Let (SD,Comp,Obs = Obs;,JObsoy) be a diagnostic problem. A mode assignment
M is called an Abductive Diagnosis, iff

1. SDUObsUM = 1 and

2. SDUObs;,, UM): Obsou

In [CT91] Console and Torasso point out that a spectrum of diagnostic definitions
exists between the extremes consistency—based diagnosis and abductive diagnosis. The
definitions in the spectrum differ in the size of the subset Obst C Obs,; of observa-
tions, which have to be explained. The extremes are Obs" = 0 for consistency—based
diagnosis and Obs™ = Obsg,; for abductive diagnosisl. Following Console we can
provide a general definition of a diagnosis problem which includes the specification of
Obs* and a diagnosis concept which covers the whole spectrum.

Definition 2.18 Diagnosis Problem, Spectrum Diagnosis.
A Diagnosis Problem is given by (SD,Comp,Obs = Obs;,JObsoy,Obs™) where
Obs™ C Obsou.

A mode assignment M is a Spectrum Diagnosis, iff

1. SDUObsUM = 1 and

2. SDUObs; UM = Obs*

By implementing spectrum diagnosis, the DRUM-II system covers a broad range
of diagnostic definitions and applications. Additionally, DRUM-II allows to restrict
the set of all minimal spectrum diagnoses further by cardinality or probability as dis-
cussed in section 2.1.3.

IConsole defines another dimension of the spectrum by dividing the observations into normal and
abnormal observations

2.4. ON THE ROLE OF ABDUCTIVE DIAGNOSIS 17

2.4 On the Role of Abductive Diagnosis

Console, Theseider Dupré and Torasso have formally studied the relationship between
abductive and consistency—based reasoning in [CDT91]. They show that abductive
explanations are strictly equivalent to the models of the completed (via predicate com-
pletion) theory. With a more informal and domain—oriented argumentation, Console
and Torasso present similar equivalences between abductive and consistency—based
diagnosis in [CT91].

We however argue that the completions presented in [CT91] and [CDT91] are often
not applicable to system descriptions of technical devices. Complex technical systems
usually consist of a large number of standard components connected in a network
structure. The system description usually formalizes propagation of certain properties
through this component network. Examples are the water pressure in a system of
pipes and valves, the current in a switching network, or the presence of messages in a
communication network. To model such propagations we often use rule-like axioms.
In a communication network, the propagation of a message through the network can
be formalized by a predicate P(x,y), denoting that the message sent by component y
has reached component x.

VxVyWz P(x,x) A (P(x,z) AConn(x,y) — P(y,z)) (2.3)

The above axiom describes the propagation of status messages through a network:
Each component sends a status message (P(x,x)), and each component forwards sta-
tus messages to the connected components. In our telecommunication application in
chapter 5, we use similar but more complex axioms to describe the forwarding of sta-
tus messages through the network. It is interesting to see that already the simple axiom
in formula 2.3 cannot be completed in first order logic. To see this, note that the com-
pletion of axiom 2.3 is exactly the transitive closure Conn* of the relation Conn: A
component x forwards a status message to all components directly or indirectly con-
nected to it. Thus, we have Conn*(x,y) < P(y,x), i.e. the component x is connected
to the component y, iff y has received the status signal of x. However, the transitive
closure cannot be formalized in first—order logic.

Proposition 2.19 The transitive closure cannot be formalized by a set of first—order
formulas.

Proof: For this proof we will denote interpretations as pairs (M,), consisting of a
frame M and an assignment 3. We will show that there is no first order theory 7" such
that MOD(‘T') (the set of all models of 7') has the property:

For every M € MOD(T): M|R*| is the transitive closure of M|R|>.

2R* is treated as a predicate constant

18 CHAPTER 2. MODEL-BASED DIAGNOSIS

The proof is by contradiction. Suppose 7 is such a theory. Let us define a set of
frames {M"|n € N}. The domain of M* is the set {1,...,k}. Further we define

MMR| = {(i,i+1)[1<i<k}
MARY| = {(,)1 <i<j<k}

Then, obviously M*|R*| is the transitive closure of M¥|R|. Let

Op :=x ZYAR (x,y) A= (Txg ... 3xg X1 =xAx =Y AR(X1,x2) Ao AR (X1, Xk)).

The formula ¢, expresses that R* holds for x and y but y is not reached by k times
following the relation R. Let

T' = T U{olk > 2}

We will show that 77 is satisfiable by exploiting the compactness theorem of first
order logic. Thus, we have to show that every finite subset 7 of 7’ is satisfiable. For
a given finite subset 7~ there is a largest number j such that ¢; is contained in 7
(otherwise ‘7~ would be infinite). For this j we have 70 C 7 U{¢x|2 <k < j};

-~

7

The interpretation (M/+!,B) with B(x) = 1 and B(y) = j + 1 is obviously a model
of 7; because MJ+! interprets R* as the transitive closure of R and j + 1 applications
of R are needed to get from 1 to j+ 1, so that all ¢g for 2 < k < j are satisfied. Thus
7; has a model, which is also a model of 7, because 7~ C 7;.

Since every finite subset of 7’ has a model, by compactness theorem, we infer
that 77 itself has a model. However, this model does obviously not interpret R* as the
transitive closure of R, because for some x,y we have R*(x,y) but y cannot be reached
from x by finitely many applications of R. Since this model of 7’ is also a model of T’
(because 7 C T"), we have found a contradiction to the assumption that all models of
T interpret R* as the transitive closure of R.

Q.E.D.

The reduction of our propagation problem to the well-known result for the transi-

tive closure was only possible, because P has two arguments, one of which identifies

the sender of the message. However, we can generalize our result further. Consider
the following propagation axiom:

VxVy (Cp(x) — P(x)) A (P(x) A Conn(x,y) — P(y)).

This is in some sense the simplest possible form of propagation. A property is
present at x if x is the creator or cause of the property P (Cp(x)). Furthermore, proper-
ties are propagated over connections.

We can modify the proof of proposition 2.19 to show that even this simple type of
propagation cannot be described in first—order logic.

2.4. ON THE ROLE OF ABDUCTIVE DIAGNOSIS 19

Proposition 2.20 The completion of formula 2.4 cannot be formalized by a set of first—
order formulas.

Proof: We will show that there is no first order theory 7 such that MOD(T') has the
property:

(%) For every M € MOD(T): x is in M|P|, iff x is in M|Cp| or there exists an y such
that y is in M|Cp| and (y,x) is in the transitive closure of M|Connl|.

The proof is by contradiction. Suppose 7 is such a theory. Let us define a set of
frames {M"|n € N}. The domain of M* is the set {1,...,k}. Further we define

MNPl = {1,...,k}
MK Cp| = {1}
MK Conn| = {(i,i+ 1)1 <i<k}

Then, obviously M* satisfies (*). Now let

O := P(x) A=(3xq ... 3x, Cp(x1) Axg = x AR(x1,x2) A v o AR(Xp—1,X%))-

The formula ¢, expresses that P holds for x but x is not reached by k times following
the relation R from a point, where Cp holds. Let

T’ = T U{olk > 2}

Again, we have to show that every finite subset 7 of 7’ is satisfiable. For a given
finite subset 7 there is a largest number j such that ¢; is contained in 7. For this j
we have 7- C T U{0x|2 <k < j}.

7

The interpretation (M/*1 B) with B(x) = j+ 1 and is obviously a model of 7;
because the frame M/*! satisfies (x) and j+ 1 applications of R are needed to get
from 1 to j+ 1, so that all ¢ for 2 < k < j are satisfied. Thus ‘Z} has a model, which
is also a model of 7, because 7- C 7;.

Since every finite subset of 7’ has a model, by compactness theorem, we infer that
T itself has a model. However, this model does not satisfy (*), because for some
x, P(x) holds, but it is not connected to a point where Cp(x) holds. Since this model
of 77 is also a model of 7 (because 7 C 7'), we have found a contradiction to the
assumption that all models of 7 satisfy ().

Q.E.D.

We conclude that abduction cannot be substituted by first—order deduction in the di-
agnosis of systems with a network structure. Thus, we need either higher—order logic,
non—monotonic logic or an implementation of abduction for the reasoning. Due to the
lack of practical reasoning methods for higher order logics, this alternative seems to be
inadequate. In this thesis we therefore exploit the other alternatives, non—-monotonic
logics and the direct implementation of abduction.

20 CHAPTER 2. MODEL-BASED DIAGNOSIS

2.5 Discussion

Model-based diagnosis allows to exploit declarative logical system descriptions for
the diagnosis task. Most work has focused on consistency—based diagnosis and its
variants. Several years of research were necessary to create consistency based diagno-
sis engines with satisfactory performance. Most of these systems are based on conflict
detection and candidate generation. Because of the continuing efficiency problems
of conflict-based engines, Reiter’s initial claim, that combinatorial explosion of the
running time can be avoided by conflict generation techniques, seems questionable.
It is therefore worthwhile studying alternative algorithms, as used by the DRUM-II
system.

Console and Torasso have extended the model-based diagnosis paradigm by intro-
ducing a spectrum of diagnostic definitions. The have shown how to reduce the defini-
tions in their spectrum to consistency—based reasoning. However, we have shown that
these reductions, which work well for some examples, do not apply to the diagnosis of
systems with network structure described in first order logic.

The following chapters of this thesis are concerned with an alternative efficient
implementation of model-based diagnosis which is able to handle the whole spectrum
of diagnostic definitions for the diagnosis of large systems with network structure.

Chapter 3

The DRUM-II Framework

As we discussed in the section 2.2 most previous systems for model-based diagnosis
are based on conflict recognition and candidate generation. Despite their application—
specific algorithms, they suffer from combinatorial explosion of internal data structures
during the computation of diagnoses. Thus, it is worthwhile to consider alternatives to
the conflict-based algorithms motivated in Reiter’s work. Furthermore, there is a trend
in recent logic-based Al research to move away from specialized logics/algorithms
and solve problems using general logical inference engines instead. Examples for this
development are the trend to solve planning/scheduling problems by reducing them
to propositional logic [KS96] and the reduction of test pattern generation problems to
propositional logic [Lar92].

DRUM-II also uses a generic logical engine to compute diagnoses. However, the
underlying logics has to be more expressive than propositional logic, because most di-
agnosis concepts appeal to the principle of parsimony: We want to assume only a mini-
mal set of faulty components. To account for the principle of parsimony the underlying
logic has to include a means of minimizing the extension of the Ab—predicate. Several
non—monotonic logics have been proposed for this purpose [Rei80, McC80]. We have
chosen Circumscription, because its semantics corresponds directly to model-based
diagnosis and it is the basis of many temporal reasoning formalisms.

We show that consistency—based diagnosis corresponds directly to the computation
of the minimal models which characterize the circumscription semantically. The more
expressive spectrum diagnosis concept is implemented by iterating minimal model
computation (for the consistency—based part) and deciding entailment (for the abduc-
tive part). Both tasks are solved with our implementation of circumscription. By
implementing circumscription efficiently DRUM-II provides on the one hand a very
efficient system for model-based diagnosis and on the other a flexible framework for
non—monotonic reasoning in general. This chapter extends and generalizes our previ-
ous results in [FN96a, FN96b].

21

22 CHAPTER 3. THE DRUM-II FRAMEWORK

3.1 Introduction

Circumscription [McC80, McC86] is one of the most popular formalisms for non—
monotonic reasoning. It is used to provide a semantics and reasoning method for
statements like the following:

Normally, basket ball players are tall.

We can try to formalize this statement in first order logic by the sentence

Vx BasketBallPlayer(x) A —Ab(Height,x) — Tall(x).

This sentence reads: A basketball player, who is not abnormal with respect to his
height, is tall. However, monotonic logic does not capture the intended meaning of
this sentence very well. Suppose, we know that Tom is a basketball player. Then,
monotonic logic would not allow us to conclude that Tom is tall, because he could also
be abnormal regarding size. Our intention is however: If we are not forced to assume
that Tom is abnormal wrt. height, we assume that he is tall.

Circumscription helps in this situation by minimizing the extension of certain pred-
icates, like the predicate Ab in the above example. Formally, the circumscription of a
theory ‘T in a predicate P adds a second order sentence (called circumscription axiom)
to 7, which postulates that the extension of P is minimal, i.e. no superfluous atoms
P(x) will be assumed. If we circumscribe the theory

T : Vx BasketBallPlayer(x) N ~Ab{Height,x) — Tall(x).
BasketBallPlayer(Tom)

in the predicate Ab, we can infer that Tom is tall, because is it consistent to assume
that he is not abnormal regarding height. To decide, if a formula ¢ follows from the
theory 7 circumscribed in a predicate P, most approaches compute the circumscription
axiom and (if possible) reduce it to a first order sentence [Lif85]. Then monotonic logic
is used to do the proof. Unfortunately, in many cases the circumscription axiom cannot
be reduced to a first order sentence. Since there are no efficient reasoning methods for
second order logic in general, the scope of this reduction method is limited.

Therefore, some authors have investigated the so—called semantical characteriza-
tion of circumscription. This approach defines the semantics of circumscription by
minimality criteria for models. This characterization has been used by Ginsberg to
create an ATMS-based circumscriptive theorem prover [Gin89].

In this chapter we present a more direct approach for exploiting this characteriza-
tion, which uses model-based reasoning techniques to compute minimal models of a
given theory. By dividing the minimal models into equivalence classes we only need
to compute a representative subset of the minimal models. These few models are then
used by a filtering function to decide, if a given formula ¢ follows from the circum-
scription. The proof is done by showing that there is no minimal model, in which —¢

3.2. THE MODEL-BASED APPROACH 23

holds. This refutation method was already used by Przymusinski [Prz89], whose query
answering method is based on resolution.

We provide efficient algorithms for our approach which make use of the model-
based reasoning techniques introduced by Chou and Winslett [CW94]. We show that
these algorithms are sound and complete for fixed—domain theories [Luk90]. Our ap-
proach avoids problems with the symbolic manipulation and reduction of the circum-
scription axiom and provides an efficient way to handle current applications. We un-
derline this by implementing current formalisms for reasoning about action and change
using our system.

3.2 The Model-based Approach

3.2.1 Definition of Minimal Models

For a model M and a predicate symbol K we write M|K| to denote the extension of
K in M. In [McC86], McCarthy defines Formula Circumscription, which allows the
extensions of certain predicates to vary during minimization. We will first consider the
special case of circumscribing a theory 7 in a tuple P of predicates, while varying the
extensions of all other predicates and generalize this to other variants of circumscrip-
tion in section 3.3. The semantics for this case of circumscription (usually referred to
as parallel circumscription) can be characterized by the < minimal models of 7.

Definition 3.1 Let P = (Py,...,P,) be a tuple of predicates. Let M1 and M, be models.
My <P Mo, iff

1. My and M3 have the same domain and agree in the interpretation of the constant
symbols.

2. Forallie€ {1,...,n}: M|P;| C M;|Pj].

A model M is called a_<P —minimal model of the theory T, iff there is no model M’
of T, such that M' <P M. We will denote the set of <F—minimal models of T by
MODP(T).

MODP(T) = {MM = TN (BM' M <" MAM = T)}

The following theorem found by Lifschitz [Lif85] shows the connection between
circumscription and the set of <”—minimal models.

Theorem 3.2 The formula @ follows from the circumscription of T in P, while vary-
ing all other predicates, iff ¢ holds in all <P—minimal models of T.

Thus, if we knew all <”—minimal models of a given theory, we could answer
queries concerning the circumscribed theory just by looking at the models. However,
computing and storing all <F—minimal models is usually very inefficient. We will de-
scribe a method for answering queries which needs only a few models, by introducing
an equivalence relation on models.

24 CHAPTER 3. THE DRUM-II FRAMEWORK

3.2.2 Computing Minimal Models

Two models are defined to be equivalent wrt. P, if the extensions of all predicate con-
stants in P are the same in both models.

Definition 3.3 Let P = (Py,...,P,) be a tuple of predicate constants. Two models
M and M’ are P—equivalent (denoted by M ~* M), iff for all i € {1,...,n}: M|P| =
M'|P;). By [M], we denote the set of all models P—equivalent to M, i.e. [M] = {M'|M ~F
M'}. For a set M of models we define M /~F = {[M]|M € M}.

Each equivalence class is represented by (stored as) some model M € [M]. Thus
we work on finite sets of models representing MOD? (T) /~F.

Definition 3.4 A set M of models is a Transversal of M _OD]3 (T)/~F, iff it contains

exactly one model out of every equivalence class in MODF (T') /~".

Now consider a (possibly empty) set 7 of formulas for which we have a transversal
M of the <P—minimal models. We want to add new knowledge U to the theory 7 and
thus obtain a transversal of the <f—minimal models of 7 U U. We call a function,
which computes this new transversal, a Revision Function.

Definition 3.5 Consider a first order language L, where I, is the set of all finite
interpretations. Let C be a class of theories in L. Let f be a function, which takes
a theory, a set of models and a second theory as parameters and produces a set of
models: fp: C x 2% x ¢ — 25,

fp is called a Revision Function for C, iff for all T,U € C and all transversals
M C I, of MODP(T)/~F:

(T, M, U) is a transversal of MODY (T U U)/ ~F.

In section 3.4 we will introduce an efficient revision function Revs and show its
completeness for a large class of theories. The rest of this section is dedicated to
the question how to use a revision function to comute minimal models and decide
entailment under circumscription. Our first observation is that we can use the revision
function directly to compute a transversal of the minimal models by executing the
revision Rev(0, {0}, 7). This method will be used in the PMON example (see section
3.5.1). In other applications we want to compute minimal models in multiple steps.
That is, we already have a transversal M of the minimal models for a part 7y of the
theory and we use Rev(Zy, M, 7;) to compute the minimal models of 7y U 7;. One
reason for doing so can be the appearance of new knowledge. In this case we want to
reuse the minimal models of the old theory to compute the new minimal models.

Another reason for computing minimal models in several steps is efficiency. In
reasoning about action and change we can for example use standard model generation
techniques to create a model of the static world, without regarding the action axioms.
Then we revise this model with the action axioms. This technique is shown in section

3.2. THE MODEL-BASED APPROACH 25

3.5.2 using Baker’s approach to non—-monotonic reasoning. The most challenging ap-
plication of our circumscription algorithm is the model-based diagnosis of technical
systems. Solving diagnosis applications (see chapters 4 and 5), we have found that
computing minimal models in several steps can focus and thereby speed up computa-
tion dramatically.

3.2.3 Deciding Entailment under Circumscription

Until now, we defined a method for computing the equivalence classes of the minimal
models of a theory 7. These equivalence classes can be used to decide entailment
under circumscription. The decision procedure is an application of theorem 3.2 by
Lifschitz. Before we describe the general decision procedure, note that answering
queries concerning predicates in P is now trivial, since a transversal of the <F—minimal
models contains a model for each minimal combination of extensions of the predicates
in P.

Proposition 3.6 Let P= (Py,...,P,) a tuple of predicate constants, P; (i € {1,...,n})
a predicate constant of arity r;, and M a transversal of MOD' (T)/~F. An atom
Pi(x1,...,xy,) follows from the circumscription of ‘T in P varying all other predicates,

VM e M : M = Pi(x1,...,x).

To prove that an arbitrary formula @ is entailed by the circumscription of 7 in P, we
show that —¢ does not hold in any <”~minimal model of 7. Our method for deciding
entailment makes use of a Filtering Function. We can filter a set of equivalence classes
with a formula ¢ by eliminating all equivalence classes, which do not contain a model
of ¢.

Definition 3.7 Consider a language L and a class of theories C in L. Let T be a
theory, @ a formula and M a set of models.

(T, M,) := {[M]|M € MAIN € [M]:N = ¢}

A function fp: C x 2" x L — 2% is called a Filtering Function for C, iff for all T € C,
© € L (such that T U{@} € C) and for every transversal M of MODY (T) /~F:
fp(T, M,) is a transversal of (‘T , M, @).

A filtering function Filterp will be defined in section 3.4.6 as a simplified version
of the revision function Revs. Using the filtering function, we can decide whether an
arbitrary formula ¢ follows from the circumscription by first computing a transversal
of the minimal models and then filtering with —¢@. If no equivalence class remains
after the filtering, there is by definition no minimal model, in which —@ holds. Thus,
¢ follows from the circumscription by theorem 3.2.

26 CHAPTER 3. THE DRUM-II FRAMEWORK

Theorem 3.8 Let fp be a filtering function for a class C of theories. Let T € C be a
theory, M a transversal of MODF (T) /~ and ¢ a formula such that T U{¢} € C.

@ follows from the circumscription of T in P while varying all other predicates, iff
(T, M, —¢) =0.

Proof:

7= If ¢ follows from the circumscription, by theorem 3.2 ¢ holds in all <P_minimal
models. We show that IT15(7, M, —¢) = 0, which entails f5(7, M ,—¢@) = 0.

EachM € M isa <” —minimal model. Thus, every N € [M]is also a <P_minimal
model. Since ¢ holds in all <P _minimal models, we conclude

VMeM:YNe[M|:NE=o
= VYMeM:ANec[M]:NE-¢
= {M]Me MANINe[M]:NE-¢}=0
< (T, M,—¢)=10

Y= (T, M,—@) = 0 is given. Since fp(7,M,—@) is a transversal of
I15(T, M ,—~@) by definition 3.7, we conclude that

HF_’(Ta M,_'(p) =0
= {[M]|M e MAIN € [M]: M = —-¢} =0}
= YMEM:VNC[M]:N -

If we define Models := {M'|3M € M : M' € [M]}, we can write this as
VM € Models : M = —¢

From the fact that M is a transversal of MODP(T')/~F, we can conclude that
Models contains all <P—minimal models, and thus MODP(T) = Models. Thus
we have i

VM € MOD"(T) : M I~ —¢

We can now apply theorem 3.2 and conclude that ¢ follows from the circum-
scription. Q.E.D.

Some methods for reasoning about action and change [San94, Kar94] first mini-
mize a certain predicate in a part of the theory (usually the domain axioms) and then
filter the resulting models using another part of the theory (usually the observations).
This can be formalized in our approach by applying the filtering operation twice. The
first filtering uses the observations to prune the inappropriate models from the set of
minimal models. To prove a query @, a second filtering step with —¢ is used. See
sections 3.5.1 and 3.5.2 for examples.

3.3. VARIANTS OF CIRCUMSCRIPTION 27
3.3 Variants of Circumscription

3.3.1 Keeping the extensions of certain predicates fixed

Up to now we have assumed that all predicates (except the minimized ones) vary dur-
ing the minimization. Fixed predicates can be replaced by varying predicates using de
Kleer’s method [dK90a]: Instead of holding predicate Q fixed during the minimization
of P, we define Q'(¥) = —~Q(¥), and then minimize P,Q and Q' in parallel.

3.3.2 Prioritized Circumscription

Prioritized Circumscription can be directly handled in our approach by multiple re-
visions. The semantical characterization of prioritized circumscription builds on the
relation <”1>>P» (compare [Lif86]).

Definition 3.9 Let M|,M, be models and Pi,...,P, tuples of predicate constants.
Ml §P1>...>Pn M2, lff

1. My and M3 have the same domain and agree in the interpretation of the constant
symbols.

2. Thereisak € {0,...,n}, such that

(a) My ~Fi M, forie {1,...,k} and
(b) M, <13" My

We write M <f_’1>...>f_’n N, l‘ﬁ‘M Sf_’1>...>f_’n N and not N S151>...>13,Z M.

A model M is called a <P>>Fi_minimal model of the theory T, iff there is
no model N of T, such that N <P1>->Fx p1. We will denote the set of <F1=->Fi_
minimal models of 7 by MOD1>>Fs(T). Lifschitz has shown in [Lif86] that
MODM>>F(T) is exactly the set of models of the corresponding prioritized cir-
cumscription of 7

Theorem 3.10 Let T be a theory and Py,...,P, set of predicate constants.
MODM>>E(T is the set of models of the prioritized circumscription of T in
Py > ... > P,, while varying all other predicates.

From the definition of the logical entailment operator we can conclude, that a for-
mula @ follows from the prioritized circumscription of 7 in Py > ... > P,, iff ¢ holds
in all models in MOD"1>-+>F1(T). As in the case of the parallel circumscription we
do not want to store all these models. Therefore, we compute only one model for any
combination of minimal extensions of the predicates in Py, ..., P,.

28 CHAPTER 3. THE DRUM-II FRAMEWORK

Definition 3.11 Let {Pl, e P} bea set of tuples of predicate constants. For models
M, N we define M ~\P1--Pd N iff M ~Pi N foralli € {1,...,k}.

To answer queries concerning the prioritized circumscription we compute a
transversal of the <Pr>->Pr_minimal models with respect to the equivalence relation
~Pr5Fn Fortunately, we can compute this transversal by iterating a revision operator.

Definition 3.12 f5 . -p.

Let Py,...,P, be tuples of predicate constants, where P; = (Py,.. .Pimi). Let T be a

theory and U a new information (also a theory). Let T' := T U U. Let My be a
transversal of MOD\ (T and

M1 = fpl(T,%,ﬂ) (3.1)

Forie {l,...,n<1} we define

‘Zgé;el := “All formulas in T’ not containing predicates from P, 1” 3.2)

The new information ‘Z;\;’;Vl (M) contains all formulas in ‘T’, in which predicates
from P,y 1 occur, furthermore it contains the extensions of the already minimized tuples
of predicates (Py,...,P,).

Tvow M) =T\ TG0) U {P;, (X)X € M|P;,[}
1<j<i 1<k<m;
U {—'ij()_c')’)_C'Q/M‘ij‘} (3.3)

For a tuple of predicate constants P = (Py,...,P,) we define Del(M,P) as the
model which agrees with M on all predicates except those in P and interprets all pred-
icate constants in P as the empty predicate.

Del(M,P):=M\(|J {P®)¥eM|Pl}) (34)
1<k<m

We now define fp . ~p, by a sequence of revisions:

Miv1:= U Sr, (Tpue » {Del(M, Pit)}, Ty (M) (3.5)
MeM;
Iy sp, (T, Mo, U) =M, (3.6)

We will now show that fp - - p returns a transversal of the <Pr>->Pr_minimal
models. First, note that the preconditions for applying the revision operator are satis-
fied in the above definition.

3.3. VARIANTS OF CIRCUMSCRIPTION 29

Lemma 3.13 In definition 3.12 the preconditions for applying the revision operator
(defined in equation 3.5) are satisfied, i.e. if M € M; then Del (M, P;11) is a transversal
of MOD+1 Tz,) [~HH1.

Proof: By induction on the number 7 of subsequent revisions we show that

1. For n > 1: fp is applied to a theory 7 and a set M of models (and a new
information @), such that 4 is a transversal of MOD""(T') and

2. every model M € M, is a model of 7.

n=1: In the equation 3.1 the preconditions for applying the revision function fp are

satisfied because we assume that # is a transversal of MOD' (T). Thus, each
M € M, is amodel of T'.

n— n+1: We show that {Del(M,P,.1)} is a transversal of MODP+1 Crany ~Pnt
for every M € M,. By induction assumption, each M € M, is a model of T".

M is also a model of ‘1}9’2’;1 because ‘1}9’2’;1 C 7' and 7' is consistent. Since

‘2}9’;’;‘;1 does not contain predicates from P, 1, Del(M,P,.) is also a model of

‘ZEZ;I. Furthermore it is a representative of the only </»+!—minimal model class
(namely the one which interprets all predicates in P, as the empty predicate).

In summary, {Del(M, P,;1)} is a transversal of MOD w1 (T 1) / ~bo,

Next, we show that 9.1 contains only models of 7’: Following the definition
of a revision function (3.5) each M € M, 1 is a model of the theory together
with the new information. For n > 1 this means that M, | contains only models
of T U Tt (M) for M! € M,,. We have

Base
Time UIvmy M) =T'0 U U {P; (¥)x € M'|P;|}
1<j<n1<k<m; (3.7)

U {=P X)X e M|P;[}

The righthand side of this equation is satisfied by M’, because M’ is a model
of T’ (this follows from the induction assumption, because M’ € M,) and M’
satisfies the conjunction of literals, which encodes only the extensions of certain
predicates in M’. Thus, M, contains only models of consistent supersets of
7', which are in particular models of T”.

Q.E.D.
Now we can prove the correctness of fp - ~p,.

Theorem 3.14 Let T, U be theories, P,...,P, tuples of predicate constants, and
My a transversal of MODP\(T). Then, fp~ -p (T, My, U) is a transversal of

MODF_’1>>P,Z((I’U u)/ Nf_’h...,f_’n

30 CHAPTER 3. THE DRUM-II FRAMEWORK

Proof: We show by induction on the number i of predicate tuples: fp - -5 (7, Mo, U)
is a transversal of MOD?'>>Fi(T U)/ ~PrFi,

i =1: Since My is a transversal of MODP (7') and fp, is arevision function, definition
3.5 tells us that f5 (T, Mo, U) is a transversal of MOD" (T U U).

i—i+1: a) Let us first show that fp p. (7,M,U) contains a representative

for every §P 1P+ _minimal model M, of T U U. Note, that M,,;, is also
<Pr-Pi_minimal (see definition 3.9). By induction assumption, there is a rep-
resentative of M,,;,’s ~o PP} —equivalence class in 9f;, i.e. there is a model

M. . such that M,;, ~Pr-Fit p~,

min’® min*®

Now we consider

M = fp_, (Tghte ,ADel (M, P 1)}, Tt (M) (3.8)

Base

Obviously, M C M1, because M. € M; (see the definition of M, in equa-

tion 3.5). Because of lemma 3.13 we know that the conditions for applying

/p,,, are satisfied in equation 3.8 and thus by definition 3.9 we conclude that M
is a transversal of MODP+1 (TiEF (M.) U T4H1). The axioms in Z,it! make

sure that every model in M agrees with M. in the extensions of the predicates

from Py,...,P,. Furthermore, all models in M are models of TU U = T' C

Tirl(mm) U Zz1 In summary, M is a transvers.':ll of the Pi+ I-minimal
models out of all models which agree with M. on Py,...,P; and are models

of T. Since M,,;, is a <P 1>->Pi_minimal model of T, it is represented in this
transversal, thus there is an M € M, such that M ~ {Prs Pt } M, in. This shows

that every </+-Pi+1_minimal model is represented in fp - _ py, (T, Mo, U).

b) Now we will show that fp, _p. (7, Mo, U) contains only <Pr--Pit1_minimal
models of 7 U U. Our previous considerations under a) have shown that the
models in equation 3.8 are <’i+'_minimal within the models of 7 U U, which
agree with M min € M; in the extensions of the predicates from Py, ..., P. Thus,
they are <P1-Fi+1_minimal. Since all models in Ip>..>p,, (T Mo, U) are com-
puted as in equation 3.8, we conclude that fp. -p, (7, Mo, U) contains only

<Pi-Piri _minimal models of 7 U L.

Together, a) and b) show that fp - >P+1(‘T My, U) is a set of <Pr--Pui_
minimal models of 7 U U, which contains a representative of every class of
<PrPi_models of TU . Thus, fp,. . P, (T, Mo, U) is a transversal of

MODP>>Fu(T' U)/ PP, Q.E.D.

As in the case of the parallel circumscription, we use the filtering operator for
deciding queries concerning the prioritized circumscription. The extensions of all pre-
viously minimized predicates are considered part of the theory. We use the following
notation:

3.4. ALGORITHMS FOR REVISION AND FILTERING 31

Definition 3.15 fi5 pn
Let fp be a filtering function. Let Py = (Pi1,...,Pim,), - o Po = (Puly--,Pum,) be
tuples of predicate constants. Let

Q:: (P]],...,P]ml,...,Pnl,...ann)

Let T be a theory, M as set of models and ¢ a formula. We define

f{Pl,...,Pn}({I7 M,(P) = fQ({I7 M, (P>

We can decide, if a formula ¢ follows from the prioritized circumscription by fil-
tering a transversal of the corresponding minimal models with —@.

Theorem 3.16 Let Py,...,P, be tuples of predicate constants. Let fp be a filter-
ing function for a class C of theories. Let T € C be a theory, M a transversal of
MODP= ()) ~APPutand @ a formula, such that T U{@} € C.

@ follows from the circumscription of ‘T in P > ... > P, iff

f{P17~-~,Pn}(T7 M7 _‘(P) = 0.

Proof Sketch: The proof proceeds in analogy to the proof of theorem 3.8.
fip,,...23 (T, M, @) = 0 means that ~¢ holds in no <Pr>->Ps_minimal model. Thus,

@ holds in all <P1>>P1_minimal models and thus @ follows from the circumscription.
Q.E.D.

3.4 Algorithms for Revision and Filtering

In the previous section we have reduced fixed predicates and prioritized circumscrip-
tion to the base case of parallel circumscription of a theory in a tuple P of predicate
constants while varying all predicates not in P. We will now describe algorithms for
the basic revision and filtering functions implementing this case of circumscription.
These algorithms will work on a subset of first order logic, the fixed—domain theo-
ries. The material in this section was inspired by the work of Chou and Winslett on
implementing model-based belief revision [CW94].

3.4.1 The Language

Two limitations are inherent in the model-based paradigm. (1) We can not handle infi-
nite models. (2) We cannot handle infinitely many models. Both problems are avoided,
if we limit ourselves to languages without function symbols and theories which include
the unique name assumption and the domain closure assumption. Such theories are
called Fixed—Domain Theories. In fixed—domain theories all models are isomorphic
to Herbrand models [Luk90], thus it is sufficient to consider only the minimal Her-
brand models in theorem 3.2, when using fixed—domain theories. Our algorithms can

32 CHAPTER 3. THE DRUM-II FRAMEWORK

be used to handle two extensions of fixed—domain theories: functions symbols with
Herbrand interpretation and infinite sorts. When using infinite sorts, we have to make
sure that existential quantifiers only range over finite intervals, otherwise limitation (2)
would be violated. The extensions are useful for reasoning with situation calculus and
formalizing infinite integer time.

Every fixed domain theory can be represented in Clause Form.

Definition 3.17 Clause Form. A Clause is a disjunction of literals C =LV ...V Ly,
Every variable in C is implicitly quantified.
A theory S is in Clause Form, iff it is represented by a set of clauses S =

(Cl,...,Cul).

However, the usual transformation of a first order formula into clause form [Luk90]
is not useful, because it introduces function symbols (skolem functions) into the theory
during the elimination of existential quantifiers. Instead of using this transformation,
we first transform each formula into Prenex Conjunctive Normal Form [Luk90]. Then,
we eliminate the existential quantifiers through instantiation.

Definition 3.18 Prenex Conjunctive Normal Form [Luk90]. A formula F is in Prenex
Conjunctive Normal Form, iff

m ki
F=01x1...0ux, (/\ \/Lij> , Where
i=1j=1

Q; € {3,V} for all i € {1,...,n}, x1,...,x, are distinct variables occurring in
m k,’
A V Lij, and L;j are literals fori € {1,...,m} and j € {1,...,k;}.
j=1

1=

Juy

Algorithm 3.19 Conversion of a Fixed Domain Theory into Clause Form. Let ‘T =
{Fi,...,F,} be a fixed domain theory. Let {cy,...,c;} be the set of all constants oc-
curring in T. For every formula F € T do the following:

1. Transform F into prenex conjunctive normal form. Call the resulting formula
Fi.

2. Instantiate every existential quantifier in F| by replacing dx@ with
Veeler, et Px/c)- Call the resulting formula F.

3. Distribute the universal quantifiers in F> over the conjunctions and denote the
result by a set of clauses.

From now on, we assume that all fixed domain theories used as input to our algo-
rithms are given in clause form.

3.4. ALGORITHMS FOR REVISION AND FILTERING 33

3.4.2 Repairing Inconsistent Models

Consider a given model M of a theory S. We want to augment § by the new infor-
mation (set of clauses) U giving an extended theory S’ = S U U. Consider the theory
S ={a— cvd,d — —e}, in clause form {{—a,c,d},{—d,—e}} together with the
model M° = {e} and the new information U = {{a}}.

MO :[e}

M' = {a,e} a — ¢Vd is violated
c d
M? ={a,c,e} ok. M3 ={a,d,e} d — e is violated
—e
M* ={a,d} ok

Since M does not contain the new unit clause a, we insert a into the model, giving
a new model M'. M! contradicts the axiom a — ¢V d. We can change it in two
ways in order to make it satisfy the axiom again: Either we assume c or d, because
these are the other literals in the corresponding clause, which can make it true again.
While assuming c creates a consistent model (M 2y of ', assuming d violates the axiom
d — —e. Thus, we have to delete e in order to obtain the consistent model M*.

To formalize the iterative model repair algorithm motivated in the above example,
we need the concept of Committed Literals. The positive and negative ground literals,
which have been inverted in model M’ compared to the initial model M° are called
committed literals Comm(M?).

Definition 3.20 .
Comm(M") := {l|1 is a ground literal and M' |= | and M° | [}

In our example Comm(M?) = {a,d}. To avoid cycles in the model repair algo-
rithm, a committed literal is not considered for inversion again. We consider a literal
for inversion, if it occurs in a violated clause and neither the literal itself nor its negative
counterpart are committed. Such a literal is called a Flipping.

Definition 3.21 Let M! be a model and | a ground literal. [is called a Flipping, iff

1. There exists a clause C in S and a substitution 6 such that | € Co and M' |- Co
and

2. =l ¢ Comm(M").

Obviously, if there is no flipping for a model M‘, it cannot be repaired without
changing already committed literals, and thus the current branch in the search tree of
the repair algorithm contains no model of §’. We can specify a stronger criterion for
detecting that M’ can no longer be repaired.

34 CHAPTER 3. THE DRUM-II FRAMEWORK

Lemma 3.22 If there exist a clause C € S' and a substitution ©, such that M' = Co
and no literall € CG is a flipping then there is no model M of ', such that Comm(M) 2
Comm(M").

Proof: If M’ [~ Co, and no literal I € Co is a flipping, then for each literal / € Co, —I
must be in Comm(M"). Now, consider a model M, such that Comm(M) O Comm(M").
Then, trivially, for each literal / € Cc, - is also in Comm(M). Thus, M = CG (because
the negations of all literals in Co are true in M) and consequently M (= S, because C
isin S’ Q.E.D.

In each repair step, our algorithm considers all possible flippings. A branch in the
algorithm’s search tree is terminated if either a consistent model is found, or the branch
provably contains no solution.

Definition 3.23 Let S be a theory and M an interpretation.
1. IfM = S: Step(S,M) := 0.
2. IfFM = S:

(a) If there exists a clause C € S and a substitution & such that M (= Cc and
no literal within CG is a flipping: Step(S,M) := {0}.

(b) Otherwise,

Step(S,M) := {M'|M'" is obtained from M by inverting the
truth value of a flipping 1}

Case 2(a) corresponds to an inconsistency, which can no longer be repaired, be-
cause all literals in the violated clause are already committed.

3.4.3 Revision Algorithm

Now we are ready to present an algorithm Revp, which is a revision function for fixed—
domain theories. This algorithm applies a sequence of repair steps to every model
M € M and discards the non-minimal models. By executing the repair steps in a best—
first order it limits the generation of non—-minimal models.

To repair a model M the algorithm Revp iteratively applies the Step—function. It
maintains a set WM of inconsistent models and a set Solutions of consistent models.
Initially WM = {M} and Solutions = 0. The algorithm now selects a <"~minimal
inconsistent model M from WM, i.e. M has the property that there is no M’ € WM U
Solutions so that M’ <¥ M. Then, M is deleted from WM and Step(S, M) is computed.

If Step(S,M) = 0 then M is consistent, i.e. M = S. The model M is inserted
into the solutions set and can be used to delete non—-minimal models from WM: All
models, in which the extensions of the predicates in P are equivalent to or larger than
in M can be deleted, because we want to obtain only one solution out of each minimal

3.4. ALGORITHMS FOR REVISION AND FILTERING 35

~Pclass. If N\ := Step(S,M) # 0, then the models from A are inserted into WM.
If Step(S,M) = {0}, no further repair step can be applied to the inconsistent model
M and it is discarded. The revision of M is finished, if WM = 0. This algorithm
(RepairModel) has to be applied to every model in the set of initial models 4. Finally,
another <P—minimality check is performed on the result models from the individual
revisions.

Algorithm 3.24 Rev(S,M, U)

FUNCTION Revs(S, M, U)
Solutions :=0;
S=850U;
FOR EACH M€ M DO
Solutions := Solutions U RepairModel(S',M) ;
FOR EACH S € Solutions DO
IF 35 € Solutions\S: S’ <P S THEN
Solutions := Solutions\S ;
RETURN Solutions;

FUNCTION RepairModel(S,M)
WM :={M}; Solutions:=0;
WHILE WM #0 DO
Select a <P—minimal model M from WM ;
WM := WM\{M};
N := Step(S,M);
IF AL=0 THEN
IF AM € Solutions: M <P M THEN
Solutions := Solutions UM ;
(*) WM := WM\{M € WM : M <P M M ~P M};
ELSE IF A # {0} THEN WM :=WMUN;
ELSE Discard M
RETURN Solutions;

3.4.4 Properties of the Algorithm

In this section we will develop soundness and completeness results for the revision
function Revp. Our goal is to show that Revp is a revision function for fixed domain
theories. We first have to prove the following properties:

Termination: The algorithm always terminates for fixed—domain theories.

Correctness: All models returned by the algorithm are minimal models of the theory
together with the new literal.

36 CHAPTER 3. THE DRUM-II FRAMEWORK

Completeness: The algorithm outputs one model from each ~F —equivalence class.

For fixed—domain theories we can show termination of algorithm 3.24 by proving
that Step can only derive a finite number of successor models from a given model M.

Proposition 3.25 Algorithm 3.24 terminates for fixed domain theories.

Proof: Since the given transversal M contains only finitely many models,
RepairModel is only called finitely often and it is sufficient to show that RepairModel
terminates for every fixed domain theory. RepairModel uses the set WM, which ini-
tially only contains one model M. Every model occurring in WM is obtained by itera-
tive application of Step, starting with M. We show that only finitely many models can
be generated in this fashion. We define a graph G = (V, E) as follows:

V: is the set of all models derivable by iterative application of Step to M.
E: (M',M/)) € E,iff M/ € Step(S,M").

First we show that this graph is really a tree as depicted in the following figure:

Ml MZ . M"

Mll MIZ ~-~M1nl

A tree is a connected graph without cycles. Obviously, G is connected, be-
cause we explicitly consider only those models as nodes, which can be derived us-
ing Step. We prove by contradiction that there is no cycle in G: Consider a cycle
M MY M M in G. We know that Step always adds new committed literals.
Thus, Comm(M’) C Comm(M/*1) for every model in the cycle. Transitivity of C tells
us that M' ¢ M™". Since we assumed a cycle we also conclude M c M!, which is a
contradiction.

Leaves of the tree G are consistent nodes (Step(M*) = 0) or nodes which can-
not be repaired because all literals, which could be changed are already committed
(Step(M*) = {0}). We show that this tree is finite by proving that every branch is finite
and every node has finite arity.

1. Every application of Step commits the truth value of some literals, conse-
quently the set of of committed literals grows monotonically (N € Step(S,M) =
Comm(N) D Comm(M)). Since the number of ground literals is finite in a fixed—
domain theory, every branch must finally lead to a consistent node, or a node
which cannot be repaired. Thus, every branch is finite.

3.4. ALGORITHMS FOR REVISION AND FILTERING 37

2. The number of ground literals (and thus flippings) is finite in a fixed domain
theory. Thus, every node has finite arity.

The number of models generated by Step is finite. The models at the end of each
finite branch are either stored as solutions or discarded. So, the termination condition
of the WHILE—loop becomes true after finite time and RepairModel terminates. Q.E.D.

Our next result shows that all models generated by the algorithm are minimal mod-
els of S. This result follows easily from the definitions.

Proposition 3.26 Ler S, U be fixed—domain theories and M a transversal of
MODFP(S)/~F. Then Revs(S, M, U) C MODF(SU U).

Proof: Every model M returned by RepairModel is a model of SU U, as for each
such model Step(SU U,M) = 0. The non-minimal models possibly generated by
RepairModel are discarded in the loop at the end of Rev(S, M, U). Q.E.D.

To simplify the following completeness proof, let us first show that the pruning
step (marked by (*) in algorithm 3.24) never entirely deletes a minimal equivalence
class.

Lemma 3.27 The pruning steps are correct, i.e. no ~F —equivalence class of a <P
minimal model of S U U is deleted entirely.

Proof: If M is pruned, then there exists M’ € WM, such that either (1) M’ <P M or
(2) M’ ~P M. In case (1), M is not a minimal model of S U T, in case (2) we have
[M] = [M’], thus M’ is still representing the equivalence class of M, and M can be
deleted. Q.E.D.

Having shown the correctness of the pruning steps, we will not consider them in the
following completeness proof. For the completeness of the algorithm it is crucial that
the repair steps are exhaustive in the sense that the branches generated by Step account
for any every consistent model of S U U. This is formalized in the next lemma.

Lemma 3.28 (Case Splitting Property) Let M be a model of S and M’ an interpreta-
tion which is no model of S. If M |= Comm(M') then there exists an N € Step(S,M'),
such that M = Comm(N).

Proof: We assumed M’ k= S: Thus, there is a clause C € § and a substitution o,
such that Co is ground and M’ = CG (otherwise M’ would be a model). Since M is a
model of § it has to differ from M’ in at least one ground literal occuring in CG. This
literal [is not committed in M’ since M and M’ agree on all committed literals of M’,
consequently / is a flipping and the model created by flipping / in M’ is in Step(S,M’).
Q.E.D.

Using the case splitting property, we can now show the completeness of our algo-
rithm for fixed—domain theories.

38 CHAPTER 3. THE DRUM-II FRAMEWORK

Proposition 3.29 Let S, U be fixed—domain theories and M a transversal of
MODF(8)/~F. Then for every M € MODY (S) there exists N € Revp(S, M, U), such

that M ~F N.

Proof: Since M is a <{’ —minimal model of S U U, there exists a </—minimal model
N of S, such that N < M (Note, that M is in particular a model of §. Either there
is a model with a smaller extension of the predicates in P than M or M itself is a
minimal model of S). Since M is a transversal of MOD?(S)/~" there is a model N’
in M, such that N’ ~F N. Consider the revision tree of such an N’. In the beginning
Comm(N') = 0 thus M |= Comm(N'). Because of the case splitting property there is a
path NO .= N N(U N2 such that

1. NUHD € Step(S5,N0).
2. Vi: M = Comm(NWY).

On this path the set of committed literals grows. In every step some literals from M
are added. So we know that there is a consistent model on this path (because M is
consistent and will finally occur on the path). We also know that there is no consistent
model of §U{@} with smaller extensions of the predicates in P than M. We can
conclude that there finally is a consistent a model N (") on the path with N () P M.
Q.E.D.

Propositions 3.26 and 3.29 together with the observation that at most one represen-
tative 1s computed for every equivalence class show that Revs computes a transversal
of the minimal models and consequently is a revision function for fixed domain theo-
ries.

Theorem 3.30 Revp is a revision function for fixed—domain theories.

Algorithm 3.24 also computes minimal Herbrand models in the presence of func-
tions symbols and infinite sorts. When we convert it from a best first to a breadth
first algorithm by changing the management of the node list WM we can show that it
always finds a set of finite minimal Herbrand models, if it exists. There are two direc-
tions for further research: (1) extending the implementation by function symbols with
more general interpretation using the ideas from [CW94], (2) to further investigate the
connection between Herbrand models of theories with infinite sorts to circumscription.
The correspondence is less obvious then in the case of fixed—domain theories, because
DCA and UNA are not expressible as first order sentences in such theories.

3.4.5 An Iterative Deepening Algorithm

The function RepairModel in algorithm 3.24 implements a best first search for mini-
mal models. Although this is a very natural solution, it has some efficiency drawbacks.

3.4. ALGORITHMS FOR REVISION AND FILTERING 39

e Models have to be compared using a time—consuming subset—check on the ex-
tensions of the predicates in P to find a < —minimal model.

e The list of models has bad locality. Models have to be selected/inserted at any
place in the list,

Both disadvantages are avoided without affecting the semantics by using the fol-
lowing iterative deepening algorithm. With each model M we associate a value ¢(M)
which is the number of atoms for the predicates in P contained in M:

Definition 3.31 ¢(M)
Let P = (Py,...,P,) be a tuple of predicate constants.

c(M)=) |M|P]]

1<i<n
where |M|P;|| denotes the number of elements in the extension of P; in M.

For this algorithm the model set is organized as a stack with the usual operations
Push and Pop. A stack has a better locality than the list of models used in the best—first
algorithm, because all operations only affect its first element. When using a stack,
we can implement the push and pop operations without really copying the models.
However, since its top element is just some arbitrary model, we must implement other
mechanisms to avoid the generation of non—-minimal models. The iterative deepening
algorithm first defines an initial upper bound Cutoff = 0 on ¢(M). If a partially repaired
model M has ¢(M) > Cutoff it is deleted, but a flag is set to indicate the deletion. The
algorithm computes all consistent models with ¢(M) = 1 and then sets Cutoff to the
smallest ¢(M) of a model M which was deleted. The algorithm proceeds until no model
is deleted because of the cutoff—value. Algorithm 3.32 summarizes the procedure. For
some applications (like diagnosis) it is useful to restrict ¢(M) by some absolute bound
(see chapter 2) and discard all models M completely which have a greater c¢(M).

Algorithm 3.32 /D_Repair_Model

FUNCTION ID_Repair_-Model (S, M)

Solutions := 0;

Cutoff := 0;

Next_Cutoff := 0;

WHILE Next_Cutoff > Cutoff DO
Models := 0;
Models.Push(M);

Cutoff := Next_Cutoff;
WHILE Models # 0 DO
Models.Pop(M) ;

N := Step(S,M);

40 CHAPTER 3. THE DRUM-II FRAMEWORK

IF N =0 THEN
IF AM € Solutions: M <P M THEN
Solutions := Solutions\J{M} ;
END IF;
ELSE IF A # {0} THEN
FOR ALL M € A DO
IF ¢(M) > Cutoff then
Discard M ;
Set Next_Cutoff to the smallest
value ¢(M) in a discarded model so far;
ELSE Models.Push(M);
END IF;
END FOR;
END IF;
END WHILE;
END WHILE;
RETURN Solutions;

3.4.6 Filtering Algorithm

For the filtering we use the same Step—repair function as for the revision. Instead of
minimizing the extensions of the predicates in P, we now hold the previously mini-
mized extensions of the predicates in P fixed, by encoding them as part of the theory.

The filtering algorithm tries to find one model for every equivalence class in M.
Equivalence classes are filtered out, when no consistent model is found. In the al-
gorithm this corresponds to the last ELSE—statement, which denotes that a model is
discarded if it is inconsistent and there are no further repair steps applicable, because
in at least one inconsistency all literals are committed.

Algorithm 3.33 Filters(S,M, @)

FUNCTION Filterp(S, M,0)
Solutions :=0;
FOR EACH M €M DO

Shi=Suieru U(u rxu U ﬂPl-()?)>;

1<i<n \#MEP() MEP ()
Solutions := Solutions U RepairModel' (S',M) ;
RETURN Solutions;

FUNCTION RepairModel (S',M)
WM :={M}; S:=0;
WHILE WM #0 DO

Select a model M from WM ;

3.4. ALGORITHMS FOR REVISION AND FILTERING 41

WM := WM\ {M};
N := Step(S'U{L},M);
IF N =0 THEN S:={M}; WM :=0;
ELSE IF A # {0} THEN WM := WMUN;
ELSE Discard M;

RETURN S;

As for the revision algorithm we have to show termination, correctness and com-
pleteness. We can reuse some of the proofs for the revision algorithm in order to show
these properties.

Proposition 3.34 Algorithm 3.33 terminates for every fixed domain theory S.

Proof: From Proposition 3.25 we know that the set of models derivable from the
initial model M is finite. Since the number of committed literals in these models grows
monotonically, iterative application of Step will lead to models which either contain
an inconsistency which consists only of committed literals (last ELSE—case) or to a
consistent model (first IF—case). Q.E.D.

Before we formulate the completeness result for the filtering algorithm, note that
filtering does not include a minimization, i.e. we do not want to compute the minimal
models of S U {@} but rather check, if a minimal model of § exists, which is a model
of ¢.

Proposition 3.35 Let S be a fixed-domain theory, @ a formula such that S U{¢} is a
fixed-domain theory, and M a transversal of MOD® (S) /~F. Then Filters(S, M, @) C
MODF ().

Proof: Every model M returned by RepairModel’ satisfies Step(SU{@},M) = 0. Thus,
it is a model of S U {¢} and in particular a model of S. M is minimal, because it has
the same extension of the predicates in P as the minimal model, from which it was
derived. Q.E.D.

Proposition 3.36 Let S be a fixed—domain theory, ¢ a formula such that S U{Q} is
a fixed-domain theory, and M a transversal of M ODF(S)/~F. Then for every M €
MODY(S), such that M (= @, there exists N € Filters(S, M,), such that M ~* N.

Proof: Since M is a <P _minimal model of S, there exists a model N € M such that
N ~F M. Consider the revision tree of such an N’. Analogous to the proof of propo-
sition 3.29 we can use the case splitting property to show that there is a path leading
finally to M on which we encounter M or another consistent model appearing earlier on
the path. Since we fixed the extension of the predicates in P during filtering, we know
that the model N") we find will be in the same ~* —equivalence classas M. Q.E.D.

Let us summarize: From proposition 3.35 we know that all models returned by
Filter are minimal models of .§, which make ¢ true. Moreover, proposition 3.36 tells
us that Filterp find a model for each ~f—equivalence class. Thus, Filters computes a
transversal of the remaining equivalence classes and we conclude:

42 CHAPTER 3. THE DRUM-II FRAMEWORK

Theorem 3.37 Filterp is a filtering function for fixed—domain theories.

In section 3.3 we have reduced circumscription with fixed predicates and priori-
tized circumscription to parallel circumscription with varying predicates. In this sec-
tion we have defined algorithms for parallel circumscription with varying predicates.
Together, both steps provide a powerful computation framework for many variants of
circumscription. Before we move on to the formalization of diagnostic concepts within
this framework, we study proof—of—concept applications from the non—-monotonic rea-
soning domain.

3.5 Non-monotonic Reasoning Applications

To demonstrate the flexibility of DRUM-II, we apply it to some problems from the
“reasoning about action and change” domain. Reasoning about action and change is a
research area within the temporal reasoning field, where non—monotonic reasoning is
used to infer intuitively correct conclusions from logical axiom formalizing the effects
of actions. Many formalisms have been proposed in this area. We implement both
Sandewall’s and Baker’s approaches to reasoning about action and change and Kartha’s
[Kar94] extension to Baker’s approach.

Furthermore, we solve two formalizations of “Nixon’s diamond” [Gin89, WS97], a
well-known non—monotonic reasoning problem. The efficiency of our implementation
is discussed in section 3.5.5.

3.5.1 PMON-Circumscription

In this section we show how to implement Sandewall’s approach to reasoning about
action and change [San94]. We use PMON-circumscription (recently discussed by
Doherty [Doh94]). This example underlines the importance of reasoning with equiva-
lence classes and the efficient use of fixed predicates. We will use the Russian Turkey
Shoot Scenario: There are two fluents, a (alive) and / (loaded) and three actions, Load,
Spin (spinning the guns chamber) and Fire. The gun was loaded between the time
points 1 and 2, the spinning action was performed between 3 and 4 and the gun was
fired between 5 and 6.

In Sandewall’s framework the effect of actions is described by Reassignment For-
mulas, e.g. the loading action is described by [1;2]/ := T which means that the fluent
[is assigned the value true during [1;2]. Reassignment formulas can include a con-
dition. The firing action is described by the formula [5]/ — [5,6](—~a: =T A=l :=T)
denoting that a and [are false after the shooting if the gun was loaded at time 5. Before
reasoning, the reassignment formulas are transformed into first order logic. Two pred-
icates are used: Holds(t, f), (fluent f holds at time ¢) and Occlude(t, f) (fluent f may
change its value at time point ¢ as effect of an action). PMON-Circumscription first
minimizes Occlude while holding Holds fixed. Then the resulting models are filtered

3.5. NON-MONOTONIC REASONING APPLICATIONS 43

with the observations and the nochange axiom, which states that a fluent f can only
change its value at time ¢, if Occlude(t,) holds'.

NCP :Vf,t Holds(t, f)®Holds(t+ 1, f) — Occlude(t + 1, f)

This reasoning pattern can be directly simulated in our approach. However, fixing
the whole extension of Holds leads to a large amount of incomparable models. We
extend the transformation to first order logic by generating a literal Precond(I) for each
conditional reassignment formula. The truth value of Precond(I) is coupled with the
truth value of the condition in the reassignment formula. In our example we generate
such a literal for the Fire—action: Precond(1) = Holds(5,1). We obtain the correct
results by holding Precond fixed instead of Holds. The translation yields theory SCD:

(1 <t <2)AVH'(t <t <2 — Holds(t',1))
AV (1 <t <2 — Occlude(t',1))

(3 <t <4) AV (t <t' <4 — (Holds(t',1) V —Holds(t',1)))
AVE (3 <t' <4 — Occlude(t',1))

Holds(5,1) — ((F3t.5<t <6 AVl (t <t' <6 — —Holds(t',a)))
AVE (5 <t <6 — Occlude(t',a))\
(Ft.5<t<6AVH(t <t' <6— —Holds(t',1)))
AV (5 <t <6 — Occlude(t',1)))

Precond(1) = Holds(5,1)

Precond(1) = —Precond' (1)

We first compute ReV(occiude,recond,Precond’y(0,{0},SCD) and obtain two result
models:

My : {Holds(2,1),Occlude(2,1), Occlude(4,1), Precond’ (1)}
M, : {Holds(2,1),Holds(5,1),0cclude(2,1),Occlude(4,1),
Occlude(6,a),0cclude(6,1), Precond(1)}

By treating Precond as fixed, we have obtained one model, in which the gun is
loaded at time 5 and one, in which it is not loaded. These two models are repre-
sentatives of two large equivalence classes of models, whose members differ in the
extensions of Holds. Our equivalence class approach avoids storing all these mod-
els. The next reasoning step is filtering with the observations and the nochange axiom.

We compute Filter occiuge,precond,precond’) (SCDs {M1,M2}, \ 0 ANCP). Both equiv-
0€0Dbs
alence classes survive the filtering. The remaining representatives are shown below:

Ms:

A~ Q~

My:

'@ denotes the exclusive disjunction

44 CHAPTER 3. THE DRUM-II FRAMEWORK

The two equivalence classes now only contain the two intended chronicle
completions. If we ask whether the turkey is dead at time 6 by executing
Filter occiude, precond, Precond’) (SCDU Obs U{NCP},{M3, M4}, ~Holds(6,a)), model My
remains. As intended, the query cannot be proved and the system remains unspecific
about the question, whether the turkey stays alive. On the other hand, if we ask whether
the gun is unloaded at time 6, the system successfully proves this query (both models
M3 and My are eliminated through filtering with Holds(6,1)).

3.5.2 Baker’s Formalism

Baker proposed an approach for non—-monotonic reasoning in the situation calculus
[Bak91]. He extends previous approaches by introducing an existence of situations
axiom, which guarantees the existence of a situation for every consistent combination
of truth values of the fluents. Additionally Baker varies the Result—function instead
of Holds. We implement Baker’s approach using a language with three sorts: A4 for
actions, F for fluents and § := 27 for situations, which are characterized by the fluents
that hold. The usual Result—function of the situation calculus is replaced by a predicate
Result, for which we postulate that it is functional by

VaVs3s' (Result(a,s,s') NVs" (Result(a,s,s") — s =s"))

Consider the Yale Shooting Problem with fluents a (Alive) and / (Loaded) and the
actions W (Wait) and S (Shoot). We start reasoning in a trivial model M of the domain
axioms without the description of the actions, i.e. in a completely inert world, where
the actions lead to no change in the truth values of the fluents:

5w,s !w,s 5w,s Ilw,s

No abnormality has to be assumed because all fluents are allowed to per-
sist. Now we revise this model with the axiom ACT of the shoot action
(Revap(S\{ACT},M(,{ACT})). This axiom states that the turkey is dead and the gun
is unloaded after shooting with a loaded gun.

ACT : Vs (Holds(a,s) NHolds(l,s) A Result(S,s,s))
— (—Holds(a,s') N—Holds(l,s"))

The following model M is detected to be the minimal one.

3.5. NON-MONOTONIC REASONING APPLICATIONS 45
M w w
S

Now we prove that the turkey is dead, when we start with a loaded gun and a living
turkey then wait and then shoot.

@ : Result(W,{a,l},s1) A Result(S,s1,s2) — —Holds(a,s»)

We prove this by Filtera,(S,{M;},—¢), which returns 0.

3.5.3 Kartha’s Extension

Kartha [Kar94] recently reported that Baker’s circumscription method is problematic
in the presence of non—deterministic actions. He proposed to exclude the observations
from the minimization in order to obtain the expected results. We will use our method
to solve his two—buses example: A passenger has to buy a ticket before he can take a
bus. After buying the ticket, he waits at the bus stop and gets on the first bus which
arrives. This can be either the red or the yellow bus. The problem is described using
the fluents H (has ticket), R (on red bus) and Y (on yellow bus) and the actions B (buy
a ticket) and G (get on bus). A group C of axioms describes the dependencies among
the fluents:

C: VYs—(Holds(R,s) NHolds(Y,s))
Vs(Holds(R,s) — Holds(H,s))
Vs(Holds(Y,s) — Holds(H,s))

Another group E of axioms describes the effect of the actions. Buying a ticket
makes the fluent H true. Getting on the bus takes the passenger either on the red or
the yellow bus, if he has a ticket. Note, that we again replace the Result—function by a
functional predicate.

E: VsVs'=Holds(H,s) A\ Result(B,s,s') — Holds(H,s')
VsVs'Holds(H,s) A —Holds(R,s) N —Holds(Y,s) A Result(G,s,s") —
Holds(R,s") \V Holds(Y,s')

Additionally we have observed that buying a ticket and getting on a bus takes
passengers on the red bus.

O: 3soVsiVsy—Holds(H,so) A Result(B,so,s) A Result(G,s,s’) A Holds(R, ')

46 CHAPTER 3. THE DRUM-II FRAMEWORK

Since Result is functional, we can use either existential or universal quantification
for the variables s and s’ in the above sentence. Finally we use the usual frame axiom,
adapted to our relational version of the Result—function.

F: VfYaV¥sVs' (-Ab(f,a,s) A Result(a,s,s') — (Holds(f,s) = Holds(f,s")))

Again, we use a sort A4 for the actions, a sort ¥ for the fluents and § = 27 for
the situations. However this time not all fluent combinations are consistent with the
axioms. A predicate Absit is used to denote that a fluent combination is abnormal
in the sense that it contradicts the axioms. We can express that all consistent fluent
combinations exist, by the axiom Abs.

Abs: Vs(—Absit(s) — A Holds(f,s))
fes

Now we circumscribe Absit in the part of the theory, which makes statements
about valid fluent combinations by executing Revapgi; (0, {0}, CU{Abs}). The resulting
model yields the following correct extension of Absit:

{Absit({H,R,Y}), Absit({R}), Absit({R,Y }), Absit({Y })}

If we minimize Absit in a larger part of the theory (following Kartha, we must
however exclude the observations), by executing Revp(0,{0},CUE U{F}U{Abs}),
our approach also returns one model with the correct extension. Here, the equivalence
classes come into play again: We obtain one model with an arbitrary extension of
Result and Ab representing a large class of models, where all models agree in the
extension of Absit.

Now that we have found the consistent fluent combinations we proceed to the main
problem, namely the computation of the correct models for the two buses problem.
As for the yale shooting we again use a model of the static world as initial model and
revise this model with the action axioms. The initial model M is depicted below:

5B,G 5B,G IB,G IB,G

This model is now revised with the action axioms E by Revap(C U {F} U
{Abs},{Mo},E). To avoid unintended models, we must first exclude the observations
from the minimization. The system returns the following two models: One, in which
the passenger takes the red bus and one in which he takes the yellow bus.

3.5. NON-MONOTONIC REASONING APPLICATIONS 47

RO,

B,G

G B B, G

G

Note, that the two models obtained are not NAb—equivalent, because in one model
getting on the bus is abnormal wrt. the fluent Y and in the other this action is abnormal
wrt. the fluent R. After the minimization of Ab we now have to filter using the obser-
vation O, by executing Filtera,(CUE U{F } U{Abs},{M,M>},0), which eliminates
the model where G takes the passenger on the yellow bus.

3.5.4 Nixon’s Diamond

Consider the following proof of concept example originally proposed by Reiter [RC81]
and used by Ginsberg [Gin89]: US-President Nixon was both a republican and a
quaker. Normally, republicans are hawks and quakers are no hawks. This is formalized
by
S : Vx.Republican(x) N —Ab(Political,x) — Hawk(x)
Vx.Quaker(x) A —Ab(Religious,x) — —Hawk(x)
Obs : Republican(Nixon)
Quaker(Nixon)

First we compute the minimal models using Revs,(0,{0}, 5 U Obs) and receive the
two result models:

My : {Ab(Political, Nixon), Republican(Nixon), Quaker(Nixon) }
M, : {Ab(Religious, Nixon), Hawk(Nixon), Republican(Nixon),
Quaker(Nixon)}

Now we ask the system, if Nixon was a hawk by filtering with ~Hawk(Nixon).
Model M| remains, indicating that this query cannot be proved.

Nixon’s diamond has also been used as a proof of concept problem for prioritized
circumscription in [WS97]. Instead of one Ab—predicate two different predicates are

48 CHAPTER 3. THE DRUM-II FRAMEWORK

used: Ab1(x) denotes that x is politically abnormal, Ab2(x) denotes that x is religiously
abnormal.
Sp: Vx Republican(x) N —Ab1(x) — Hawk(x)
Vx Quaker(x) A —Ab2(x) — ~Hawk(x)

Our algorithm for circumscribing Sp in Ab1 > Ab2 first minimizes Ab1 (compare
definition 3.12). The revision is Revap; (0,{0}, Sp U Obs). The result is the model

M : {Ab2(Nixon),Hawk(Nixon),Republican(Nixon),Quaker(Nixon)}.

Following definition 3.12 we must now minimize Ab2, while holding the previ-
ously minimized extension of Ab1 fixed. Thus, we compute

Revap (- {Vx Republican(x) N —~Abl(x) — Hawk(x)},

{M}
{=Ab1(Nixon),V¥x Quaker(x) N —Ab2(x) — ~Hawk(x)})

Again, the result is the same model M, as obtained from the first revision.
If we ask the system if Nixon was a hawk by executing Filter(spi ap) (Sp U
Obs,{M},—~Hawk(Nixon)), the result is 0. Thus, Hawk(Nixon) is proved. By as-
signing a higher priority to the minimization of political abnormality, we have given
preference to the first rule, so that Hawk(Nixon) can be inferred.

3.5.5 Running Times

The algorithms presented in this paper have been implemented in PROLOG. The
following table shows the runtimes for the examples described above on a SPARC-
Station 4.

Example Runtime: Revision Filtering Total
PMON-Circumscription 0.14s 0.32s 0.46s
Yale Shooting (Baker) 0.23s 0.08s 0.34s
Absit-Minimization (Kartha) 3.28s - 3.28s
Two Buses (Kartha) 0.29s 0.04s 0.33s
Nixon’s Diamond 0.03s 0.01s 0.04s
Nixon’s Diamond (Ab1, Ab2) 0.05s 0.02s 0.07s

In most examples the filtering step is executed much faster than the revision, be-
cause usually only few facts can be altered in the models without affecting the ex-
tension of the minimized predicate (which is not changed during filtering, see section
3.4.6). The PMON-example is an exception, because the equivalence classes of the
minimal models are very large.

All examples except the Absit—minimization are solved in less than 0.5s. The
longer runtime of the Absir—example is due to the structure of the axiom group C,
which introduces a large amount of non—determinism into the revision. In this ex-
ample we obtain a revision tree with many branches, which all consist of few repair
steps.

3.6. IMPLEMENTING DIAGNOSIS WITH DRUM-II 49

3.6 Implementing Diagnosis with DRUM-II

In contrast to previous systems for model-based diagnosis which rely on techniques
specific to diagnosis, DRUM-II handles diagnosis as a special case of circumscription.
We will now relate the diagnosis definition from chapter 2 to the reasoning techniques
presented previously in the current chapter.

3.6.1 Consistency—Based Diagnosis with DRUM-II

Let us begin by establishing the connection between minimal consistency—based diag-
nosis and minimal model computation. As specified by definition 2.2 minimal diag-
noses are minimal sets of Ab—atoms A, so that

SDUObs\U{Ab(c)|c € A} U{-Ab(c)|c € Comp\A} (3.9)

is consistent. We want to characterize the same concept using models: If the theory
specified in formula 3.9 is consistent, it has a model M. M has to interpret Ab exactly as
specified by {Ab(c)|c € A} U{—Ab(c)|c € Comp\A}, thus M|Ab| = A. Consequently,
for each minimal diagnosis of SD U Obs there exists a minimal model M of SDU Obs,
such that M|Ab| = A. However it can be that several minimal models correspond to
one diagnosis.

Example 3.38
Consider a system component C (an integrated digital circuit) with two output ports X
and Y.

I —

— X
I — C

—Y
I3 —

Suppose the system description predicts the values X =1 and Y = 0, given the
current values of 11,/> and 5. If we observe Y = 1, we have to assume that C is faulty.
Since C is behaving abnormally (and no fault model has been specified for C), we
cannot predict the value of X. Thus we have the following two <4*—minimal models
corresponding to the minimal diagnosis {C}: M| = {Value(X,0), Value(Y,1),Ab(C)}
and M, = {Value(X, 1), Value(Y,1),Ab(C)}. #

We can show that the minimal diagnoses directly correspond to the ~A’-
equivalence classes of the <4”—minimal models.

Theorem 3.39 Let M be a transversal of MOD*?(SD U Obs)/~Ab. Then D :=
{M|Ab| |M € M'} is the set of all minimal diagnoses of (SD,Comp, Obs).

50 CHAPTER 3. THE DRUM-II FRAMEWORK

Proof: First we show that every A € D is indeed a minimal diagnosis of
(SD,Comp,Obs). Since A € D, there exists a <Ab_minimal model M of SDU Obs,
so that M|Ab| = A. This M is also a model of SDU Obs U {Ab(c)|c € M|Ab|} U
{=Ab(c)|c € Comp\M|Ab|}. Since A = M|Ab| we can write this theory as SDU ObsU
{Ab(c)|c € Ay U{-Ab(c)|c € Comp\A}. Since M is a model of <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>